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Abstract
Introduction  Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. An increas-
ing number of studies have demonstrated that tumor proliferation and metastasis are closely related to complex metabolic 
reprogramming. However, there are limited data to provide a comprehensive metabolic picture of osteosarcoma.
Objectives  Our study aims to identify aberrant metabolic pathways and seek potential adjuvant biomarkers for osteosarcoma.
Methods  Serum samples were collected from 65 osteosarcoma patients and 30 healthy controls. Nontargeted metabolomic 
profiling was performed by liquid chromatography-mass spectrometry (LC-MS) based on univariate and multivariate sta-
tistical analyses.
Results  The OPLS-DA model analysis identified clear separations among groups. We identified a set of differential metabo-
lites such as higher serum levels of adenosine-5-monophosphate, inosine-5-monophosphate and guanosine monophosphate 
in primary OS patients compared to healthy controls, and higher serum levels of 5-aminopentanamide, 13(S)-HpOTrE (FA 
18:3 + 2O) and methionine sulfoxide in lung metastatic OS patients compared to primary OS patients, revealing aberrant 
metabolic features during the proliferation and metastasis of osteosarcoma. We found a group of metabolites especially lactic 
acid and glutamic acid, with AUC values of 0.97 and 0.98, which could serve as potential adjuvant diagnostic biomarkers 
for primary osteosarcoma, and a panel of 2 metabolites, 5-aminopentanamide and 13(S)-HpOTrE (FA 18:3 + 2O), with an 
AUC value of 0.92, that had good monitoring ability for lung metastases.
Conclusions  Our study provides new insight into the aberrant metabolic features of osteosarcoma. The potential biomarkers 
identified here may have translational significance.
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1  Introduction

Osteosarcoma is the most common primary malignant bone 
tumor in children and adolescents, mainly occurring between 
the ages of 10 and 25 years (Isakoff et al. 2015). With the 
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introduction of neoadjuvant chemotherapy and advances in 
surgical limb salvage techniques, the 5 year overall survival 
rate for osteosarcoma is approximately 60% (Isakoff et al. 
2015; Gianferante et al. 2017). Osteosarcoma has a strong 
tendency to cause lung metastasis, which may commonly lead 
to a poor prognosis. Over the past three decades, the clini-
cal treatment of osteosarcoma has remained at a “plateau”. 
Oncologists have tried to improve the overall prognosis of OS 
patients by increasing the dose of chemotherapy drugs and 
ministering different combinations of chemotherapy, but the 
effect has not been satisfactory(Eaton et al. 2020). Thus, it is 
urgent to understand the development of osteosarcoma more 
comprehensively at the molecular level.

There is increasing evidence that cancer cells show signifi-
cant metabolic disorders compared with normal cells. Cancer 
development and progression can be regulated by the energy 
transition from fermentable metabolites to respiratory metabo-
lites (Seyfried et al. 2014). Metabolic reprogramming con-
trolled by a complex network of coupled enzymatic reactions 
favors the development of cancers (Yoo et al. 2020; Zhang 
et al. 2019). A previous study showed that the Warburg effect 
or aerobic glycolysis represents an adaptive phenomenon 
that is commonly observed in brain tumors, which is closely 
related to stem cell differentiation, drug resistance and tumor 
recurrence (Venneti and Thompson 2017). Reprogramming 
of metabolic pathways including the tricarboxylic acid cycle, 
oxygen sensing and the aberrant metabolism of fatty acids, 
glucose, glutamine and arginine enables clear cell renal cell 
carcinoma cells to rapidly proliferate and survive under stress 
conditions or escape the immune response (Wettersten et al. 
2017). Metabolomics, through measuring metabolite concen-
trations, provides possibilities for understanding the compre-
hensive metabolic status of biological systems associated with 
diseases (Jang et al. 2018). A growing number of studies have 
utilized this technique to search for biomarkers associated with 
tumor status to improve clinical prediction and diagnosis (Fer-
rarini et al. 2019; Battini et al. 2017; Jin et al. 2014). However, 
there are limited data to provide a comprehensive metabolic 
picture of osteosarcoma.

In this study, we collected serum samples from 65 osteo-
sarcoma patients and 30 healthy controls. A serum metabolic 
profile based on lipid chromatography-mass spectrometry 
was generated to identify the aberrant metabolic pathway 
in osteosarcoma, and seek potential adjuvant biomarkers 
that could improve the diagnosis and monitoring ability for 
osteosarcoma.

2 � Materials and methods

2.1 � Study population

Ninety-five participants were included throughout the 
study, 30 of whom were healthy and 65 of whom were 
tumor patients. Sixty-five patients with a histologic diag-
nosis of osteosarcoma were enrolled from the First Affili-
ated Hospital of Sun Yat-sen University between January 
2016 and July 2018. Among them, 32 patients were diag-
nosed with osteosarcoma without metastasis and the rest 
had lung metastasis. According to Enneking staging, the 
nonmetastatic OS patients were in stage II, including 18 in 
stage IIA and 14 in stage IIB, and the lung metastatic OS 
patients were all in stage III. All cohort patients provided 
written informed consent. The study was approved by the 
ethics committee of the First Affiliated Hospital of Sun 
Yat-sen University and the approval number is [2020]277. 
Detailed clinical information about the patients is pre-
sented in Table 1.

The inclusion criteria were as follows: (1) patients who 
were diagnosed with histologically confirmed conventional 
high-grade osteosarcoma by at least 2 orthopedists and 2 
pathologists; (2) patients who underwent initial diagnosis 
and received a standard treatment protocol at our center; 
(3) patients who did not receive any antitumor therapy 
before admission to our center; (4) patients who underwent 
chest computed tomography (CT) to confirm the presence 
or absence of lung metastasis; and (5) patients for whom 
complete clinical and follow-up data were available.

3 � Sample preparation

Serum samples were collected before or after lung metas-
tasis and frozen at − 80 °C until the beginning of sample 
preparation. Fifty microliters of thawed serum and 200 
µL of cold methanol were combined, vortexed for 60 s, 
and kept at − 20 °C overnight. Following centrifugation 
at 18,000×g and 4 °C for 15 min, 200 µL of the superna-
tant was evaporated to dryness under a nitrogen stream. 
The residue was redissolved in 100 µL of 50% acetonitrile 
(v/v). Quality control (QC) samples pooled from all sam-
ples were prepared and analyzed with the same procedure 
used for the experimental samples.
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4 � Nontargeted metabolomics analysis 
with the UHPLC‑HRMS platform

Chromatographic separation was performed on a Thermo 
Fisher Vanquish UHPLC system with a Waters BEH C18 
column (2.1 mm × 100 mm, 1.7 µm). The eluents were ana-
lyzed on a ThermoFisher Q Exactive™ plus Hybrid Quad-
rupole-Orbitrap™ Mass Spectrometer (QE plus) in heated 
electrospray ionization positive (HESI+) and negative 
(HESI−) mode. The spray voltage was set to 3200 V for 
HESI + and 3000 V for HESI−. The capillary and probe 
heater temperatures were 320 °C and 350 °C, respectively. 
The sheath gas flow rate was 50 (Arb), and the aux gas 
flow rate was 15 (Arb). The S-lens RF level was 50 (Arb). 
The full scan was operated at a high resolution of 70,000 
FWHM (m/z = 200) in the range of 70–1050 m/z with an 
AGC target setting of 1 × 106. Simultaneously, the frag-
ment ion information of the top 10 precursors in each scan 
was acquired by data-dependent acquisition (DDA) with 
the HCD energy at 15, 30 and 45 eV, a mass resolution of 
17,500 FWHM, and an AGC target of 5 × 105.

5 � Data processing and metabolite 
identification

The raw data from the UHPLC-Q Exactive plus system 
were first transformed to mzXML format by ProteoWizard 
and then processed by the XCMS and CAMERA packages 
in the R software platform. In the XCMS package, peak 

picking (method = centWave, ppm = 5, peakwidth = c(5,20), 
snthresh = 10), alignment (bw = 6 and 3 for the first and sec-
ond grouping, respectively), and retention time correction 
(method = obiwarp) were conducted. In the CAMERA pack-
age, annotations of isotope peaks, adducts, and fragments 
were performed with default parameters. The final data were 
exported as a peak table file, including observations (sample 
name), variables (rt_mz), and peak areas. The data were 
normalized against total peak areas before univariate and 
multivariate statistics were performed.

The accurate m/z of precursors and product ions were 
matched against online databases including mzCloud, Met-
lin, HMDB, MassBank, and local LipidBlast, and the in-
house standard library including retention time, accurate 
precursors, and product ions.

5.1 � Statistical analysis

For multivariate statistical analysis, the normalized data 
were imported to SIMCA software (version 14.1, Umet-
rics, Umeå, Sweden), where the data were preprocessed by 
Pareto scaling and mean centering before OPLS-DA was 
performed. The model quality is described by the R2X or 
R2Y and Q2 values.

For univariate statistical analysis, the normalized data 
were analyzed in the “muma” software package in the R plat-
form, where a parametric test was performed on data with a 
normal distribution by Welch’s t test, while a nonparametric 
test was performed on data with an abnormal distribution by 
the Wilcoxon Mann-Whitney test. The Benjamin-Hochberg 

Table 1   Clinical Information 
of osteosarcoma patients and 
healthy controls

OS osteosarcoma, ALP alkaline phosphatase, LDH lactic dehydrogenase

Healthy controls Nonmetastatic OS patients Lung 
metastatic OS 
patients

No. of subjects 30 32 33
Age, years, mean ± SD 22 ± 1.55 15.28 ± 6.67 19.07 ± 10.99
Gender (male/female) 16/14 16/16 21/12
Lesion location
 Humerus 3 2
 Femur 17 16
 Tibia 10 12
 Fibula 2 1
 Rib 0 1
 Ilium 0 1
 ALP (U/L) 222.5 ± 220.3 349.7 ± 494.3
 LDH (U/L) 260.1 ± 109.1 328.7 ± 225.0

Enneking staging
 I 0 0
 II IIA: 18; IIB: 14 0
 III 0 33
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method was used to calculate the false discovery rate (FDR). 
Those with p values lower than 0.05 and FDR values lower 
than 0.2 were considered statistically significant. Metabolic 
pathway enrichment analysis was performed on the follow-
ing website (https​://www.metab​oanal​yst.ca/). The relative 
amount of each metabolite was plotted by GraphPad Prism 
7. Hierarchical cluster (HCL) analysis was performed by the 
MultiExperiment Viewer (Mev, version 4.9.0, Dana-Farber 
Cancer Institute, MA, USA). The area under the receiver 
operating characteristic (ROC) curve of primary discrimina-
tors was calculated using SPSS software.

6 � Results

6.1 � LC/MS‑based metabolomics screening 
among the healthy group and the osteosarcoma 
groups

To reveal the different metabolic patterns during the devel-
opment of osteosarcoma, LC/MS based metabolomics 
screening was conducted among the healthy group and the 
osteosarcoma groups. In both positive and negative ion 

modes, the OPLS-DA model can effectively distinguish 
among groups (Fig. 1a and f). Interestingly, we observed 
slight sample dispersion in the nonmetastatic group and lung 
metastatic group. This may be due to the different complica-
tions of tumor patients during the treatment process, and the 
corresponding treatment plan adjustments.

7 � Discovery of metabolic features 
for osteosarcoma

To identify the differential metabolites among groups, we 
obtained the variance importance (VIP) of all the ion peaks 
from ESI + and ESI− analysis modes. All identified metabo-
lites and their detailed information were visible in the sup-
plementary table.

In the comparison of nonmetastatic OS patients to healthy 
controls, using a combination of statistical significance and 
VIP values (> 1), we found 69 differential metabolic fea-
tures, among which 31 metabolites were decreased and 38 
metabolites were increased. According to the metabolic 
pathway analysis, the metabolic pathways that were sig-
nificantly changed in nonmetastatic OS patients included 

Fig. 1   Score plot presenting the separation for pair splitting among 
samples through OPLS-DA. A-C OPLS-DA score plots for nega-
tive mode. Nonmetastasis vs. control, R2X = 0.291, R2Y = 0.989, 
Q2 = 0.91; Metastasis vs. control, R2X = 0.221, R2Y = 0.939, 
Q2 = 0.744; Metastasis vs. nonmetastasis, R2X = 0.139, R2Y = 0.751, 

Q2 = 0.0761. D-F OPLS-DA score plots for positive mode. Nonmetas-
tasis vs. control, R2X = 0.19, R2Y = 0.971, Q2 = 0.678; Metastasis vs. 
control, R2X = 0.202, R2Y = 0.947, Q2 = 0.616; Metastasis vs. nonme-
tastasis, R2X = 0.14, R2Y = 0.789, Q2 = 0.0163

https://www.metaboanalyst.ca/
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alanine, aspartate and glutamate metabolism, phenylalanine, 
tyrosine and tryptophan biosynthesis, arginine biosynthesis, 
histidine metabolism, phenylalanine metabolism, and purine 
metabolism (Figure S1A).

In the comparison of metastatic OS patients to healthy 
controls, with the same criteria, 71 differential metabolites 
were identified, among which 32 metabolites were decreased 
and 39 metabolites were increased. The differential metabo-
lites were mainly involved in arginine biosynthesis, histidine 
metabolism, alanine, aspartate and glutamate metabolism, 
and purine metabolism (Figure S1B).

To better understand the perturbed metabolic pathways 
of osteosarcoma, we compared serum metabolites in OS 
patients (nonmetastasis + metastasis) and healthy controls 
and found that a total of 55 differential variables shared 
metabolic characteristics in OS patients with and without 
metastasis (Table 2). A heat map was generated to show the 
change direction of the discriminators (Fig. 2a). The KEGG 
pathway analysis showed that the perturbed metabolic path-
ways in OS patients included alanine, aspartate and gluta-
mate metabolism, arginine biosynthesis, histidine metabo-
lism, arginine and proline metabolism, purine metabolism, 
and pyruvate metabolism, which were commonly changed 
in many cancers (Fig. 2b).

Importantly, several intermediate metabolites (adenosine-
5-monophosphate, AMP; inosine-5-monophosphate, IMP; 
guanosine monophosphate, GMP; and hypoxanthine) of the 
purine nucleotide de novo synthesis pathway were signifi-
cantly increased in OS patients. If not considering the VIP 
value, the nucleic acid product xanthosine was also found to 
be increased. However, the end product of these metabolites, 
uric acid, was downregulated in OS patients, indicating that 
active purine metabolism was closely related to the develop-
ment of osteosarcoma. Lactic acid, which had the greatest 
VIP value, was found to be significantly elevated in both 
nonmetastatic and metastatic OS groups. Other discriminat-
ing elevated products between OS patients and healthy con-
trols, including ascorbic acid, niacinamide, taurine, glutamic 
acid and pyruvic acid, were also found. Additionally, serum 
4-hydroxybenzoic acid, FA 10:0 + 1O, testosterone sulfate, 
iminodiacetic acid, 3-carboxy-4-methyl-5-propyl-2-furan-
propionic acid (CMPF) and decanoylcarnitine were mark-
edly downregulated in OS patients (Fig. 2c). These aberrant 
metabolites provide insight into the metabolic phenotype of 
osteosarcoma.

To explore metabolic changes during the progression of 
osteosarcoma, further investigation was performed to iden-
tify the potential changed metabolites between nonmeta-
static OS patients and metastatic OS patients. According 
to the screening criteria above, we identified 9 metabolic 
products to discriminate nonmetastatic and metastatic OS 
patients. If considering only statistical differences, we could 
include 2 more metabolites for a better exploration of disease 

progression. Compared to the nonmetastatic OS patients, the 
metastatic patients showed marked increases in 5-aminopen-
tanamide, 13(S)-HpOTrE(FA 18:3 + 2O), methionine sulfox-
ide and linoleic acid and obvious decreases in dehydroacetic 
acid, 4-O-methylgallic acid, glycoursodeoxycholic acid and 
sorbitol 6-phosphate.

8 � Determination of potential biomarkers 
for auxiliary diagnosis and monitoring

To identify potential biomarkers for auxiliary diagnosis of 
osteosarcoma, further investigation based on a larger varia-
tion range was performed. Specifically, metabolites screened 
from the nonmetastatic OS groups and healthy controls, with 
appropriate fold changes (modulus > 2), VIP values (> 1) 
and statistical significance were eligible for candidates. To 
this end, we generated ROC curves for these selected candi-
dates. There were 14 metabolites with AUC values greater 
than 0.9 (Fig. 3a). Of these, we were particularly interested 
in the two substances, glutamic acid and lactic acid (Fig. 3b), 
which had the greatest AUC values of 0.98 (0.95–1.00) and 
0.97 (0.93–1.00) (Fig. 3d), respectively, indicating they 
could be potential auxiliary diagnostic markers.

The same approach was used to search for biomarkers for 
monitoring disease progression between the nonmetastatic 
and lung metastatic OS patients. We found 4 metabolites that 
met the criteria and ROC curves were generated individually 
for these 4 metabolites. There were 3 substances with AUC 
values greater than 0.7. These metabolites were 5-aminopen-
tanamide, 13(S)-HpOTrE (FA 18:3 + 2O), and methionine 
sulfoxide (Fig. 3c). However, no differential metabolites 
with both high specificity and sensitivity were observed. It 
was necessary to combine multiple indicators to achieve bet-
ter monitoring ability for disease progression. First, a binary 
logistic regression model was performed on the 4 differential 
metabolites and these metabolites were subjected to a step-
wise variable selection method. In total, 2 metabolites were 
included in the equation, 5-aminopentanamide and 13(S)-
HpOTrE (FA 18:3 + 2O). The prediction probability of the 
multi-index combination was then calculated. ROC analysis 
showed that this panel of biomarkers had an AUC value of 
0.92 (0.85–0.99) (Fig. 3e), indicating that this combination 
could effectively discriminate metastatic OS patients among 
all OS patients.

9 � Discussion

Osteosarcoma is the most common primary malignant bone 
tumor in adolescents, with high rates of lung metastasis, 
disability and mortality. In this study, serum untargeted 
metabolomics analysis was performed on 65 patients with 
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Table 2   Differential serum metabolites with common metabolic characteristics in the nonmetastatic OS group and lung metastatic OS group

Metabolites Nonmetastasis vs. control Metastasis vs. control

P valuea FDR valueb VIPc Log2FCd p
valuea

FDR valueb VIPc Log2FCd

4-Hydroxybenzoic acid 0.00 0.00 1.11 − 2.06 0.00 0.00 1.11 − 1.83
FA 10:0 + 1O 0.00 0.00 1.53 − 1.67 0.00 0.00 1.53 − 1.36
Testosterone sulfate 0.00 0.00 9.40 − 1.58 0.00 0.00 9.40 − 1.36
Iminodiacetic acid 0.00 0.00 2.25 − 1.37 0.00 0.00 2.25 − 1.27
3-Cmpfp(3-carboxy-4-methyl-5-pen-

tyl-2-furanpropanoic acid)
0.00 0.00 3.55 − 1.52 0.00 0.00 3.55 − 1.10

CMPF(3-Carboxy-4-methyl-5-propyl-
2-furanpropionic acid)

0.00 0.01 4.68 − 1.11 0.01 0.03 4.68 − 1.21

Decanoylcarnitine 0.00 0.00 2.56 − 1.35 0.00 0.01 1.94 − 0.83
4-O-Methylgallic acid 0.02 0.08 3.22 − 0.63 0.00 0.00 3.22 − 1.50
9-HpODE 0.00 0.00 2.20 − 1.14 0.00 0.00 2.20 − 0.76
Octanoylcarnitine 0.00 0.00 1.96 − 1.16 0.00 0.02 1.39 − 0.66
9-Decenoylcarnitine 0.00 0.00 1.94 − 1.09 0.00 0.00 1.53 − 0.69
LysoPE(18:2) 0.00 0.00 3.69 − 0.80 0.00 0.00 2.65 − 0.76
PC(18:2/18:2) 0.01 0.03 4.16 − 0.71 0.01 0.05 3.66 − 0.77
3-Oxooctanoic acid 0.00 0.00 1.64 − 1.26 0.00 0.01 1.64 − 0.20
LysoPE(18:1) 0.02 0.08 2.29 − 0.65 0.00 0.00 1.70 − 0.68
Cis-Acetylacrylate 0.00 0.00 1.40 − 0.70 0.00 0.00 1.40 − 0.50
Arginine 0.00 0.00 2.37 − 0.62 0.00 0.01 2.34 − 0.50
Azelaic acid 0.00 0.00 1.55 − 0.75 0.03 0.09 1.55 − 0.34
L-histidine 0.00 0.00 1.16 − 0.45 0.00 0.00 1.16 − 0.55
Ureidoisobutyric acid 0.00 0.00 2.25 − 0.44 0.00 0.00 2.25 − 0.52
N-Acetylglutamine 0.00 0.00 1.70 − 0.46 0.00 0.00 1.72 − 0.43
Uric acid 0.00 0.00 5.43 − 0.37 0.00 0.00 5.43 − 0.42
Aspartic acid 0.00 0.00 1.33 − 0.38 0.00 0.00 1.33 − 0.29
LysoPC(20:5) 0.00 0.00 2.71 − 0.19 0.00 0.00 2.75 − 0.20
Isoleucine 0.00 0.00 11.90 0.37 0.02 0.08 7.55 0.23
Piperidine 0.00 0.01 6.00 0.51 0.03 0.11 1.72 0.22
Leucine 0.00 0.00 11.49 0.52 0.01 0.05 6.22 0.30
Choline 0.00 0.00 5.63 0.39 0.00 0.00 6.45 0.51
Phosphoric acid 0.00 0.00 4.19 0.55 0.01 0.03 4.19 0.47
2-Hydroxybutyric acid 0.00 0.01 4.84 0.46 0.00 0.00 4.84 0.78
Proline 0.00 0.00 1.51 0.88 0.00 0.02 1.02 0.57
Succinic acid 0.00 0.00 2.82 0.77 0.02 0.07 2.82 0.72
2-hydroxy-2-methylisobutyric acid 0.00 0.01 1.53 0.78 0.00 0.00 1.53 0.74
Arachidonic acid 0.03 0.09 3.94 0.49 0.00 0.00 3.94 1.09
6-Hydroxycaproic acid 0.00 0.00 1.70 0.80 0.01 0.02 1.70 0.79
Beta-Guanidinopropionic acid 0.00 0.00 7.51 0.96 0.01 0.05 6.98 0.93
Pyroglutamic acid 0.00 0.00 10.42 1.03 0.00 0.00 8.93 0.90
Lactic acid 0.00 0.00 28.95 1.17 0.00 0.00 28.95 0.85
LysoPC(P-18:0) 0.00 0.00 1.61 0.64 0.00 0.00 3.97 1.63
Oleoylcarnitine 0.00 0.00 1.83 1.20 0.00 0.00 1.83 1.15
2-Hydroxyglutaric acid 0.00 0.01 1.10 1.19 0.05 0.15 1.10 1.17
Glycero-3-phosphocholine 0.00 0.00 1.52 0.76 0.00 0.00 2.83 1.67
Malic acid 0.00 0.00 2.70 1.29 0.00 0.01 2.70 1.16
Linoleyl carnitine 0.00 0.00 1.72 1.41 0.00 0.00 1.48 1.20
Pyruvic acid 0.00 0.00 3.98 1.53 0.00 0.00 3.98 1.56
Taurine 0.00 0.00 2.10 1.78 0.00 0.00 2.10 1.36
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osteosarcoma and 30 healthy controls to reveal aberrant reg-
ulatory metabolic pathways in osteosarcoma. The OPLS-DA 
model analysis identified clear separations among groups. 
We found 55 differential variables shared metabolic char-
acteristics in OS patients with or without metastasis com-
pared to healthy controls, and they were mainly involved 
in alanine, aspartate and glutamate metabolism, arginine 
biosynthesis, histidine metabolism, arginine and proline 
metabolism, purine metabolism, and pyruvate metabolism. 
Among them, metabolites with the largest fold changes or 
VIP values, such as adenosine-5-monophosphate, inosine-
5-monophosphate, guanosine monophosphate, pyroglutamic 
acid and lactic acid, have been reported to be closely related 
to malignancy of tumor in previous studies (Soares et al. 
2015; Bahreyni et al. 2018; Ippolito et al. 2019). The global 
metabolomic profiling provides new insight into the aberrant 
metabolic features of osteosarcoma.

Based on the ROC curve analysis, we identified 14 metab-
olites with AUC values greater than 0.9 in the comparison 
of nonmetastatic OS patients and healthy controls (Fig. 3a). 
Of these metabolites, lactic acid and glutamic acid, with 
the greatest AUC values of 0.97 and 0.98, have a feasible 
auxiliary diagnostic ability of primary osteosarcoma. Both 
of the metabolites are tightly associated with the disorder 
of energy metabolism. Lactic acid, a metabolic product of 
aerobic glycolysis, was found to be elevated in the serum 
of primary osteosarcoma patients compared to healthy con-
trols, and it had the largest VIP value (= 28.95) obtained 
from the OPLS-DA model. Previous study has found that 
lactic acid has no longer been viewed as a junk from the 
metabolism of fermenting cells. It could act as a powerful 
molecule that not only establish metabolic coupling between 

the tumor microenvironment(TME) and tumor cells but also 
transmit impacts on the cell signaling machinery(Ippolito 
et al. 2019). Lactic acid could act as an immunosuppressive 
metabolite to induce immune tolerance and promote tumor 
growth (Brand et al. 2016), and it is also frequently found at 
high levels in solid tumors (Romero-Garcia et al. 2016). Lac-
tic acid produced by mesenchymal stem cells was reported to 
drive mitochondrial and oxidative phosphorylation as well as 
increase the migratory ability of osteosarcoma cells (Bonuc-
celli et al. 2014; Gorska-Ponikowska et al. 2017). Elevated 
serum LDH levels have been identified as prognostic indica-
tors in patients with osteosarcoma (Gaetano Bacci 2004; Fu 
et al. 2018). The elevated serum lactic acid level we detected 
in OS patients may be the amplification effect of aberrant 
LDH expression in OS cells. Glutamic acid, a nonessential 
amino acid, could not only act as a bioenergetic substrate for 
cell proliferation but also as an excitatory neurotransmitter. 
It was found to be significantly elevated in the serum of OS 
patients in present study. A previous study demonstrated that 
osteosarcoma cells secrete glutamic acid and that blocking 
glutamic acid secretion with Riluzole could impair their 
proliferation (Liao et al. 2017). Compared to normal bone 
tissue, metabotropic glutamate receptor (mGluR) has been 
reported to be highly expressed in osteosarcoma tissues as 
well as related to poor prognosis (Yang et al. 2014), and it 
is well known that active mGluR signaling is linked to the 
PI3/AKT/mTOR pathway (Willard and Koochekpour 2013). 
Accordingly, the levels of serum lactic acid and glutamic 
acid could be probably utilized in the lab studies and could 
be performed as an auxiliary diagnostic biomarker for osteo-
sarcoma at the time of initial diagnosis based on the imaging 
detection.

a The p value was calculated using Student’s t test or nonparametric Mann-Whitney U test
b False discovery rate by Benjamin–Hochberg method
c Variable importance in the projection (VIP) was obtained in the OPLS-DA model
d Fold change was calculated as a binary logarithm between groups, where a positive value means that the average mass response of metabolites 
in the nonmetastasis/metastasis group is larger than that in the control group

Table 2   (continued)

Metabolites Nonmetastasis vs. control Metastasis vs. control

P valuea FDR valueb VIPc Log2FCd p
valuea

FDR valueb VIPc Log2FCd

Glutamic acid 0.00 0.00 3.04 1.61 0.00 0.00 2.93 1.84
Niacinamide 0.00 0.00 2.68 1.82 0.00 0.00 2.78 1.99
2-Mercaptobenzothiazole 0.00 0.00 1.79 3.08 0.03 0.10 1.79 2.41
Sphingosine 0.00 0.00 1.13 1.29 0.00 0.00 3.85 4.48
Hypoxanthine 0.00 0.00 1.11 2.29 0.00 0.00 1.80 3.79
Adenosine monophosphate 0.00 0.00 1.56 3.64 0.00 0.00 1.56 3.66
Inosine-5-monophosphate 0.00 0.00 1.66 3.89 0.00 0.00 1.66 3.54
Ascorbic acid 0.00 0.00 4.50 4.91 0.01 0.02 4.50 4.65
Guanosine monophosphate 0.00 0.00 1.18 5.09 0.00 0.00 1.15 5.05
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Currently, the 5-year overall survival rate of OS patients 
is approximately 60%, and one fourth of patients develop 
metastases at the initial diagnosis with lung metastases being 
the most common site. Timely discovery of lung metastases 
is particularly important for improving prognosis. Previ-
ous studies have reported that elevated levels of alkaline 

phosphatase (ALP) and lactate dehydrogenase (LDH) are 
tightly associated with lower event-free survival in patients 
with osteosarcoma (Hao et al. 2017; Fu et al. 2018). In 
our study, we analyzed serum levels of ALP and LDH in 
nonmetastatic and lung metastatic patients, and their AUC 
values were 0.50 and 0.57, respectively (Figure S2), which 

Fig. 2   Identification of metabolic characteristics between osteo-
sarcoma patients and healthy controls. A Heat map displaying the 
change direction of the discriminators. Upregulated metabolites are 
shown in red, while downregulated metabolites are shown green. B 
Pathway enrichment analysis of differential metabolites between OS 
patients and healthy controls. The abscissa represents the influenc-
ing factor of path topological analysis. The ordinate represents the 

p value of pathway enrichment analysis (negative logarithm). The 
larger the circle is, the larger the influence factor is. The deeper red 
color has the larger value of − log(p), which means the more signifi-
cant enrichment. C A volcano plot shows the differential metabolites. 
Marked metabolites are the most distinct in OS patients compared 
with healthy controls
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could not discriminate nonmetastatic and lung metastatic 
patients well. Consistently, we also noticed another previous 
study reporting that serum LDH and ALP levels differed 
significantly in patients with or without skeletal metasta-
ses but showed no difference in patients with or without 
lung metastases (Marais et al. 2015). To achieve monitor-
ing ability for lung metastases, we identified a panel of 2 
metabolites with an AUC value of 0.92, which could effec-
tively discriminate lung metastatic OS patients among all OS 
patients. They were 5-aminopentanamide and 13(S)-HpO-
TrE (FA 18:3 + 2O). The α-linolenic acid (ALA) metabolite 

13(S)-HpOTrE was reported to exhibit an anti-inflammatory 
effect mediated by induction of apoptosis and inhibition of 
autophagy in lipopolysaccharide-challenged macrophages 
(Kumar et al. 2016). Lysine was thought to be a nonspecific 
bridge molecule, that could associate antigen with T cells, 
causing T cells to produce a specific effect against the anti-
gen. 5-aminopentanamide, as a product of the decarboxyla-
tion of lysine (Trisrivirat et al. 2020), may be related to the 
aberrant immune response in tumor patients. Our findings 
provide potential biomarkers for the timely discovery of lung 
metastases.

Fig. 3   Determination of potential biomarkers for diagnosis and 
monitoring. A total of 14 metabolites with AUC values greater than 
0.9. B Variations of glutamic acid and lactic acid between the non-
metastatic group and healthy controls. ****p < 0.0001. C Varia-
tions of 5-aminopentanamide, 13(S)-HpOTrE (FA 18:3 + 2O), and 
methionine sulfoxide between the metastatic group and the non-
metastatic group. **p < 0.0001, ****p < 0.0001. D ROC curves of 

glutamic acid and lactic acid providing an auxiliary diagnostic abil-
ity for osteosarcoma. AUC​glutamic acid = 0.98; AUC​lactic acid = 0.97. E 
ROC curves of the combination of the selected metabolites, 5-ami-
nopentanamide, 13(S)-HpOTrE(FA 18:3 + 2O), and methionine 
sulfoxide providing monitoring ability for tumor metastasis. AUC​
combination of the selected metabolites = 0.92, AUC​5-aminopentanamide = 0.83, AUC​
13(S)−HpOTrE (FA 18:3+2O) = 0.73, AUC​methionine sulfoxide = 0.70
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10 � Conclusions

The current metabolomics profiling using UHPLC-HRMS 
revealed a series of significantly different metabolites 
of osteosarcoma, which is consistent with the current 
research focus on cancer metabolism, providing us a new 
insight into the aberrant metabolic features of osteosar-
coma. The potential adjuvant biomarkers for osteosarcoma 
were explored and ROC curves were generated. Serum 
levels of lactic acid and glutamic acid could serve as an 
auxiliary diagnostic indicator for primary osteosarcoma, 
and the combination of 5-aminopentanamide and 13(S)-
HpOTrE (FA 18:3 + 2O) could be used as a monitoring 
indicator for lung metastases of osteosarcoma. Given the 
limited sample size, we will verify all these important 
findings in a larger osteosarcoma population in the future.
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