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Abstract

We introduce a framework for end-to-end integrative modeling of 3D single-cell multi-chan-

nel fluorescent image data of diverse subcellular structures. We employ stacked conditional

β-variational autoencoders to first learn a latent representation of cell morphology, and then

learn a latent representation of subcellular structure localization which is conditioned on the

learned cell morphology. Our model is flexible and can be trained on images of arbitrary sub-

cellular structures and at varying degrees of sparsity and reconstruction fidelity. We train our

full model on 3D cell image data and explore design trade-offs in the 2D setting. Once

trained, our model can be used to predict plausible locations of structures in cells where

these structures were not imaged. The trained model can also be used to quantify the varia-

tion in the location of subcellular structures by generating plausible instantiations of each

structure in arbitrary cell geometries. We apply our trained model to a small drug perturba-

tion screen to demonstrate its applicability to new data. We show how the latent representa-

tions of drugged cells differ from unperturbed cells as expected by on-target effects of the

drugs.

Author summary

It is impossible to acquire all the information we want about every cell we are interested in

in a single experiment. Even just limiting ourselves to imaging, we can only image a small

set of subcellular structures in each cell. If we are interested in integrating those images

into a holistic picture of cellular organization directly from data, there are a number of

approaches one might take. Here, we leverage the fact that of the three channels we image

in each cell, two stay the same across the data set; these two channels assess the cell’s shape

and nuclear morphology. Given these two reference channels, we learn a model of cell

and nuclear morphology, and then use this as a reference frame in which to learn a repre-

sentation of the localization of each subcellular structure as measured by the third
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channel. We use β-variational autoencoders to learn representations of both the reference

channels and representations of each subcellular structure (conditioned on the reference

channels of the cell in which it was imaged). Since these models are both probabilistic and

generative, we can use them to understand the variation in the data from which they were

trained, to generate instantiations of new cell morphologies, and to generate imputations

of structures in real cell images to create an integrated model of subcellular organization.

1 Introduction

Decades of biological experimentation, coupled with ever-improving advances in microscopy,

have led to the identification and description of many subcellular structures that are key to cel-

lular function. Understanding the unified role of these component structures in the context of

the living cell is indeed a goal of modern-day cell biology. How do the multitude of heteroge-

neous subcellular structures localize in the cell, and how does this change during dynamic pro-

cesses, such as the cell cycle, cell differentiation and the response to internal or environmental

perturbations [1, 2]? A comprehensive understanding of global cellular organization remains

challenging, and no unified model currently exists.

Advances in microscopy and live cell fluorescence imaging in particular have led to insight

and rich data sets with which to explore subcellular organization. However, the experimental

state-of-the-art for live cell imaging is currently limited to the simultaneous visualization of

only a limited number (2–6) of tagged molecules. Additionally, there are substantial, interde-

pendent limitations regarding spatial and temporal resolution as well as duration of live cell

imaging experiments. Computational approaches offer a powerful opportunity to mitigate

these limitations by integrating data from diverse imaging experiments into a single model, a

step toward an integrated representation of the living cell and additional insight into its

function.

Computational models in this domain can be divided into those that operate directly on the

microscopy images of cells, and those that are based on descriptors of texture or segmented

objects extracted from the image data. The image feature-based methods of the latter category

have previously been employed to describe and model cellular organization [3–5]. These

approaches use accurate object segmentations to convey detailed information about the size,

shape and localization of subcellular structures. Importantly, segmentation procedures must

be judiciously designed for each type of structure and significant amounts of effort may be

spent designing features to be useful for a specific task (e.g. to measure “roughness” of a struc-

ture). Ground truth data for evaluation of segmentation and feature selection can be difficult

to obtain, especially for 3D cell images [6]. These challenges compound when trying to expand

models to describe relationships between multiple subcellular structures and their organiza-

tion within a cell.

Recent deep-learning approaches that operate directly on the image data have become

increasingly popular in multiple cell biology applications and provide an alternate computa-

tional pathway towards integrated visual representations of the cell. In cell imaging, deep neu-

ral networks (DNNs) can be utilized to perform pixel-level tasks, such as object segmentation

[7], label-free prediction in 2D and 3D images [8, 9], de-noising and image restoration [10,

11], or cell-level analyses such as predicting cell fates [12], classifying cell cycle status [13], dis-

tinguishing motility behaviors of different cell types [14], and subcellular pattern representa-

tion [15]. It should be noted that generative models of individual cells are particularly useful for

building an integrated representation of the living cell, as these models can capture how
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relationships among subcellular structures vary across a population of cells and encode these

as distributions. Generative models based on image features have been used to understand the

spatial distribution of organelles under different conditions [1, 16–18]. Deep generative mod-

els that operate directly on the image data have been growing in popularity in the 2D image

domain and have been shown to be useful for image synthesis [19], lineage mapping [20], pre-

dicting morphological effects of drugs [21] and multi-modal data harmonization [22].

Our work expands upon these efforts; by combining the results of microscopy experiments

measuring the localization of independent subcellular structures in 3D images, we produce a

deep generative model of 3D single-cell organelle localization conditioned on cell and nuclear

morphology. While generative models using segmentation-based image features allow us to

explore the feature and shape space of the cells, using the actual images directly, i.e. the fluores-

cent intensity values, allows us to include all visible features that are captured through micros-

copy and directly synthesize cell images with microscopy-level details. In addition, using 3D

microscopy images as our input allows us to model the cells and intracellular structures

directly in 3D space without having to limit them to 2D projections. Therefore, our model is

useful for both image synthesis and interpretable representations and therefore may be utilized

for several downstream tasks, including visualization, dimensionality reduction, quantifying

changes in cell organization as a function of cell state (mitotic state, drug treatment, etc.), and

the estimation of statistical relationships between structures observed simultaneously. Notable

in our approach is that we can build our model without the necessity of laborious hand-crafted

features or specialized subcellular segmentations.

Below, we explain how the Statistical Cell is constructed; we discuss its useful, novel contri-

butions and provide a critical look at its current limitations.

2 Results

2.1 Statistical cell: A variational autoencoder that models the 3D

organization of subcellular structures

In this section we begin with an overview of the model, and then proceed to present its ability

to model cell morphology as well as the localization of subcellular structures.

In order to jointly model the variation of all subcellular structures in our data, we engi-

neered a stacked conditional β-variational autoencoder and trained it end-to-end on the

entirety of our data. We call this model the Statistical Cell. The Statistical Cell is a data-driven

probabilistic model of the organization of the human cell membrane, nuclear shape and sub-

cellular structure localization. The diverse array of subcellular structures used here represent

components that serve specific functions that may be useful for understanding cellular state.

The organizing principle of our model is that the localization of subcellular structures is

meaningful only in relation to the cell geometry in which they are embedded. By leveraging

conditional relationships to the cell and nucleus, we allow for the integration of different sub-

cellular structures into a single model, without these structures needing to be tagged and

imaged simultaneously.

The model is trained on a collection of more than 40,000 high-resolution 3D images of live

human induced pluripotent stem cells (Fig 1A). Using 3D spinning disk confocal microscopy

we collected three image channels for each of these cells: 1) Plasma membrane using CellMask

Deep Red dye, 2) Nucleus via labeling DNA with NucBlue Live dye, and 3) one of 24 subcellu-

lar structures. Specifically, these cells are from clonal lines, each gene-edited to endogenously

express a fluorescently tagged protein that localizes to a specific subcellular structure. To facili-

tate biological interpretation of our model, 5 of the 24 structures are synthetic controls, where

instead of a normal GFP structure channel we present to the model either a blank channel as a

PLOS COMPUTATIONAL BIOLOGY A deep generative model of 3D single-cell organization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009155 January 18, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1009155


structure, duplicated membrane and DNA channels, random Gaussian noise in the membrane

and DNA regions, or copy a random structure channel from a different cell. There are between

1,000–4,000 cells per structure type (Table 1).

Using these images, we model cell membrane, DNA, and subcellular structure given a

known target structure type (i.e. a model of cell shape, nuclear shape, and structure organiza-

tion, given that the structure is one of the 24 observed structure types). This model takes the

form p(xr,t|t) where x is an image, r indicates reference, i.e. the reference cell membrane and

DNA dyes, t indicates the target channel. xr,t is therefore an image of a cell containing refer-

ence structures (membrane, DNA) and a target structure (one of the 24 structure types).

Utilizing relationships in our data (Fig 1A and 1B), the model is factored into two subcom-

ponents; a reference model MR that maximizes the probability of observed cell and DNA

organization p(xr), and a target model MT that maximizes the conditional probability of

subcellular structure organization p(xt|xr, t). The complete probability model is therefore

p(xr,t|t) = p(xr)p(xt|xr, t).
Each component is modeled with a variational autoencoder (Fig 1C) [23], allowing us to

generate integrated examples from the learned data distribution, as well as map reference xr
and target xt to learned low dimensional variables (or embeddings / latent space / latent

dimensions) zr and zt, that capture morphological variation and relationships between the ref-

erence and target structures. It is important to note that zt is a conditional embedding, i.e. a

Fig 1. The statistical cell. a) A visual overview of the single-cell data collection used in this study. For each of more than 40,000 cells we have high-

resolution 3D image data of the shape and location of the cell membrane (pink), nucleus (blue) and one of 24 endogenously tagged subcellular

structures (yellow). The examples show actual image data of cells in the collection. b) Plate diagram of the Statistical Cell model. Shaded and un-shaded

circles represent observed and learned variables, respectively. We model reference structures xr as draws from a latent variable zr, and target structures

xt as draws from the latent variable zt, conditioned on xr and target type t. c) The main components of the models are two autoencoders: one encoding

the variation in the reference, i.e. the cell and nuclear shape (top), and another which learns the relationship between the target (the subcellular

structures) dependent on the reference encoding (bottom).

https://doi.org/10.1371/journal.pcbi.1009155.g001
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low dimensional representation of information in the target image, given the information in

the reference and the specific target type. For details see Section 4.2.

2.2 Representing and visualization of subcellular organization via latent

space embeddings

The β variational autoencoder (β-VAE) architecture underlying the model of cell and nuclear

shape (MR) compresses the variation in the 3D cell images into a subspace with maximal

dimensionality of 512. While each cell is described by 512 coefficients in this latent space, the

diagonal covariance matrix of the Gaussian prior of the latent embeddings, in tandem with the

KL-divergence term in the β-VAE objective function (Eq 3) attempts to sparsify the latent

space by penalizing spurious embedding dimensions. In general we find that fewer than 100

dimensions (out of 512) show non-zero KL-divergence terms, effectively reducing the

dimensionality from hundreds of thousands of voxels in the original images to fewer than 100

latent space coefficients (S6 and S3 Figs). Different values of β lead to different numbers of

effective latent dimensions; see S6 Fig for details. (We note there is also a latent space for MT,

but we limit our analysis and discussion in this section to the latent space of the reference

model MR).

Table 1. Structures used in this study, with corresponding genes, number of images and labels. Each image contains the labeled structure in addition to channels of

labeled cell and nuclear shape.

Structure Name Gene Name (gene symbol) # Images Labels

#Interphase #Mitosis

Actin filaments actin beta (ACTB) 2,848 2,544 304

Actomyosin bundles myosin heavy chain 10 (MYH10) 1,392 1,282 110

Adherens junctions catenin beta 1 (CTNNB1) 2,343 2,202 141

Centrioles centrin 2 (CETN2) 1,605 1,405 200

Desmosomes desmoplakin (DSP) 2,320 2,161 159

Endoplasmic reticulum SEC61 translocon beta subunit (SEC61B) 1,120 1,045 75

Endosomes RAB5A, member RAS oncogene family (RAB5A) 1,562 1,455 107

Gap junctions gap junction protein alpha 1 (GJA1) 1,491 1,334 157

Golgi ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) 1,539 1,445 94

Lysosomes lysosomal associated membrane protein 1 (LAMP1) 1,476 1,309 167

Matrix adhesions paxillin (PXN) 1,637 1,531 106

Microtubules tubulin-alpha 1b (TUBA1B) 2,409 2,219 190

Mitochondria translocase of outer mitochondrial membrane 20(TOMM20) 3,826 3,590 236

Nuclear envelope lamin B1 (LMNB1) 3,664 3,455 209

Nucleoli Dense Fibrillar Component (DFC) fibrillarin (FBL) 1,536 1,407 129

Nucleoli Granular Component (GC) nucleophosmin 1 (NPM1) 3,717 3,480 237

Peroxisomes solute carrier family 25 member 17 (SLC25A17) 1,455 1,369 86

Plasma membrane Safe harbor locus (AAVS1) (CAAX domain of K-Ras) 2,098 1,867 231

Tight junctions tight junction protein 1 (TJP1) 1,162 1,079 83

Control—Blank N/A 2,028 1,861 167

Control—DNA N/A 2,028 1,861 167

Control—Memb N/A 2,028 1,861 167

Control—Noise N/A 2,028 1,861 167

Control—Random N/A 2,028 1,861 167

Total 49,340 45,484 3,856

https://doi.org/10.1371/journal.pcbi.1009155.t001
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We investigated how the latent space of the model represents cell morphology by correlat-

ing the cell coefficients for each latent dimension with measured cell metrics, such as cell size

and mitotic state. We observed various strong correlations between cell metrics and those

latent dimensions that showed a significant variation; see S3 Fig for details. As shown in Fig 2,

the two top dimensions of the latent space visually stratify the cells based on mitotic stages as

well as cell height. Specifically, cells late in prometaphase and metaphase are generally taller

and rounder than the bulk of interphase cells, while newborn daughter cells (annotated as ana-

phase / telophase / cytokinesis) typically have smaller nuclei than most other interphase cells,

which may be in the middle of DNA replication. Importantly, cell images that are generated

Fig 2. The reference latent space learned by the model encodes interpretable features and stratifies cells by biologically relevant features. a) Cells

in the test set undergoing mitosis are stratified by the top two dimensions of the reference model latent space. b) Maximum intensity projections of two

reals cell; one in interphase (left) and one undergoing cell division (right). c) The top two dimensions of the reference latent space (same as in a)) for all

cells in the test set, colored by cell height. d) Maximum intensity projections of two reals cell; a tall cell (left) and flat cell (right). e) Maximum intensity

projections of 9 generated 3d cell images along latent space dimension μ71. The integrated intensity of the DNA channel correlates strongly with μ71. f)

Similar to e) but now showing latent space dimension μ419 which correlated strongly with cell height. The latent walks in parts e) and f) occur in nine

steps that span -2 to 2 deviations of that latent dimension’s variation. See S1 and S2 Figs for more visual associations between latent dimensions and

features, and S3 Fig for exhaustive correlations of features with latent dimensions.

https://doi.org/10.1371/journal.pcbi.1009155.g002
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along these latent space dimensions show the expected phenotype (Fig 2E and 2F). It is worth-

while to note that the model captures both biologically interpretable features, such as cell

height, as well as features that are mainly properties of the image measurement such as the

overall fluorescent dye intensity. Specifically, the DNA integrated intensity (which correlates

with μ71 as visualized in Fig 2E) is the total brightness of the DNA channel for a particular cell.

There are at least three considerations that may lead to variation in total DNA integrated

intensity for our data set: 1) labeling of the DNA with Hoechst dye may vary from cell to cell

and from one imaging session to another, 2) as cells progress through S phase (DNA replica-

tion) the total amount of DNA in the nucleus increases by a factor of two, and 3) chromosomes

condense as cells enter mitosis.

2.3 Sparsity/reconstruction trade-off

Since our model is composed of β-VAEs, the β parameter presents an important trade-off

between compact representation and high fidelity image reconstruction. Tuning β allows the

modeler to preferentially weight the two components of the loss function. A high value of β
favors a compact representation of the cell in the low dimensional embedding space (i.e.

the number of dimensions needed to describe an image zr and zt) via a higher emphasis on the

KL(q(z|x)|p(z))) loss term. A low value of β emphasizes accurate reconstruction of the original

image by placing more weight on the EqðzjxÞ½log pðxjzÞ� loss term. The relative emphasis of one

term versus the other has consequences for the model and for its applications. For example,

one might desire a less-complex data embedding to facilitate the statistical exploration and

interpretation of the latent space, while in other circumstances it might be preferable to obtain

a more complex embedding that enables the comparative analysis of high-fidelity generated

images.

Several methods have been proposed to modulate the trade-off between sparsity and recon-

struction in VAEs [24, 25], and other factors such as data normalization, model architecture,

hyper-parameters (including training schedules [26]) may also impact this relationship. To

demonstrate how our model performs as a function of this relationship, we adopt a reparame-

terized variational objective that allows us to tune the relative weights of these two terms (see

Eq 3).

Because parameter exploration using the full 3D model is prohibitively expensive, we

explored the effect of the β parameter using a 2D model. This model is the same in all regards

to the 3D model, other than that the inputs and convolutions are two dimensional instead of

three. Our 2D input data was generated from the 3D data by taking a maximum-intensity pro-

jection along the z-axis. While this reduction obfuscates some details of the cell’s structure and

organization, it retains a largely faithful picture of overall cell shape and reconstruction detail,

and allows us to explore model and parameter choices approximately an order of magnitude

more quickly than using the 3D model.

Using the 2D data, we trained 25 models of cell and nuclear shape (MR) with β values evenly

spaced between 0 and 1 using 2D maximum-intensity-projected images of cell and nuclear

shape. Using the test data, i.e. data not used in the training phase, we recorded the average of

the two terms of ELBO for each of the 25 models and plot the two as a function of β in Fig 3A.

Sampling from the cell and nuclear shape representation, we show generated images across a

range of β values in Fig 3C. A few observed cells are visualized in Fig 3B for reference. We note

that compared to observed cell and nuclear shapes, generated images close to β! 0 retain

more detail and perhaps more diversity than images at β! 1, although this comes at a trade-

off of increased representation dimensionality.
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In order to assess the similarity between real and generated cells beyond visual comparison,

we calculated biologically interpretable features for both the real and generated cell images.

Specifically, for both the nucleus (channel) and the cell (channel) we obtained three shape fea-

tures: area, circumference and sphericity, and four intensity-based features: median, mean,

standard deviation and entropy. These 14 features were calculated for the approximately 4,000

cells in the test set (See Materials and methods). Results are visualized for four selected features

in Fig 3D. Plots for all 14 features are found in S7 Fig. Overall, the shape and intensity features

as measured on real cells (red) are highly similar to those obtained on the generated cells

images (blue to yellow). The features from the real cells do show more variation than features

from generated cells, and surely, models with lower β (higher reconstruction) show more simi-

lar distributions to those of the real cells than models with higher β. As β approaches 1 (a very

Fig 3. Evaluation of the sparsity-reconstruction trade-off with 2D Statistical Cell models. a) shows the average rate and distortion terms of the

ELBO for models at a different trade-off β. Gray dotted line indicates the trade-off achieved by the best performing model. b) Images of six observed

cells. Nucleus is in blue. Cell membrane is in magenta. c) Images of cells generated with the Statistical Cell for different values of β. See S6 Fig for more

data on model sparsity. d) Violin plots that show four biologically interpretable features measured on both real (red) and generated cells (blue to yellow,

as a function of β). A grey line shows the feature value for one selected cell; connecting the feature value obtained from the real cell image and the

generated cell images. Grey lines are plotted for a subset of all cells used in this analysis.

https://doi.org/10.1371/journal.pcbi.1009155.g003
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sparse representation with no emphasis on reconstruction), the model generates almost identi-

cal images for all the cells. Consequently, the features collapse to a single value.

Additional analyses, detailed in S8 Fig, were performed to see if the information in the

latent spaces of the generated models (at different values of β) were able to recapitulate the 14

features measured from the real cell images. We employed linear regression analyses to statisti-

cally explain the first five principal components of these 14 features (amounting to 93% of the

total variation among these features) by using the latent space coefficients as input to the

regression. These analyses showed that models with a focus on reconstruction (low β) are able

to capture 78% of the statistical variation among the 14 features. However, the drop-off for

models with higher β is not very steep and even models with very few important latent dimen-

sion (#dims < 10, β> 0.5) can still explain more than (60%) variation among these cell

features.

2.4 Visualization of generated cells and conditionally generated structures

An important application of the trained Statistical Cell model is to visualize cellular structures

by generating images sampled from the probabilistic models. That is, by sampling from the

latent space that describes the trained probabilistic model of structures dependent on cell and

nuclear shape (MT), we can visualize the location and shape of subcellular structures, and how

those properties vary in the data. Moreover, the construction of the model enables us to predict

and visualize multiple subcellular structures in the same cell geometry simultaneously, whereas

the data the model is trained on only contains one structure tagged per image. Because the

model is probabilistic, it approximates the diversity of structure localization specific to each

structure type. Fig 4B depicts multiple examples of different subcellular localization patterns

given an observed cell and nuclear shape.

Fig 4. Generating cell images from the Statistical Cell model. a) Images can be generated from the probabilistic model of the cell membrane and the

nucleus. On the left are three examples of actual cells. On the right are seven generated cells, sampled using independent random draws from the latent

space. b) Cell and nuclear image data of actual cells can be used to generate a simulated image of a given structure even if that structure was not

measured for that cell. On the left are three actual cells for which three different structures were imaged. From top to bottom: mitochondria, nuclear

envelope and tight junctions. On the right are depictions of the generated structure channels for each of these cells and structures. Three examples of

each structure in each cell are shown, each generated using independent random draws from the latent space. See S4 and S5 Figs for more examples.

https://doi.org/10.1371/journal.pcbi.1009155.g004
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Overall, we find that in distribution the generated structures vary in localization as one

would expect, providing strong evidence that the network is successfully learning appropriate

rules governing structure-specific localization that are not explicitly encoded in the images

themselves or in the “target type” input. For example,

• Mitochondria are distributed throughout the cytoplasm, but are never found inside the

nucleus.

• The nuclear envelope forms a closed shell around the DNA.

• The tight junctions are at the apical surface of the cell and around the cell periphery.

• The nucleoli (both the Dense Fibrillar Center and the Granular Component) form blobs that

are always inside of the nucleus, never outside.

• Matrix adhesions are always at the basal surface.

The latter two examples along with other examples of typical organelle localization are

found in S5 Fig. It is important to note that due to the limitations of the data and the specific

model construction, generated subcellular structures are independent of each other (e.g. gen-

erated tight junctions may overlap with generated mitochondria). We also observed that across

structures there is a great variation in similarity between instantiations generated from the

same cell and nuclear geometry. In Fig 4B, we see there is little variation between the three gen-

erated instantiations of the nuclear envelope, and these instantiations are very similar to the

real cell image. Surely, the nuclear envelope is relatively easy to predict from the nucleus (DNA

stain) channel; it’s predicting the envelope of a three dimensional (fluorescent) object. But the

mitochondria, which are certainly much more uncoupled (biologically and statistically) to the

nucleus and cell membrane, and more varying in overall shape and show widely different

instantiations.

2.5 Quantification of the coupling of subcellular structure localization to

gross cellular morphology

In the previous sections we aimed to show, both qualitatively and quantitatively, that the Statis-

tical Cell enables us to model the organization of subcellular structures by leveraging the refer-

ence channels, i.e. the cell membrane and the nuclear shape. An important next question is to

what extent the reference channels by themselves inform the prediction of subcellular structure

organization.

To answer this question, we constructed a measure of coupling sensitivity between a subcel-

lular structure and the morphology of either the cell membrane or the nucleus. Specifically, we

quantified the sensitivity of our model to the coupling between each subcellular structure and

a reference channel (say, cell membrane) by comparing the ELBO for that unperturbed image

with the ELBO of a perturbed version of that image, where the reference channel (e.g. mem-

brane) is replaced by a randomly selected membrane channel from the other cells in the popu-

lation (see Materials and methods, Eq 4).

As controls for this metric, we created artificial “structure” channels that are duplicates of

each of our reference channels (cell membrane and nucleus) to confirm that this measure of

coupling makes sense in the limit of structures that are perfectly correlated with one of the ref-

erence channels. Fig 5A shows the coupling metrics across three subcellular structures as well

the controls. We observed that each control is quantified as being coupled only to itself, and

not to the other reference channel; that is, it appears that the cell membrane and the nucleus

are not informative of each other under our model. We also used a blank structure as a control,
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and as expected did not see any coupling between it and either reference channel. Regarding

the three subcellular structures: As described above, instantiations of mitochondria from the

model are highly variable even within a single given cell and nuclear reference shape, so it is to

be expected that they show relatively low coupling to both the nuclear and cell membrane

channels. For the nuclear envelope, satisfyingly the cells in interphase demonstrate tight cou-

pling to the nuclear reference channel, however this coupling decreases as cells enter mitosis,

when the nuclear envelope is disassembled. Finally, the tight junctions in hiPS cells are con-

fined to a narrow band at the very top of the lateral sides of the cell, and so are expected to

show reasonable coupling to the plasma membrane reference channel, but no coupling at all to

the nuclear reference channel.

In order to understand how strongly each structure is coupled to the cell or nuclear refer-

ence structure overall, in Fig 5B we condensed the coupling metrics across many cells, as dis-

played in Fig 5A, to a single summary statistic for each of the 24 subcellular structures. The

statistic that we employed is the normalized difference of the nuclear coupling to the cell mem-

brane coupling from Eq 4, averaged over all cells in that structure/phase of the cell cycle (see

Eq 5 for details).

Fig 5B shows a spectrum of differential couplings under our model, all of which are biologi-

cally plausible. As expected, the plasma membrane marker (GFP fused to the CAAX domain

of K-Ras) shows the strongest coupling to the reference channel derived from the membrane

dye. Both the adherens junctions and the actin filaments in hiPS cells are highly enriched

along the lateral sides of the cells, where they make contacts with their neighbors, and so it is

expected that they also show strong coupling with the membrane reference channel. At the

other end of the spectrum, the nuclear envelope, as described above, is expected to show the

best coupling with nuclear shape, followed by the two nucleolar compartments (DFC and GC).

The granular compartment of the nucleolus (GC) disassembles during mitosis, and this is

readily shown by the loss of coupling to the DNA reference channel. The many structures that

Fig 5. Quantification of the coupling of cellular morphology and subcellular structure. a) shows the relative coupling strength of three structures to

the nuclear shape (y-axis) and cell membrane (x-axis) of the cells in which they reside, according to Eq 4. Each point represents a cell; brown points are

cells in interphase, blue points are cells undergoing mitosis. b) shows the relative degree of coupling of each structure to the cell membrane or nuclear

channel, and how this changes during mitosis.

https://doi.org/10.1371/journal.pcbi.1009155.g005
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show a range of weak couplings to the reference channels include punctate structures that are

present in only a few copies per cell including centrioles, desmosomes and gap junctions.

Some structures that effectively fill up most of the cytoplasm (including microtubules and

endoscopes) typically show stronger coupling to the membrane reference channel than to the

nuclear reference channel, though these couplings are never as strong as for the actual mem-

brane-associated structures.

2.6 Evaluation of drug perturbation effects on subcellular structures

As a small pilot experiment, we evaluated the model’s ability to detect morphological perturba-

tions using two well-characterized drugs with known structural targets: Brefeldin A which

causes disassembly of the Golgi apparatus, and paclitaxel (Taxol) a chemotherapy medication

used for a variety of cancers that stabilizes microtubules and leads to microtubule bundle for-

mation. For cells treated with each drug, we imaged both the target structure (Golgi for brefel-

din and microtubules for paclitaxel, respectively) as well as a distinct structure that is not

expected to be perturbed by either drug (tight junctions). The drug dataset was collected under

the same experimental conditions, and using the same microscope and same cell lines as the

for the main dataset that the Statistical Cell model was trained on. Low drug concentrations

were used (5.0 μM in both cases) to fall in a range where the target structures were clearly per-

turbed without any overall drastic change in cell shape. See Fig 6A and 6B and Section 4.1.4.

Latent embeddings (reference zr and target zt) were computed for each image of drug-

treated cells and vehicle-treated controls by running them through the trained Statistical Cell

model. Thus, no new training was performed on the drug perturbation data. Reference latent

embeddings zr were calculated by running the image data of the cell and nuclear channels

through the trained model of cell and nuclear shape, MR. Calculating the conditional latent

embeddings zt using the trained target model MT requires three data elements: 1) the reference

channels (cell and nucleus), 2) the target channel (GFP-tagged structure), and 3) the selector

variable t indicating one of the 24 organelles which in case of the drug perturbation dataset is

either Golgi, microtubules or tight junctions. See the three arrows in Fig 1C moving into the

encoder block and from there into the conditional latent space zt.
Fig 6C shows the first two dimensions (as ranked by mean absolute deviation) of this

embedding for the reference channels. In this original reference latent space (defined by train-

ing the Statistical Cell model on the large collection of more than 40,000 cells), both drug-

treated cell populations (blue and pink dots) as well as the vehicle-treated control cells (black

dots) from this pilot experiment showed overlapping distributions in the top two latent dimen-

sions that are centered around the origin. This observation confirms that the chosen drug con-

centrations have little or no effect on overall cell shape.

However, strong effects are clearly observable in the latent spaces corresponding to the tar-

gets of the two drugs. Specifically, the microtubule latent space embeddings for the paclitaxel-

treated cells show a significant shift in the latent space positions of the overall population, such

that the centroid of the population of drug-treated cells is far removed from the latent space

origin (Fig 6D). Indeed, this population shift corresponds to a clear, systematic shift in micro-

tubule distribution from the dispersed, near-uniform distribution characteristic of untreated

cells to a distinct bundled phenotype (Fig 6G). Similarly, for the brefeldin treatment, the distri-

bution of treated cells in the Golgi latent space is significantly altered, with some cells remain-

ing close to the origin but a new subset of cells appearing to be strongly shifted in the most

significant dimension (blue dots in Fig 6E). We also imaged the distribution of the Golgi appa-

ratus for a handful of palictaxel-treated cells (pink dots in Fig 6E); as expected, these embed-

dings fully overlap with the vehicle-treated control cells. Finally, in the latent space of the tight
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junctions all three populations (both drug treatments and the vehicle control) show complete

overlap in a symmetric distribution near the origin, consistent with the expectation that these

drug treatments should not significantly alter the organization of tight junctions in these cells

(Fig 6F). Importantly, the results of this pilot experiment suggest that the model is capable of

producing reasonable latent space embeddings for structures that are outside of the range of

Fig 6. Analysis of drug perturbation data with the Statistical Cell. a) Experimental overview of drug-treated cells (rows) and measured subcellular

structures (columns) where n indicates the number of obtained cells. Drugs are color-coded (Brefeldin is blue, Paclitaxel is pink). b) Maximum intensity

projections of four real cells that are part of the drug perturbation study. For each cell the reference channels (nucleus in blue, cell membrane in

magenta.) are visualized in the top, and the structure channel in the bottom. On the left: An untreated and Brefeldin-treated Golgi-tagged cell is shown.

On the right: An untreated and Paclitaxel-treated Microtubules-tagged cell is shown. c) Scatter plot of cells embedded in first two dimensions of the

reference latent space (cell + nucleus) of the Statistical Cell model. d) Microtubules-tagged cells embedded in the first two dimensions of the conditional

latent space. The red arrow indicates the direction of the change of the centroid of the untreated (black) and treated (pink) populations. e) and f) Similar

to d), but for Golgi and tight junctions, respectively. g) Visualization of microtubules for five real cells. For each cell we have visualized the maximum

intensity projection along z, i.e. looking at the xy plane (top), and the maximum intensity projection along x, i.e. looking at the yz plane (bottom). These

five cells are sampled at fixed intervals from the untreated(left)-to-treated(right) direction after projecting onto the red line in d).

https://doi.org/10.1371/journal.pcbi.1009155.g006
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the original training set (specifically the microtubules for paclitaxel-treated cells and the Golgi

for brefeldin-treated cells).

3 Discussion

The Statistical Cell is a model of the three-dimensional organization of subcellular structures

in human induced pluripotent stem cells. We have described the model and its capabilities,

and explored how it may be a useful tool for studying the organization of cells from fluorescent

3D spinning disk confocal images. In this section, we discuss important considerations and

future work of the Statistical Cell.

Previous incarnations of our Statistical Cell model [27, 28] featured an adversarial loss

function. Along with non-generative direct image transformation methods, e.g. [8, 10], gen-

erative adversarial networks (GANs) have been proposed to produce high-fidelity generated

cell images [19, 29]. Although these adversarial-loss based methods may produce crisp

images when appropriately tuned, they remain notorious in their difficulty to efficiently

optimize [30, 31], suffer from several poorly understood and difficult to diagnose patholo-

gies such as “mode collapse” [32] and difficulty to initialize models that produce large

images [30, 31].

It should be noted that both the VAE loss function used here and adversarial autoencoders

[33] allow for the construction of a low dimensional representations of specified distribution

(e.g. Gaussian-distributed latent spaces). We ultimately chose a VAE-based model version for

a number of reasons, both practical and theoretical. Compared to GANs, β-VAEs are more sta-

ble and easier to train, possess stronger theoretical bounds [23], and are able to easily trade off

latent-space dimensionality for reconstruction fidelity [24] while also producing information-

independent latent representations. In this study we observed that the marginal distributions

of individual latent space dimensions were more irregular for GANs, and more normal for β-

VAEs (see S1 Fig) enabling a smooth “latent space walk” (see S2 Fig), and overall, a more

straightforward way to interpret the latent dimensions.

In this work we employ a standard conditional β-VAE architecture, composed of convolu-

tional/residual blocks. We present no drastic architectural innovations, but rather leverage the

proven reliability of β-VAEs in other domains to build a solid framework for integrating and

modeling 3D spinning disk confocal fluorescent microscopy data. Our focus is the cell biologi-

cal application, and the way that the β-VAE enables hands-off quantification of image data

that are difficult to describe in anything other than qualitative terms.

There are a number of ways in which our model could be extended in the future. In this

work, we showed that accurate shape features of cells can be derived from Statistic Cell model.

A next step would be to incorporate such features in the model formulation. Recent work in

non-biological domains has suggested that using image features and auxiliary loss functions

for VAEs can improve model performance and generalizability [34]. Specifically, directly opti-

mizing our model to retain specific morphological properties, e.g. using feature-based losses

such as cell volume, cell height, etc., may improve image generation while retaining specific

statistical properties relevant to the application of these models.

As in many bioimage informatics applications, image pre-processing and normalization are

important issues and can have important consequences to downstream workflows. In the Sta-

tistical Cell model, image normalization and the loss function (ELBO) are coupled to each

other. Changing the way in which the cell images are pre-processed directly impacts how the

loss function affects the training of the model. For instance, noise and bright spots in the cell

and nuclear dyes are penalized disproportionately to their biological significance. We have not

thoroughly studied different normalization schemes and their effects on the inferred model,
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and as with many image analysis methods, it is likely that results may vary as a function of

image pre-processing.

One avenue of approach to normalization could be to use image segmentations as inputs to

the model, rather than the fluorescent dye intensities. Segmentation itself presents its own

problems, but as 3D segmentation techniques for densely packed spinning disk confocal fluo-

rescent microscopy images improve [6], this approach should become more feasible and

deserving of serious consideration. Our framework is amenable to incorporating both segmen-

tation-based inputs and hand-crafted features, a future direction that holds promise for incor-

porating the most desirable facets of each of these approaches.

An important aspect of the Statistical Cell model is the application of the trained model to

external data. Although our model may be useful for determining the effects of drug-perturba-

tions, as with any model it is important to understand to what extent it may be applied in new

contexts. The results presented here were trained on a data set of relatively few conditions, and

we do not expect our model to generate realistic images or produce accurate representations of

cellular structures on images that were collected in a substantially different way, e.g. different

cell types, different microscopes, etc., although future models may be able to account for these

types of biological and technical variation [35].

It will be important to understand whether the Statistical Cell can, at least, be used as a pre-

trained model to enable faster training on smaller data sets of cell images that were obtained

under different conditions. The computational complexity of training (from scratch) a 3D Sta-

tistical Cell model requires sizable GPU resources. Specifically, training the 3D Statistical Cell

model on a corpus of 40,000 relatively large 3D images as explained in this work required 2

weeks of training time using two 32GB GPUs. Noteworthy, we allowed the model to train until

convergence based on visual inspection of ELBO metrics and generated cell images. The use of

an automated stopping criterion may reduce compute time.

The Statistical Cell can visualize multiple subcellular structures simultaneously at a single-

cell level. Yet, unobserved complex interrelationships between structures may not be accu-

rately represented by the model. This is because the Statistical Cell model captures the partial

correlation between a target subcellular structure and the cell and nucleus, but not directly

between different subcellular structures. By construction, these components of our model (the

image data of 19 subcellular structures) are modeled independently of one another. Through

the microscope these 19 subcellular structures come in different shapes, sizes, locations and

number of copies. Also, imaging aspects, such as intensity distributions, vary substantially

across the 19 subcellular structures. This complicates the interpretation of the latent spaces in

a shared manner across the subcellular structures. Cell lines that have been gene-edited to

express multiple tagged subcellular structures could be leveraged to model a richer covariation

structure. The Allen Cell Collection contains various such cell lines. Beyond jointly modeling

more simultaneously acquired image channels, additional data types (e.g. RNA FISH) should

be incorporated into a generative single-cell model. Conditional modeling and visualization of

multiple jointly acquired data modalities is necessary to move towards a truly integrated pic-

ture of cell state.

4 Materials and methods

4.1 Data

Our model was trained on publicly available cell image data generated at the Allen Institute for

Cell Science.

4.1.1 Allen cell collection. The input data for training can be obtained at allencell.org or

directly at https://open.quiltdata.com/b/allencell/packages/aics/pipeline_integrated_single_
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cell. This image resource is part of our ongoing efforts at the Allen Institute for Cell Science to

image and analyze subcellular structures in human induced pluripotent stem cells. Imaging

and culture conditions are described in [8]. Each source image consists of channels corre-

sponding to the reference nuclear signal and cell membrane signal, and a fluorescently labeled

target sub-cellular structure. Extensive information can be found on allencell.org.

4.1.2 Preprocessing of images. All cell regions were segmented from the field of view

using a segmentation workflow. See https://www.allencell.org/extracting-information.html for

more details. Each channel was processed by subtracting the most populous pixel intensity,

zeroing-out negative-valued pixels, and re-scaling image intensity to a value between 0 and 1.

The cells were aligned by the major axis of the cell shape, centered according to the center of

mass of the segmented nuclear region, and flipped according to image skew. Each of the

49,340 cell images were linearly rescaled to cubic voxels of 0.317 μm/px, and padded to

128 × 96 × 64 cubic voxels. 2D images for Section 2.3 were created by maximum-intensity pro-

jection along the z-axis, independently for all three image channels, and are available in the

data package.

4.1.3 Mitotic annotations. Cells were annotated as being in interphase or mitosis via

manual inspection of images by a resident expert cell biologist and released as part of the Allen

Institute—Integrated Mitotic Stem Cell. Mitotic cells were further annotated into four classes

based on the phase of mitosis they were in: 1) prophase, 2) early prometaphase, 3) prometa-

phase / metaphase, and 4) anaphase / telophase / cytokinesis. Further details are available at

https://www.allencell.org/hips-cells-during-mitosis.html#sectionMethods-for-mitotic-cells.

4.1.4 Drug perturbations. The data for the drug perturbation experiments were acquired

independently of the main training and testing data for the model, and here we describe its

acquisition and processing.

A subset of mEGFP-tagged human induced pluripotent stem cells (hiPSCs) from the Allen

Cell Collection were selected in this study, including TUBA1B line:AICS-12, ST6GAL1 line:

AICS-25, TJP1 line:AICS-23, to show the location of a particular cell organelle or structure

and represent cellular organization. mEGFP-tagged hiPSCs were seeded onto Matrigel-coated

96-well plates at a density of 2,500 to 3,500 cells per well and maintained in culture in phenol-

red free mTeSR1 media with 1% penicillin streptomycin for 4 days before imaging (media

changed every day). On day 4, cells on the 96-well plate were treated with one of the pre-

selected, well-characterized drugs with concentration and incubation time described in

Table 2.

At the end of the incubation time, hiPSCs were then incubated in imaging media of phenol

red-free mTeSR1 media (Stem Cell Technologies) with 1% penicillin streptomycin (Thermo

Fisher) with X1 Nuc Blue Live (Hoechst 33342, Thermo Fisher) for 20 min and 3X CellMask

(Thermo Fisher) for 10 min. The cells were washed with fresh imaging media prior to being

imaged live at high magnification in 3D.

3D Live-cell imaging of mEGFP-tagged hiPSCs was performed on a Zeiss spinning-disk

microscope with a 100x/1.2 NA W C-Apochromat Korr UV-vis IR objective (Zeiss) and a 1.2x

tube lens adapter for a final magnification of 120x, a CSU-x1 spinning-disk head (Yokogawa)

and Orca Flash 4.0 camera (Hamamatsu) (pixel size 0.271 μm in x-y after 2x2 binning and

Table 2. Drug treatments.

Perturbation agent Vendor Catalog Well-known action Concentration Incubation time

Brefeldin A Selleckchem.com No.S7046 Vesicle trafficking inhibitor 5 μM 0.5 hr

Paclitaxel Selleckchem.com No.S1150 Microtubule polymer stabilizer 5 μM 2 hr

DMSO Sigma Aldrich N/A Vehicle control 0.01% 0.5 to 2 hr

https://doi.org/10.1371/journal.pcbi.1009155.t002
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0.29 μm in Z). Standard laser lines (405, 488, 561, 640 nm), primary dichroic (RQFT 405, 488,

568, 647 nm) and the following Band Pass (BP) filter sets (Chroma) were used for fluorescent

imaging: 450/50 nm for detection of Nuc Blue Live, 525/50 nm for detection of mEGFP, and

690/50 nm for detection of CMDR dye (Thermo # C10046). Cells were imaged in phenol red-

free mTeSR1 media, within an incubation chamber maintaining 37˚C and 5% CO2. Bright

field images were acquired using a white light LED with broadband peak emission using the

mEGFP BP filter 525/50 nm for bright field light collection.

To obtain single-cell measurements, fluorescent images of cells treated with CellMask Deep

Red dye and NucBlue Live dye were segmented with the aforementioned segmentation work-

flow. The fluorescent images are normalized with a median filter and adaptive local normaliza-

tion. Nuclei are segmented with active contouring. Segmented nuclei are used to create seeds

for segmentation of individual cells based on the signal from the plasma membrane. The

plasma membrane signal is boosted at the top of the cell and fluorescent endocytic vesicles are

removed from normalized cell membrane image and are then segmented with 3D watershed

with seeds from nucleus segmentation.

Further details are available at https://www.allencell.org/drug-perturbation-pilot.html.

The data are available at https://www.allencell.org/data-downloading.html#sectionDrug

SignatureData.

4.2 Model architecture

At its core, the Statistical Cell is a probabilistic model of cell and nuclear shape conjoined to a

probability distribution for the localization of a given subcellular structure conditional on cell

and nuclear shape. An observed image, xr,t, is modeled as p(xr,t|t) = p(xr)p(xt|xr, t), where r
indicates reference image channels that contain the same cellular structure across all images (in

this case the plasma membrane using CellMask Deep Red dye, and the nucleus via labeling

DNA with NucBlue Live dye), and t indicates structure channels. The model maps xr and xt to

learn low dimensional variables (or “embeddings”), zr and zt that capture morphological varia-

tion and relationships between the reference and target structures, allows for sampling of miss-

ing data and image exemplars, and characterizes statistical relationships between the reference

and target structures.

The Statistical Cell model consists of two sub-models that are trained (conditionally) inde-

pendently, the model of cell and nuclear shape, MR, and the conditional model of structure

localization, MT.

A diagram of the model is shown in Fig 1B and 1C. The reference component MR consists

of an encoder that computes the variational posterior, q(zr|xr) constructed by serial residual

blocks (see Fig 7) that perform convolutional operations, spatially downsampling the image by

half and increasing channel dimension at each layer. The output is then reshaped to a vector

and passed independently through two fully connected layers to result in zr ¼ Nðmzr
; szr
Þ. zr is

sampled from that normal distribution and passed through a fully connected layer, and passed

through residual blocks that spatially upsample, and decrease channel dimension, progres-

sively decoding the latent representation. The same architecture is used for the target model,

MT, but instead the target label and a linearly downsampled copy of xr is passed in as well.

The primary layer component of this model is a modified residual layer [37], and a detailed

description can be found in Fig 7. Table 3 shows the high-level model architecture.

The 2D model was implemented the same as above but with 2D convolution operations.

The number of parameters for the 3D and 2D models are 122,627,829 and 22,279,054,

respectively.
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The model is trained to maximize the Evidence Lower Bound (ELBO) given an input

image xr,t:

log pðxr;tjtÞ � ELBOðxr;tjtÞ ¼ Eqðzr;t jxr;t Þ
½log pðxr;tjzr;t; tÞ� � KLðqðzr;tjxr;t; tÞjpðzÞÞ ð1Þ

An interpretation of this procedure is that we seek to find a model such that the observed

data is the most probable under the model distribution, with the ELBO is as (tractable) approx-

imation of this quantity. Under the generative model described in Fig 1B, we factor out

Fig 7. Residual block used in this model. Each layer of our model is a modified residual layer. In the encoder, the

layer input, x, is passed through a 4x convolution kernel with a stride of 2, then a 3x convolution kernel with a stride of

1 or a 1x convolution kernel with a subsequent avg-pooling step. These results are summed along the channel

dimensions, added, and passed to the next layer. With the decoder, 4x convolution is replaced with transposed

convolution, and pooling replaced with linear upsampling. In the case of the conditional model (components with

dotted lines) MT, the reference input xr is linearly interpolated to be the same size as the output, and passed through a

1x kernel. The target label is passed through a 1x kernel, and added to each pixel of the output. Spectral weight

normalization [36] is utilized at every convolutional or fully-connected operation. In the case of the 3D model the

convolutions are three-dimensional, and the 2D model uses two-dimensional convolutions.

https://doi.org/10.1371/journal.pcbi.1009155.g007

Table 3. Architecture of model used in this study. Arrows indicate spatial downsampling or upsampling.

Reference Model, MR Target Model, MT

xr multicolumn1c xt
Residual layer, #, 32 Residual layer + (xr, t), #, 32

Residual layer, #, 64 Residual layer + (xr, t), #, 64

Residual layer, #, 128 Residual layer + (xr, t), #, 128

Residual layer, #, 256 Residual layer + (xr, t), #, 256

Residual layer, #, 512 Residual layer + (xr, t), #, 512

[FC 512], [FC 512] [FC 512], [FC 512]

zr ¼ Nðmzr
;szr
Þ zt ¼ Nðmzt

; szt
Þ

FC 512 FC 512

Residual layer, ", 512 Residual layer + (xr, t), ", 512

Residual layer, ", 256 Residual layer + (xr, t), ", 256

Residual layer, ", 128 Residual layer + (xr, t), ", 128

Residual layer, ", 64 Residual layer + (xr, t), ", 64

Residual layer, ", 32 Residual layer + (xr, t), ", 32

Residual layer, ", 2 Residual layer + (xr, t), ", 1

x̂r x̂ t

https://doi.org/10.1371/journal.pcbi.1009155.t003
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structure and reference components and train two separate components:

log pðxr;tjtÞ ¼ log pðxtjxr; tÞ þ log pðxrÞ � ELBOðxtjxr; tÞ þ ELBOðxrÞ ð2Þ

The embeddings produced by the encoder q(z|x) are encouraged to be compact in the sense

that they are penalized for differing in distribution from a standard normal distribution (as

measured by KL(q(z|x)|q(z))). An embedding, however compact, is only useful insofar as it is

able to faithfully recapitulate the data. The decoder p(x|z) is optimized to produce faithful

reconstructions via the reconstruction error term Eqðzr;t jxr;t Þ
½log pðxr;tjzr;tÞ�, which encourages

the model to balance compactness against transmitting enough information to accurately

reconstruct the data.

For section 2.3 we adopt the following reparameterized ELBO definition:

ELBOðxÞ ¼ ð1 � bÞEqðzjxÞ½log pðxjzÞ� � bKLðqðzjxÞjpðzÞÞ: ð3Þ

where β is between 0 and 1.

This slight modification to the objective function allowed us to trade-off the relative impor-

tance between the reconstruction and sparsity terms of our loss function while keeping the

order of magnitude of the total objective function constant. This is greatly beneficial in train-

ing multiple models at different values of β, without needing to modify any other hyper param-

eters to compensate for an objective function that grows with β, as in the traditional

parameterization of the βVAE objective function.

4.3 Calculation of Evidence Lower Bound

To calculate the ELBO we use the low-variance estimator in [23]. We use pixel-wise mean

squared error to approximate the reconstruction likelihood and average over ten samples from

zr or zt.

4.4 Training procedure

Each model is trained with a batch size of 32 at a learning rate of 0.0002 for 300 epochs via gra-

dient-descent with the Adam optimizer [38]. The optimizer β hyper-parameter values are set

to (0.9, 0.999) (not to be confused with β in the model’s objective function). The maximum

latent space dimensionality for the reference structures, Zr, and target structures, Zs, were each

set to 512 dimensions. We adopt the stochastic training procedure outlined in [23].

We split the data set into 80% training, 10% validation and 10% test, and trained both the

reference and conditional model for 300 epochs, and for each training session use the model

with the highest ELBO on the validation set.

The model was implemented in PyTorch version 1.2.0, and each component (P(xr) and P
(xt|xr, t)) was trained on an NVIDIA V100 graphics card. 3D models took approximately two

weeks to train while 2D models took approximately 1.5 days to train.

To address overfitting, we evaluate the ELBO on images assigned to the validation set at

every epoch. For all results in this manuscript, the model with the highest validation-set ELBO

is used. For sparsity/reconstruction models in Fig 3, we use the unweighted ELBO.

4.5 Cell feature extraction and feature space analysis

Real cell and nucleus images from the test set and their generated counterparts are segmented

prior to shape- and intensity-based feature extraction (Fig 3D and S7 and S8 Figs).

Generated images from each 2D model (with different values of β) are segmented using adap-

tive thresholding with an arithmetic mean filter and a block size of 199. All pixel values are
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scaled to fit within an 8-bit intensity range. Then, 3 shape features and 4 intensity features are

calculated from the cell and nucleus channel (separately) using https://github.com/AllenCell/

aicsfeature.

To evaluate how well the feature space of the real cells maps to the latent spaces of the 2D

models with different values of β, latent space dimensions with the highest mean KLDs are

first identified by applying a KLD threshold of 0.6 across the sorted mean KLD (ranked per

dimension) across all 2D models (S8(A) Fig). Principal component analysis (PCA) is then

applied to the 14 extracted features from the test set to arrive at a feature space, and the top 5

principal components (PCs), with a total explained variance ratio of> 0.9, are selected. The

explained variance ratio and the loading of each feature for the top 5 PCs are shown in S8(B)

and S8(C) Fig. Finally, the “important” latent dimensions, i.e. those above the KLD threshold

of 0.6, of the test set embeddings in each 2D model are used to fit a linear model for each of the

5 top PCs independently using linear regression analysis. About 90% of the test set embeddings

are used to fit the model, and the remaining 10% is used for prediction and R2 score evalua-

tion. The R2 scores for each linear regression model (each top PC) are plotted as a function of

β in S8(D) Fig.

4.6 Statistic of subcellular structure coupling

The per-channel statistic we display in Fig 5B is computed for each cell xi by considering the

likelihood of that cell under the model, compared to the likelihood of that cell with one of its

channels swapped out for that same channel from a different cell:

crsi ¼
ELBOðxi ¼ ½xri ; x

r
0

i ; x
s
i �Þ

1

Ns

XNs

j¼1
ELBOðxij ¼ ½x

r
j ; x

r
0

i ; x
s
i �Þ

ð4Þ

Here r is the reference channel (either the membrane or the nucleus) that we are evaluat-

ing, s is the structure type, denoting which set of cells we aggregate over. xi ¼ ½xri ; x
r
0

i ; x
s
i � is

the three channel image decomposed into the reference channel of interest r, the other refer-

ence channel r0, and the structure channel s. The numerator is the likelihood of the original

data, and the denominator is the average permuted likelihood of the cell with the reference

channel of interest r permuted across all other cells with the same structure tagged (i.e. Ns

cells).

To aggregate this per-channel coupling strength into a relative coupling value, we take the

ratio of the difference over the sum of the membrane-structure coupling and the nucleus-

structure coupling. That is, the differential coupling of a structure to the membrane vs the

nucleus ds is computed as

dp
s ¼

1

Np
s

XN
p
s

i¼1

cms
i � cnsi
cms
i þ cnsi

ð5Þ

where Np
s is the number of cells where structure s is tagged and are also in cell cycle phase p

(interphase or mitosis), cms
i is the coupling of structure s in cell i to the membrane, and simi-

larly cnsi is the coupling of the structure in that cell to the nucleus.

Supporting information

S1 Fig. Pairwise plots of the top four latent space dimensions, as ranked by mean absolute

deviation from 0 on the test set. The marginal distribution of each latent dimension is plotted

on the diagonal. a) Here we color by the cell volume, and see a visually apparent pattern in the
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data—most notably a strong correlation with μ188. b) Here we color by the cell height, and

again observe structure in the scatter plots—most notably a strong correlation with μ419.

(TIF)

S2 Fig. Latent space walks along the 3rd through 6th highest ranked dimensions, as ranked

by mean absolute deviation from 0 on the test set. Walks are performed along the specified

dimension in nine steps, starting at negative two standard deviations and ending at two stan-

dard deviations. All other latent dimensions are set to 0. We include the name of the most

highly correlated cell feature, but the cell features are highly correlated (see S3 Fig) and a single

latent space dimension may correlate with many cell features. a) Latent dimension μ465, which

is most strongly correlated with nuclear surface area. b) Latent dimension μ188, which is most

strongly correlated with cell volume. c) Latent dimension μ238, which is most strongly corre-

lated with tilt/shear along the x-z-axes. d) Latent dimension μ107, which is most strongly corre-

lated with the total integrated intensity in the plasma membrane dye channel.

(TIF)

S3 Fig. a) Heatmap of Spearman correlations of reference latent space dimensions with sin-

gle-cell features on all cells in the test set. Cell features are hierarchically clustered. Latent space

dimensions are sorted in descending rank by mean absolute deviation from 0, and for clarity

only the top 32 dimensions are shown. Dimensions below 32 displayed significantly more

noise and less correlation with cell features. b) Mean absolute deviation from 0 of all reference

latent space dimensions, sorted by value. Values are computed by averaging over all cells in the

test set. c) Explained variance of principal components of the z-scored cell features on all cells

in the test set. d) Pearson correlation of the top 32 dimensions of the latent space, computed

on all cells in the test set as ranked by mean absolute deviation from 0. We note that these

dimensions display little to no correlation structure, empirically verifying the ability of the β-

VAE to produce a disentangled latent space.

(TIF)

S4 Fig. Three examples of each mEGFP-tagged structure are shown, sampled randomly

from our test data set. Each cell only has one mEGFP-tagged structure, so examples are all

from different cells.

(TIF)

S5 Fig. Structures generated by our model. Three examples of each mEGFP-tagged structure

are shown. Structures are generated using random draws from the conditional latent space,

while keeping the reference geometry fixed to a single (randomly chosen) cell geometry from

the test set. The same cell geometry is used across all structures shown here.

(TIF)

S6 Fig. a) Mean KLD per dimension for the reference latent space of the test set in the 2D

model, as a function of β, averaged over all dimensions in the latent space. b) Mean KLD per

dimension for the reference latent space of the test set in the 2D model, as a function of dimen-

sion rank, for each model fit using a different β. c) Left: Mean KLD per dimension for the ref-

erence latent space of the test set in the 3D model, as a function of dimension rank. Right:

Mean KLD per dimension for the conditional latent space of the test set in the 3D model, as a

function of dimension rank and structure type.

(TIF)

S7 Fig. Violin plots that show fourteen biologically interpretable features measured on

both real (red) and generated cells (blue to yellow, as a function of β). Plots on the left show

seven features based on the nucleus (channel); plots on the right show the same seven features
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based on the cell (channel). These seven features include three shape features: area, circumfer-

ence and sphericity, and four intensity-based features: median, mean, standard deviation and

entropy. A grey line shows the feature value for one selected cell; connecting the feature value

obtained from the real cell image with the values obtained from the generated cell images.

Grey lines are plotted for a subset of all cells used in this analysis.

(TIF)

S8 Fig. a) Ranked mean KLD per dimension for the reference latent space of the test set in

selected 2D models trained with different values of β. Dimensions with a KLD larger than 0.6

are considered ‘important’ latent space dimensions. Models with low β (focus on reconstruc-

tion) have more important latent space dimensions than models with high β (focus on spar-

sity). b) Explained variance ratios for the top 5 principal components (PCs) of the feature

space consisting of the 14 metrics derived from the real cell images for all the cells in the test

set. c) Loading of each of the 14 features in the top 5 PCs of the feature space. d) R2 (explained

variance) scores of linear regression models that fit the important latent space dimensions to

each of the the top 5 PCs, independently, as a function of β. The black dotted line represents

the total explained variance. Since the first five PCs capture 93% of the variation among the 14

features, the theoretical maximum of the black dotted line is 0.93.

(TIF)
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