Copper Complexes of 1,4-Naphthoquinone Containing Thiosemicarbazide and Triphenylphosphine Oxide Moieties; Synthesis and Identification by NMR, IR, Mass, UV Spectra, and DFT Calculations

Mohammed B. Alshammari, Ashraf A. Aly,* Stefan Bräse,* Martin Nieger, Mahmoud A. A. Ibrahim, and Lamiaa E. Abd El-Haleem

Cite This: ACS Omega 2022, 7, 34463-34475

Read Online

Abstract

New 1,4-naphthoquinone derived by triphenylphosphaneylidene $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ and N-substituted-hydrazine-1-carbothioamides were obtained during a one-pot reaction of 2,3-dichloro-1,4-naphthoquinone with thiosemicarbazides, $\mathrm{Ph}_{3} \mathrm{P}$ and in the presence of triethyl amine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ as a catalyst. The structure of the ligands was established by ESI, IR, and NMR spectra, in addition to elemental analyses and X-ray structure analysis. On subjecting the newly prepared ligands with CuCl_{2} and $\mathrm{Ph}_{3} \mathrm{P}$, autoxidation occurs, and (E)-(2-(1,4-dioxo-3-(triphenyl phosphanylidene)-3,4-dihydronaphthalen-2(1 H)-ylidene)carbamothioyl)-hydrazinyl)-((triphenylphosphanyl)oxy)copper derivatives were formed in very good yields. The structure of the obtained complexes was proved by ESI, IR, NMR, and UV spectra, in addition to elemental analyses and

1. INTRODUCTION

Natural hydroxy derivatives of 1,4-naphthoquinone lawsone and juglone with hydroxyl groups in the α - and β-positions of the naphthalene core form salts and complexes with cations of various metals and are used as dyes. ${ }^{1}$ Protein binding, DNA binding/cleavage, and in vitro cytotoxicity studies of 2-((3-(dimethylamino)-propyl)amino)naphthalene-1,4-dione and its four coordinated $\mathrm{M}(\mathrm{II})$ complexes $[\mathrm{M}(\mathrm{II})=\mathrm{Co}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$] have been investigated. The complexes demonstrated a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549) with cisplatin. AO/EB and DAPI staining studies suggest an apoptotic mode of cell death in these cancer cells, with the compounds under investigation. ${ }^{2}$ A series of nine $\mathrm{Ru}^{\mathrm{II}}$ arene complexes bearing tridentate naphthoquinone-based $\mathrm{N}, \mathrm{O}, \mathrm{O}$ ligands were synthesized and characterized. The cytotoxic profile exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broad chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern, reduced or slightly enhanced ROS generation, and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs. ${ }^{3}$

The reactions of 1,4 -naphthoquinone with triphenylphosphine $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ have been previously described. As, for example, in the reaction of fluoronaphthoquinone (1) with triphenyl-
phosphine $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$, derivatives of phosphonium betaines derived from hexafluoro-1,4-naphthoquinone: (triphenyl-[5,6,7,8-tetrafluoro-1-oxido-4-oxo-3-(phenylimino)-3,4-dihy-dro-naphthalen-2-yl]phosphonium) 3 (Scheme 1), were obtained. ${ }^{4}$ The reaction was explained as due to the formation of intermediate 2 (Scheme 1). Depending upon reaction conditions, it was reported that $\mathrm{Ph}_{3} \mathrm{P}$ reacted with p-chloranil (4) to produce either Zwitter salts 5 or 6^{5} (Scheme 1). However, in aqueous alcoholic medium, 3-(triphenylphosphoranylidene) naphthalene-1,2,4(3H)-trione $(8)^{6}$ was obtained from the reaction of 2,3-dichloro-1,4-naphthoquinone (7) with $\mathrm{Ph}_{3} \mathrm{P}$ (Scheme 1).

In the same manner, bisphosphonium salt containing a $1,4-$ dihydroxynaphthyl-substituted moiety was synthesized in high yield by the reaction of 2 -methyl-1,4-naphthoquinone with three equivalents of $\mathrm{Ph}_{3} \mathrm{P}$ and hydrogen bromide. ${ }^{7}$ Metal-free synthesis of aryltriphenylphosphonium bromides by the reaction of $\mathrm{Ph}_{3} \mathrm{P}$ with aryl bromides in refluxing phenol was developed. ${ }^{8}$ With the high reactivity of naphthoquinones, 2,3-

[^0]

Scheme 1. Effect of $\mathrm{Ph}_{3} \mathrm{P}$ on Halogenated Naphthoquinones 1,4 , and 7

dichloro-1,4-naphthoquinone (DCHNQ, 7) reacted with nucleophiles and substituted one or both chlorine atoms. ${ }^{9-13}$ It was found that the reaction of 7 with p-nitrobenzhydrazide (9) in $1: 2$ or $2: 1$ ratio in DMF gave only the disubstituted product, bis-(- p-nitrobenzhydrazino)-1,4-naphthoquinone (10). However, when an ethanolic solution of 7 and 9 was refluxed for 21 h , the main product was a bright red precipitate of $\mathbf{1 1}{ }^{14}$ (Scheme 2).

Scheme 2. Nucleophilic Addition of Aroylhydrazide 9 to Compound 7

On the basis that triphenylphosphine oxide $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}\right)$ can form facile complexes with some metal salts, Hergueta et al. ${ }^{15}$ reported the facile removal by complexation with CaBr_{2}, with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ in ethereal solvents or toluene. The resulting insoluble precipitated complex was easily eliminated from crude reaction mixtures in high yields by filtration without the need for purification by column chromatography. ${ }^{15}$

Copper(I) and silver(I) chloride complexes containing PPh_{3} and 4-phenyl-thiosemicarbazide (4-PTSC) ligands were prepared and structurally analyzed, namely, $[\mathrm{CuCl}(4-\mathrm{PTSC})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (12) and $\left[\mathrm{AgCl}(4-\mathrm{PTSC})\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{CH}_{3} \mathrm{CN}$. Both compounds exhibit a distorted tetrahedral metal coordination environment with two P atoms from two PPh_{3} ligands, one terminal S atom from the 4-PTSC ligand, and a chloride ion (Figure 1). ${ }^{16}$
The reactions between $\left[\mathrm{CuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and 3,3-diphenyl-1-(2,4-dichlorobenzoyl)thiourea, 3,3-diisobutyl-1-(2,4dichlorobenzoyl)thiourea, or 3,3-diethyl-1-(2,4-

Figure 1. Copper(I) chloride complex containing PPh_{3} and 4phenylthiosemicarbazide (4-PTSC) ligand 12.
dichlorobenzoyl)thiourea in benzene gave four-coordinated tetrahedral copper(I) complexes of the type $[\mathrm{CuCl}(\mathrm{HL})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{HL}=3,3$-dialkyl/aryl-1-(2,4-dichlorobenzoyl)thiourea derivatives]. ${ }^{17}$

Previously, we reacted thiosemicarbazones derived from 2quinolone with $\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II})$, and $\mathrm{Ni}(\mathrm{II})$ salts. ${ }^{18}$ Monodentate $\mathrm{Cu}(\mathrm{I})$ quinoloyl-substituted ligands were observed, whereas $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ gave bidentate-thiosemicarbazone derived by 2-quinolones. Subsequently, molecular docking was used to evaluate each analog's binding affinity and the inhibition constant $\left(k_{\mathrm{i}}\right)$ to the RdRp complex of SARS-CoV2. ${ }^{18}$ We also synthesized a series of paracyclophane-substituted thiosemicarbazones, thiocarbazones, hydrazones, and thioureas to study their complexation capability toward copper (I) and Cu (II) salts. Tridentate and bidentate of the aforesaid paracyclophane-substituted ligands were observed. Thiosemicarbazonyl, hydrazonyl, and thiourea paracyclophane derivatives formed with $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ salt tridentate and bidentate structures, whereas no complexes were observed for the prepared thiocarbazone derivatives. ${ }^{19}$

Copper complexes have numerous properties, including proteasome activity inhibitors, ${ }^{20}$ DNA intercalation, ${ }^{21}$ and anticancer chelators. They can also increase the activity of the ligand itself. For example, 4-cyclohexyl-3-(4-nitrophenyl)-methyl-1,2,4-triazolin-5-thione has no activity against some selected bacteria, but after obtaining the metal(II) complex, the activity increases to a mild score. ${ }^{22}$

From this, we here aim to investigate the reaction of 2,3-dichloro-1,4-naphthoquinone (7) together with thiosemicarbazides and $\mathrm{Ph}_{3} \mathrm{P}$ to achieve the expected bi-nucleophilic substituted naphthoquinone. The newly obtained triphenyl-phosphine-ylidene-3,4-dihydronaphthalen-2(1H)-ylidene)- N -substituted-hydrazine-1-carbothioamides were then subjected to complexation toward CuCl_{2} and $\mathrm{Ph}_{3} \mathrm{P}$. The stability of these complexes was discussed using a plethora of quantum mechanical calculations and by executing Hirshfeld surface (HS) analysis.

2. RESULTS AND DISCUSSION

Thiosemicarbazides 14a-f were prepared by reacting substituted isothiocyanates 13a-f with hydrazine in ethanol as a solvent. ${ }^{23}$ Upon mixing equimolar amounts of $\mathbf{1 4 a}$-f with $2,3-$ dichloro-1,4-naphthoquinone (7), $\mathrm{Ph}_{3} \mathrm{P}$, and in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as a catalyst and acetonitrile as a solvent, triphenylphos-phine-ylidene(-3,4-dihydronaphthalen-2(1 H)-ylidene)- N -sub-stituted-hydrazine-1-carbothioamides 15a-f were obtained in $72-82 \%$ yield (Scheme 3).

The mass spectrum of compound $\mathbf{1 5 c}$ revealed $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z=598$ (75), whereas the molecular ion peak at $m / z=597$ (30). HRMS FAB mass confirmed the molecular formula of 15c $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}+\mathrm{H}]^{+}$) calcd: 598.1718; found: 598.1717. The ${ }^{1} \mathrm{H}$ NMR spectrum displayed the two NH

Scheme 3. Synthesis of Ligands 15a-f

Figure 2. Molecular structure of compound 15c (displacement parameters are drawn at 50% probability level). Selected bond distances [\AA] and angles [${ }^{\circ}$: C2-N9 1.3088(16), N9-N10 1.3674(14), N10-C11 1.3546(17), C11-S11 1.6775(13), C11-N12 1.3297(17), N12-C13 $1.4557(17) ;$ C2-N9 N10 119.45(10), N9-N10-C11 119.65(10), N10-C11-S11 119.43(10), N10-C11-N12116.90(11), C11-N12-C13 122.64(11).
protons at $\delta_{\mathrm{H}}=13.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$ and at $6.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{N}^{2}\right)$. The benzyl- CH_{2} resonated as a multiplet, in the ${ }^{1} \mathrm{H}$ NMR spectrum, at $\delta_{\mathrm{H}}=4.38-4.20$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the carbonyl carbon signals at $\delta_{\mathrm{C}}=177.2$ and 176.3, whereas the $\mathrm{C}=\mathrm{S}$ and benzylic- CH_{2} carbon signals appeared at $\delta_{\mathrm{C}}=$ 162.8 and 46.9 ppm , respectively. IR spectroscopy revealed the NH-stretching, $\mathrm{C}=\mathrm{P}$, and $\mathrm{C}=\mathrm{S}$ groups at $\tilde{\nu}=3340-3055$, 1153, and $988 \mathrm{~cm}^{-1}$, respectively. X-ray structure analysis confirmed the structure of $\mathbf{1 5 c}$, as shown in Figure 2.
Mass spectroscopy of $\mathbf{1 5 f}$ revealed $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z=564$ (100), whereas the molecular ion peak appeared at $m / z=563$ (30\%). HRMS confirmed $[\mathrm{M}+\mathrm{H}]^{+}$of compound $\mathbf{1 5 f}$ as $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the two NH protons at $\delta_{\mathrm{H}}=13.18$ and 6.74. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the butyl protons resonated as a double-doublet $(J=7.7,1.5$ $\mathrm{Hz}, 2 \mathrm{H})$ and three multiplets at $\delta_{\mathrm{H}}=3.58,1.60-1.49,1.35-$ 1.26 , and $1.02-0.99 \mathrm{ppm}$, respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the carbonyl carbon signals at $\delta_{\mathrm{C}}=186.1$ and 185.9 , whereas $\mathrm{C}=\mathrm{S}$ resonated at 178.4 ppm . The butyl carbon signals resonated in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta_{\mathrm{C}}=$ $44.6,30.4,20.1$, and 14.0 ppm . IR spectroscopy displayed the NH-stretching at $\tilde{\nu}=3340-3053(\mathrm{w}, \mathrm{NH})$, whereas the two
carbonyl groups and $\mathrm{C}=\mathrm{N}$ appeared at $\tilde{\nu}=1586,1521$, and 1434, respectively. Besides, the $\mathrm{C}=\mathrm{P}$ and the $\mathrm{C}=\mathrm{S}$ groups appeared as strong bands in the IR spectra at $\tilde{\nu}=1170$ and 992 cm^{-1}, respectively. The structure of $\mathbf{1 5 f}$ was confirmed by Xray structural analysis, as shown in Figure 3.

In the crystal structures of $\mathbf{1 5 c}$ and $\mathbf{1 5 f}$, are the bond distances and angles in the expected range with a slight delocalization of the π-electron in the thiosemicarbazide moiety (see cif-file). The thiosemicarbazide and 1,4-naphthoquinone moieties are coplanar.

The mechanism describes that the formation of $\mathbf{1 5 a} \mathbf{- f}$ is based upon the addition of $\mathrm{Ph}_{3} \mathrm{P}$ to $\mathrm{C}-1$ (or C-2) in 7 to give the Zwitterion 17, which would be in resonance with the intermediate 18 (Scheme 4). The addition of $\mathbf{1 4 a}-\mathrm{f}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ would then accompany the elimination of a molecule of HCl and another of $\mathrm{Ph}_{3} \mathrm{P}$ to give 19a-f (Scheme 4). Subsequently, the extruded $\mathrm{Ph}_{3} \mathrm{P}$ would again add to halogenated intermediates 19a-f to produce salts 20a-f (Scheme 4). Finally, a molecule of $\mathrm{Et}_{3} \mathrm{~N}$ would facilitate the formation of 20a-f via the elimination of a molecule of triethylammonium hydrochloride.

Figure 3. Molecular structure of one crystallographic independent molecule (with n-butyl substituent) of compound $\mathbf{1 5 f}$ (displacement parameters are drawn at a 30% probability level). Selected bond distances $[\AA]$ and angles $\left[{ }^{\circ}\right]:$ C102-N129 1.303(3), N129-N130 1.363(3), N130-C131 1.364(4), C131-S131 1.671(3), C131-N132 1.337(5), N132-C133 1.457(4); C102-N129 N130 120.4(2), N129-N130-C131 119.4(3), N130-C131-S131 119.3(3), N130-C131-N132 115.3(3), C131-N132-C133 126.8(3).

Interestingly, the reaction of equal equivalents of compounds $\mathbf{1 5 a}$-f with $\mathrm{Ph}_{3} \mathrm{P}$ and $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in ethanol at rt and for $1-3 \mathrm{~d}$ produced the Cu -complexes 16a-f (Scheme 5). Based on IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra, together with elemental analysis, the NH-3 proton of the thiosemicarbazone moiety, in 15a-f, was eliminated, and aerial oxidation occurred, as shown in Scheme 5.

Reagents and conditions: 15a-f (1.00 equiv), $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1.00 equiv) and $\mathrm{Ph}_{3} \mathrm{P}$ (1.00 equiv) in absolute EtOH (40 $\mathrm{mL})$, room temperature $(2-4 \mathrm{~h})$. Column chromatography (CC) using EtOAc/hexane (5:1).
2.1. Assignment of the Ligands 15a-f and Their CuComplexes 16a-f by Mass Spectroscopy and Elemental Analyses. The molecular formulae of the obtained complexes were proved according to the mass spectroscopic data and the elemental analyses. Physical data from the color, m.p., and yield in g (\%) were illustrated, as shown in Table 1.

Elemental analyses and mass spectra indicated that the formed $\mathrm{Cu}(\mathrm{II})$-complexes 16a-f resulted in the sum of the molecular weight of compounds 15a-f with one copper atom
together with a $\mathrm{Ph}_{3} \mathrm{PO}$ molecule. Elemental analyses of compounds 16a-f are shown in Table 2.
2.2. Assignment by IR Spectra. The significant bands in infrared spectra for both ligands $\mathbf{1 5 a} \mathbf{- f}$ and their metal complexes 16a-f are represented in Table 3. The symmetrical stretching of NH bands for compounds 16a-f was absorbed in the region at their expected region of IR spectra. The shift in functional groups from the ligands to the corresponding complexes supported the chelating process. Coordination occurred via $\mathrm{N}-2$ and the oxygen atom of $\mathrm{Ph}_{3} \mathrm{P}$. The $\mathrm{C}=\mathrm{S}$ stretching gave slight shifts in the case of a comparison between 15a-f and 16a-f. Most indicative is the new appearance of $\mathrm{P}=\mathrm{O}, \mathrm{Cu}-\mathrm{N}$, and $\mathrm{Cu}-\mathrm{O}$ bands during the comparison between 15a-f and 16a-f. For example, IR spectroscopy of 15 a showed the following bands at $\nu=$ 3345, 3052 for NH stretching, 1188 (as a strong band) for $\mathrm{C}=$ P , and 993 (as a strong band) cm^{-1} for $\mathrm{s}, \mathrm{C}=\mathrm{S}$. In the case of 16a, the NH stretching was absorbed as a weak band at $\nu=$ 3054, whereas at $\nu=1178$, as a strong band for the $\mathrm{C}=\mathrm{P}$ group. New bands were noted at $\nu=1019(\mathrm{~m}, \mathrm{P}=\mathrm{O}), 536$ (s, $\mathrm{Cu}-\mathrm{N})$, and $457 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. Similar values of the previous three groups were previously reported. ${ }^{24,25}$ The same trend was also observed in all compounds $\mathbf{1 6 b} \mathbf{- f}$ (Table 2).
2.3. Assignment of the Complexes $16 a-\mathrm{f}$ by NMR Spectra. Together with the elemental analyses, mass, and IR spectra, the chemical shift in NMR spectra, indicating the complexation process of $\mathbf{1 5 a - f}$ with Cu (II) to form 16a-f, as shown in Table 4. As it is known that although most NMR measurements are conducted on diamagnetic compounds, paramagnetic samples are also amenable to analysis and give rise to special effects indicated by a wide chemical shift range and broadened signals. ${ }^{26,27}$ However, several papers reported the use of the $\mathrm{Cu}(\mathrm{II})$ complex with $\mathrm{Ph}_{3} \mathrm{P}$ of the composition $\mathrm{CuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \cdot{ }^{28-30}$ The previous studies showed that the oxidation state of II cannot be stabilized for copper in the presence of such a reducing ligand like $\mathrm{Ph}_{3} \mathrm{P}$. Therefore, Cu (II) is converted into $\mathrm{Cu}(\mathrm{I})$ during complexation with $\mathrm{Ph}_{3} \mathrm{P}$ and compounds $\mathbf{1 5 a - f}$. We here note that NMR spectra could be distinguished, and there are remarkable shifts in some values of the chemical shifts (δ) of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 15a, as an example, compared with its complex 16a. In the ${ }^{1} \mathrm{H}$ NMR spectrum, $\mathrm{NH}-2$ resonated at $\delta_{\mathrm{H}}=12.90$, whereas $\mathrm{NH}-1$ appeared at $\delta_{\mathrm{H}}=5.77$. The ethyl protons appeared as a quartet at $\delta_{\mathrm{H}}=3.19$ for $\mathrm{CH}_{2}{ }^{\text {ethyl }}$, whereas a triplet at $\delta_{\mathrm{H}}=0.62 \mathrm{ppm}(J=7.1 \mathrm{~Hz})$. In the case of $\mathbf{1 6 a}$ (Table 4$)$, the ${ }^{1} \mathrm{H}$ NMR spectrum of only $\mathrm{NH}-1$ at $\delta_{\mathrm{H}}=5.49$, whereas N 2 didn't reveal any proton. The ethyl protons appeared as a quartet at $\delta_{\mathrm{H}}=4.05(J=7.1 \mathrm{~Hz})$ and a triplet at $\delta_{\mathrm{H}}=1.20 \mathrm{ppm}$

Scheme 4. Mechanism Describes the Formation of Ligands 15a-f

Scheme 5. Mechanism Describes the Formation of Cu-Complexes 16a-f

Table 1. Physical Data and Yield in g (\%) of Complexes 16af

no	complex	color	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	yield $\mathrm{g}(\%)$
$\mathbf{1}$	$\mathbf{1 6 a}$	deep blue	$250-252($ decomp $)$	$0.718(82)$
$\mathbf{2}$	$\mathbf{1 6 b}$	deep blue	$244-246($ decomp $)$	$0.745(84)$
$\mathbf{3}$	$\mathbf{- 1 6 c}$	deep blue	$262-264($ decomp $)$	$0.872(93)$
$\mathbf{4}$	$\mathbf{- 1 6 d}$	deep blue	$268-270($ decomp $)$	$0.712(80)$
$\mathbf{5}$	$\mathbf{- 1 6 e}$	deep blue	$249-251($ decomp $)$	$0.763(86)$
$\mathbf{6}$	$\mathbf{1 6 f}$	deep blue	$257-259($ decomp $)$	$0.795(90)$

($J=7.1 \mathrm{~Hz}$). The ${ }^{13} \mathrm{C}$ NMR spectrum of 15 a showed the carbonyl carbon signals at $\delta_{\mathrm{C}}=183.7$ and 183.6, whereas $\mathrm{C}=\mathrm{S}$ resonated at $\delta_{\mathrm{C}}=176.7 \mathrm{ppm}$. The ethyl carbons appeared at δ_{C} $=37.9$ for CH_{2} and at $\delta_{\mathrm{C}}=13.5 \mathrm{ppm}$ for CH_{3} (as shown in the Supporting Information). In the case of 16 a , in the ${ }^{13} \mathrm{C}$ NMR spectrum, the carbonyl carbon signals resonated at $\delta_{\mathrm{C}}=186.0$ and $183.6 \mathrm{ppm} .\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, whereas the $\mathrm{C}=\mathrm{S}$ carbon signal appeared at $\delta_{\mathrm{C}}=175.4 \mathrm{ppm}$. The ethyl carbon signals resonated at $\delta_{\mathrm{C}}=39.0\left(\mathrm{CH}_{2}^{\text {ethyl }}\right)$ and $13.6 \mathrm{ppm}\left(\mathrm{CH}_{3}{ }^{\text {ethyl }}\right)$. Significantly, the exocyclic carbon signal (in $\mathrm{C}=\mathrm{N}$) appeared in the ${ }^{13} \mathrm{C}$ NMR spectrum of 15 a at $\delta_{\mathrm{C}}=142.8$, whereas for 16a, it appeared at $\delta_{\mathrm{C}}=143.1$.
2.4. UV-Vis Studies. UV-vis absorption spectra of the Cu (II) complexes 16a-f were measured from 200 to 800 nm , using acetonitrile. The blue-colored compounds exhibited bands in UV-vis spectra, ranging from 540 to 548 nm (i.e., $\left.n-\pi^{*}\right)$. These bands can be attributed to ligand-to-metal charge transfer transitions from nitrogen to $\mathrm{Cu}(\mathrm{II}) . \mathrm{N} \rightarrow \mathrm{Cu}$ $\leftarrow \mathrm{O}$ bands are common in electronic spectra of metal complexes of thiosemicarbazides. Representative examples are the UV/vis spectra of compounds $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$ (Figure 4). In the field of inorganic chemistry, UV/Vis spectra are usually
associated with $\mathrm{d}-\mathrm{d}$ transitions and colored transition metal complexes.
2.5. Optimized Geometries. To verify the experimental findings, the complexes under study were optimized and are illustrated in Figure 5. No imaginary frequencies were noticed for the optimized complexes, ensuring that the obtained geometries were true minima. The energy differences (ΔE) between the investigated complex (E) and the most stable one $\left(E_{1}\right)$ are also given in Figure 5. The single point energies ensured the further favorability of complex 1 over other studied conformations.
2.6. HS Analysis. HS analysis was considered a dependable technique to qualitatively elucidate intermolecular interactions within crystal structures and unveil the interactions around the molecules' surface. ${ }^{31-34} \mathrm{HSs}$, including the $d_{\text {norm }}$ and its associated 2D fingerprints, shape index, and curvedness, were mapped for the studied complexes. Figure 6 shows the $d_{\text {norm }}$ map and the associated 2D fingerprint plots. The extracted shape index and curvedness maps are illustrated in Figure 7.

As shown in Figure 6(i), the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts were noticed with obvious large red regions labeled 1 and exhibited 27.0% of the total HS area. Such contacts were also observed in the 2D fingerprint plots as a pair of symmetrical spikes at (d_{e} $\left.+d_{\mathrm{i}}\right) \sim 2.6 \AA$ (Figure 6(ii)).

The existence of red regions dubbed 2 in the HSs mapped over the $d_{\text {norm }}$ property could be attributed to the occurrence of the reciprocal $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts that were found in the 2D fingerprint plots at $\left(d_{\mathrm{e}}+d_{\mathrm{i}}\right) \sim 2.3 \AA$. For $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ contacts (labeled 3), prominent red regions were noticed with 2.1% of the total HS area and characterized by spikes at ($d_{\mathrm{e}}+$ $\left.d_{\mathrm{i}}\right) \sim 2.7 \AA$. The $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts were observed with label 4 , as white and red regions in the $d_{\text {norm }}$ maps, with a 2.1% contribution.

Table 2. Stoichiometric Formation and Analytical Data of Cu -Complexes 16a-f

ligand	metal salt	complex	stoichiometry	molecular formula	C, H, Cu, N, O, P, S,
15a	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16a	1:1	$\mathrm{C}_{49} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, $67.15 ; \mathrm{H}, 4.60 ; \mathrm{Cu}, 7.25 ; \mathrm{N}, 4.79 ; \mathrm{O}, 5.48 ; \mathrm{P}, 7.07 ; \mathrm{S}, 3.66$ found: C, 67.17; H, 4.62; Cu, 7.23; N, 4.77; O, 5.50; P, 7.05; S, 3.64
15b	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16b	1: 1	$\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, $67.60 ; \mathrm{H}, 4.54 ; \mathrm{Cu}, 7.15 ; \mathrm{N}, 4.73$; O, $5.40 ; \mathrm{P}, 6.97$; S, 3.61 found: C, 67.58; H, 4.56; Cu, 7.17; N, 4.71; O, 5.38; P, 6.95; S, 3.63
15c	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16c	1:1	$\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, 69.11; H, 4.51; Cu, 6.77; N, 4.48; O, 5.11; P, 6.60; S, 3.42 found: C, 67.11; H, 4.53; Cu, 6.79; N, 4.50; O, 5.13; P, 6.58; S, 3.44
15d	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16d	1:1	$\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, 67.44; H, 4.75; Cu, 7.14; N, 4.72; O, 5.39; P, 6.96; S, 3.60 found: C, 67.42; H, 4.77; Cu, 7.16; N, 4.70; O, 5.41; P, 6.98; S, 3.62
15e	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16e	1:1	$\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, 67.60; H, 4.54; Cu, 7.15; N, 4.73; O, 5.40; P, 6.97; S, 3.61 found: C, 67.62; H, 4.52; Cu, 7.13; N, 4.75; O, 5.42; P, 6.99; S, 3.59
15 f	$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	16 f	1:1	$\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}$	calcd: C, 67.72; H, 4.90; Cu, 7.03; N, 4.65; O, 5.31; P, 6.85; S, 3.54 found: C, 67.74; H, 4.92; Cu, 7.05; N, 4.63; O, 5.29; P, 6.85; S, 3.52

Table 3. IR Absorption Bands ($\mathrm{v}, \mathrm{cm}^{-1}$) of Ligands 15a-f and Their Complexes of Cu (II) 16a-f

| ligand | absorption of functional groups (ν) in ligands $\left(\mathrm{cm}^{-1}\right)$ | metal
 complex | absorption of functional groups (ν) in complexes ($\left.\mathrm{cm}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |

Conspicuously, the HSs mapped over the shape index and curvedness properties (Figure 7) confirmed the occurrence of the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}, \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$, and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ interactions by the existence of the complementary pair of red and blue triangles in the shape index and the flat green area in curvedness.

3. EXPERIMENTAL SECTION

Uncorrected Melting points were taken in a Gallenkamp melting point apparatus (Weiss-Gallenkamp, Loughborough, UK). The infrared spectra were recorded with the Bruker, IFS 88 instrument. Solids were measured by the attenuated total reflection (ATR) method. The positions of the respective transmittance bands are given in wave numbers $\bar{v}\left[\mathrm{~cm}^{-1}\right]$ and were measured in the range from 3600 to $500 \mathrm{~cm}^{-1}$. All UVVis spectra were recorded on the Specord 50 Plus made by the company Q Analytik Jena (Thuringia, Germany). The NMR spectra of the title compounds described herein were recorded on a Bruker Avance 400 NMR instrument at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 101 MHz for ${ }^{13} \mathrm{C}$ NMR, and the references used were the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ peaks of the solvent, acetone- $d_{6}: 2.05$ ppm for ${ }^{1} \mathrm{H}$ NMR, and 206.26 ppm for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. For the characterization of centrosymmetric signals, the signal's median point was chosen; for multiplets, the signal range was given. The following abbreviations were used to describe the proton splitting pattern: $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, m $=$ multiplet, and $\mathrm{dd}=$ doublet of a doublet. The following abbreviations were used to distinguish between signals: $H^{\text {Ar }}=$ aromatic-CH. Signals of the ${ }^{13} \mathrm{C}$ NMR spectra were assigned with the help of DEPT90 and DEPT135 and were specified in the following way: $+=$ primary or tertiary carbon atoms (positive DEPT signal), $-=$ secondary carbon atoms (negative DEPT signal), $\mathrm{C}_{\mathrm{q}}=$ quaternary carbon atoms (no DEPT signal). Mass spectra were observed by FAB (Fast atom bombardment) experiments and were recorded using the Finnigan, MAT $90(70 \mathrm{eV})$ instrument. Elemental analyses were performed on the Elementar Vario MICRO instrument. TLC silica plates coated with a fluorescence indicator from Merck (silica gel 60 F254, thickness 0.2 mm) were used to purify the crude products, and flash chromatography with Silica gel $60(0.040 \times 0.063 \mathrm{~mm}$, Geduran) (Merck) was used. Solvents, including acetone $-d_{6}$, were purchased from Merck without further drying.
3.1. General Procedures. Compounds 14a-f were prepared according to the literature. ${ }^{23}$
3.1.1. General Procedure for the Synthesis of Ligands 15a-f. 2,3-Dichloro-1,4-naphthoquinone (7) (250 mg , 1.10 $\mathrm{mmol}, 1.10$ equiv) was added to a stirred solution of
substituted hydrazinecarbothioamides ($\mathbf{1 4 a} \mathbf{- f}$) $(1.00 \mathrm{mmol}$, 1.00 equiv) in 10 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$. The resulting solution was stirred at room temperature for 16 h . After S-alkylation was complete (i.e. the reaction was followed up by TLC), the dried salt was redissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$, after which $\mathrm{Et}_{3} \mathrm{~N}$ $(1.10 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(1.10 \mathrm{mmol})$ were added. The resulting mixture was left under reflux for about $13-16 \mathrm{~h}$. The reaction mixture was left to cool at room temperature, distilled $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ was added, and the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over anhydrous CaCl_{2}, filtered, and evaporated. The crude material was purified by flash-chromatography using cyclohexane/ethyl acetate (4:1) to give compounds $\mathbf{1 5 a}$-f.
3.1.1.1. (E)-2-(1,4-Dioxo-3-(triphenyl- λ^{5}-phosphaneyli-dene)-3,4-dihydronaphthalen-2(1H)-ylidene)-N-ethylhydra-zine-1-carbothioamide (15a). $\boldsymbol{R}_{\mathrm{f}}=0.27$ (cyclohexane/ethyl acetate; 4:1). Violet crystals (MeOH), 0.385 g (72%). mp: $210-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right): \delta_{\mathrm{H}}=12.90(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{NH} H^{1}\right), 7.93\left(\mathrm{dt}, J=44.4,10.2 \mathrm{~Hz}, 2 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.84-7.68$ $\left(\mathrm{m}, 2 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.65-7.31\left(\mathrm{~m}, 15 \mathrm{H}, H^{\mathrm{Ar}}\right), 5.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ $3.19-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {ethyl }}\right), 0.62 \mathrm{ppm}(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}{ }^{\text {ethyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz , Acetone- d_{6}): $\delta_{\mathrm{C}}=183.7$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 183.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 176.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 142.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $137.2\left(C_{q}, C^{\text {Ar }}\right)$, $137.1\left(C_{q}, C^{\text {Ar }}\right), 134.5\left(C_{q}, C^{\text {Ar }}\right)$, $134.1(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $133.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.8(+$, $\left.2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.7\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $130.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.1(+$, $\left.C H^{\mathrm{Ar}}\right), 128.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.6\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 128.5(+, 2 \times$ $\left.C^{\mathrm{Ar}}\right)$, $126.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 125.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $125.5\left(\mathrm{C}_{\mathrm{q}}, C^{\mathrm{Ar}}\right)$, $124.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right)$, $37.9\left(-, \mathrm{CH}_{2}{ }^{\text {ethyl }}\right)$, $13.5 \mathrm{ppm}\left(+, \mathrm{CH}_{3}^{\text {ethyl }}\right)$. IR (ATR): $\tilde{\nu}=3345,3052(\mathrm{w}, \mathrm{NH}), 1587,1517(\mathrm{~m}, \mathrm{C}=\mathrm{O})$, 1435 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 1188 ($\mathrm{s}, \mathrm{C}=\mathrm{P}$), $993 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{S})$. MS (FAB, 3-NBA): $m / z(\%)=536(100)[\mathrm{M}+\mathrm{H}]^{+}$, 535 (30) $[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1}$, $[\mathrm{M}+\mathrm{H}]^{+}$) calcd: 536.1562; found: 536.1563. EA $\left(\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd: C, 69.52; H, 4.89; N, 7.85; O, 5.97; P, 5.78; S, 5.99. Found: C, 69.50; H, 4.87; N, 7.87; O, 5.99; P, 5.76; S, 5.97.
3.1.1.2. (E)-N-Allyl-2-(1,4-dioxo-3-(triphenyl- λ^{5}-phospha-neylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazine-1-carbothioamide (15b). $\boldsymbol{R}_{\mathrm{f}}=0.29$ (cyclohexane/ethyl acetate; 4:1). Violet crystals (MeOH), 0.415 g (76%). Mp: 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta_{\mathrm{H}}=$ $12.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right), 8.22-7.97\left(\mathrm{~m}, 2 \mathrm{H}, H^{\text {Ar }}\right), 7.96-7.80(\mathrm{~m}$, $\left.2 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.80-7.61\left(\mathrm{~m}, 7 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.61-7.29\left(\mathrm{~m}, 8 \mathrm{H}, H^{\mathrm{Ar}}\right)$, $6.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{2}\right), 5.82-5.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\text {allyl }}\right) 4.95-4.80(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {allyl }}\right), 4.22-3.61 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {allyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta_{\mathrm{C}}=184.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 184.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, $177.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right)$, $142.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $138.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right)$, $135.4\left(\mathrm{C}_{\mathrm{q}}\right.$,
Table 4. Chemical Shifts (δ), Including ${ }^{1} \mathrm{H}$ And/or ${ }^{13} \mathrm{C}$ NMR Spectroscopic Data for Ligand 15a and Its Complex 16a $\mathrm{CO})$, $169.6\left(\mathrm{C}_{q} \mathrm{CO}\right), 165.4\left(\mathrm{C}_{q}, \mathrm{CS}\right)$, $143.1\left(\mathrm{C}_{q}, \mathrm{C}=\mathrm{N}\right)$, $137.2\left(\mathrm{C}_{q}, \mathrm{C}^{A r}\right), 134.1\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$,
 $131.7\left(+, 6 \times \mathrm{CH}^{\text {Ar }}\right), 131.6\left(+, 6 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.1\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.0\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 128.6$
$\left(\mathrm{C}_{q}, 3 \times \mathrm{C}^{\text {Ar }}\right), 128.5\left(\mathrm{C}_{q} 3 \times \mathrm{C}^{\mathrm{Ar}}\right), 39.0\left(-, \mathrm{CH}_{2}^{\text {ethyl }}\right), 13.6 \mathrm{ppm}\left(+, \mathrm{CH}_{3}^{\text {ethyl }}\right)$. 16a $\left.H^{\text {Ar }}\right), 5.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{2}\right) 3.19-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {ethyl }}\right), 0.62 \mathrm{ppm}\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{\text {ethyl }}\right) . \delta_{\mathrm{C}}=183.7\left(\mathrm{C}_{q}, \mathrm{CO}\right)$, $\left.\mathrm{CH}^{\text {Ar }}\right)$, $133.7\left(+, \mathrm{CH}^{\text {Ar }}\right)$, $133.6\left(+, \mathrm{CH}^{\text {Ar }}\right), 133.1\left(+, \mathrm{CH}^{\text {Ar }}\right), 132.8\left(+, \mathrm{CH}^{\text {Ar }}\right), 132.5\left(+, \mathrm{CH}^{\text {Ar }}\right)$, $132.4\left(+\mathrm{C}^{2} \mathrm{CH}^{\text {Ar }}\right)$, $131.8\left(+2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.7\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 130.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.6\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.5\left(+, 2 \times \mathrm{CH}^{\text {Ar }}\right), 126.6\left(+, \mathrm{CH}^{\text {Ar }}\right), 125.6\left(\mathrm{C}_{q} \mathrm{C}^{\text {Ar }}\right), 125.5\left(\mathrm{C}_{q} \mathrm{C}^{\text {Ar }}\right), 124.5\left(\mathrm{C}_{q} \mathrm{C}^{\text {Ar }}\right), 37.9\left(-, \mathrm{CH}_{2}^{\text {ethyl }}\right), 13.5$
$\operatorname{ppm}\left(+, \mathrm{CH}_{3}^{\text {ethyl }}\right)$.
$\left.C^{\text {Ar }}\right), 135.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right), 135.0\left(+, \mathrm{CH}^{\text {Ar }}\right), 134.7\left(+, \mathrm{CH}^{\text {Ar }}\right), 134.6$ $\left(+, C^{\mathrm{Ar}}\right), 134.5\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 134.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.4(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $133.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.5\left(+, \mathrm{CH}^{\text {allyl }}\right), 130.4\left(+, \mathrm{CH}^{\text {Ar }}\right), 130.0\left(+, 2 \times \mathrm{CH}^{\text {Ar }}\right), 129.9$ $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 127.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 126.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $126.2\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right), 125.3\left(\mathrm{C}_{q}, C^{\text {Ar }}\right), 116.4\left(-, \mathrm{CH}_{2}{ }^{\text {allyl }}\right), 46.3 \mathrm{ppm}(-$, $\mathrm{CH}_{2}^{\text {allyl }}$).- IR (ATR): $\tilde{\nu}=3347,3067$ (w, NH), 1585, 1542 (m, C=O), 1431 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 1169 (vs, $\mathrm{C}=\mathrm{P}$), $990 \mathrm{~cm}^{-1}$ (vs, $\mathrm{C}=\mathrm{S})$. MS (FAB, 3-NBA): $m / z(\%)=548(100)[\mathrm{M}+\mathrm{H}]^{+}$, 547 (37) [M] ${ }^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1}$, [M $+\mathrm{H}]^{+}$) calcd: 548.1556; found: 548.1557. EA $\left(\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd: C, 70.19; H, 4.79; N, 7.67; O, 5.84; P, 5.66; S, 5.85. Found: C, 70.21; H, 4.77; N, 7.69; O, 5.82; P, 5.68; S, 5.87.
3.1.1.3. (E)-N-Benzyl-2-(1,4-dioxo-3-(triphenyl- λ^{5}-phos-phaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)-hydrazine-1-carbothioamide (15c). $\mathbf{R}_{f}=0.25$ (cyclohexane/ ethyl acetate; 4:1). Violet crystals (MeOH), $0.489 \mathrm{~g}(82 \%)$. mp: 220-222 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=$ $13.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} H^{1}\right), 8.21-7.80\left(\mathrm{~m}, 4 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.80-7.59(\mathrm{~m}$, $\left.5 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.59-7.33\left(\mathrm{~m}, 10 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.29-7.03\left(\mathrm{~m}, 5 \mathrm{H}, H^{\mathrm{Ar}}\right)$, $6.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{2}\right), 4.38-4.20 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\text {benzyl }}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta_{\mathrm{C}}=177.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, $176.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 162.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 141.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right.$ $\left.C^{\text {Ar }}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right), 137.0\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right)$, 134.6 $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.6\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 133.5(+, 2 \times$ $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $133.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $130.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.1\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.9\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.3(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $128.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.2\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 126.6\left(+, \mathrm{CH}^{\text {Ar }}\right), 125.5\left(+, \mathrm{CH}^{\text {Ar }}\right), 125.2\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right)$, $124.5\left(\mathrm{C}_{\mathrm{q}}, C^{\mathrm{Ar}}\right)$, $124.3\left(\mathrm{C}_{\mathrm{q}}, C^{\mathrm{Ar}}\right), 46.9 \mathrm{ppm}(-$, $\mathrm{CH}_{2}^{\text {benzyl }}$).- IR (ATR): $\tilde{\nu}=3340,3055(\mathrm{w}, \mathrm{NH}), 1582$, 1510 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $1433(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 1153(\mathrm{~s}, \mathrm{C}=\mathrm{P}), 988 \mathrm{~cm}^{-1}$ (vs, $\mathrm{C}=\mathrm{S}$). MS (FAB, 3-NBA): $m / z(\%)=598$ (75) [M + $\mathrm{H}]^{+}, 597$ (30) $[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1}$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$calcd: 598.1718; found: 598.1717. EA $\left(\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd: C, $72.35 ; \mathrm{H}, 4.72 ; \mathrm{N}, 7.03 ; \mathrm{O}, 5.35$; P, 5.18; S, 5.36. Found: C, 72.37; H, 4.74; N, 7.01; O, 5.33; P, 5.16; S, 5.38 .
3.1.1.4. (E)-2-(1,4-Dioxo-3-(triphenyl- λ^{5}-phosphaneyli-dene)-3,4-dihydronaphthalen-2(1H)-ylidene)-N-isopropylhy-drazine-1-carbothioamide (15d). $R_{\mathrm{f}}=0.26$ (cyclohexane/ ethyl acetate; 4:1). Violet crystals (MeOH), $0.406 \mathrm{~g}(74 \%)$. mp: 200-202 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=$ $12.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} H^{1}\right), 8.28-7.87\left(\mathrm{~m}, 4 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.87-7.59(\mathrm{~m}$, $\left.5 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.59-7.16\left(\mathrm{~m}, 10 \mathrm{H}, H^{\mathrm{Ar}}\right), 5.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} H^{2}\right), 4.12-$ $3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\text {ssopropyl }}\right), 1.50-1.03 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{3}{ }^{\text {Isopropyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ (101 MHz , acetone- d_{6}): $\delta_{\mathrm{C}}=$ $184.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 184.4\left(\mathrm{C}_{q}, \mathrm{CO}\right), 178.2\left(\mathrm{C}_{q}, \mathrm{CS}\right), 147.3\left(\mathrm{C}_{q}\right.$, $\mathrm{C}=\mathrm{N})$, $138.3\left(\mathrm{C}_{q}, C^{\mathrm{Ar}}\right)$, $135.1\left(\mathrm{C}_{q}, C^{\mathrm{Ar}}\right), 134.8\left(\mathrm{C}_{q}, C^{\mathrm{Ar}}\right)^{q}$, $134.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 134.0\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, 133.4 $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.9\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.7(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $132.6\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.9\left(+, C^{\mathrm{Ar}}\right), 129.5\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.4\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.5\left(+, C^{\text {Ar }}\right), 127.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 126.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right), 126.1\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right), 125.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right), 45.9\left(+, \mathrm{CH}^{\text {Isopropyl }}\right)$, $22.2 \mathrm{ppm}(+, 2 \times$ $\left.\mathrm{CH}_{3}{ }^{\text {Isopropyl }}\right)$. IR (ATR): $\tilde{\nu}=3347,3052(\mathrm{w}, \mathrm{NH}), 1580,1507$ ($\mathrm{w}, \mathrm{C}=\mathrm{O}$) , $1436(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 1188$ (vs, $\mathrm{C}=\mathrm{P}), 996 \mathrm{~cm}^{-1}(\mathrm{~s}$, $\mathrm{C}=\mathrm{S}) . \mathrm{MS}(\mathrm{FAB}, 3-\mathrm{NBA}): m / z(\%)=550(100)\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 549 (28) [M] ${ }^{+}$. HRMS (FAB, 3-NBA C ${ }_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1}$, [M $+\mathrm{H}]^{+}$) calcd: 550.1718; found: 550.1719. EA

16b

16 c

Figure 4. UV spectra of $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure 5. Optimized geometries of the studied complexes along with the energy difference (ΔE) between the investigated complex (E) and the most stable one $\left(E_{1}\right)$.
$\left(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd: C, 69.93; H, 5.14; N, 7.65; O, 5.82; P, 5.64; S, 5.83. Found: C, 69.95; H, 5.16; N, 7.63; O, 5.80; P, 5.62; S, 5.81.
3.1.1.5. (E)-N-Cyclopropyl-2-(1,4-dioxo-3-(triphenyl- λ^{5} -phosphaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)-hydrazine-1-carbothioamide (15e). $\boldsymbol{R}_{\mathrm{f}}=0.24$ (cyclohexane/ ethyl acetate; $4: 1)$. Violet crystals (MeOH), $0.426 \mathrm{~g}(78 \%)$. mp: 205-207 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=$
$13.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H^{1}\right), 8.41-8.14\left(\mathrm{~m}, 4 \mathrm{H}, H^{\mathrm{Ar}}\right), 8.11-7.80(\mathrm{~m}$, $\left.3 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.80-7.43\left(\mathrm{~m}, 12 \mathrm{H}, H^{\mathrm{Ar}}\right), 5.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} H^{2}\right), 2.83-$ $2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\text {Cyclopropyl }}\right), 0.71-0.51 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2}{ }^{\text {Cyclopropyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta_{\mathrm{C}}=$ $183.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 183.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 178.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 141.9\left(\mathrm{C}_{\mathrm{q}}\right.$, $\mathrm{C}=\mathrm{N})$, $137.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $137.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $134.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $134.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 134.2\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.6(+$, $\left.C H^{\mathrm{Ar}}\right)$, $132.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.0\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.9\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.6$ $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.0\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.8\left(+, C^{\mathrm{Ar}}\right), 128.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.5\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 126.5$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $125.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $124.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $25.8(+$, $\left.\mathrm{CH}^{\text {Cyclopropyl }}\right)$, $6.5 \mathrm{ppm}\left(-, 2 \times \mathrm{CH}_{2}{ }^{\text {Cyclopropyl }}\right)$. IR (ATR): $\tilde{\nu}=$ 3342, 3050 (w, NH), 1580, 1511 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$), $1432(\mathrm{~s}, \mathrm{C}=\mathrm{N})$, $1186(\mathrm{~s}, \mathrm{C}=\mathrm{P}), 996 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{S})$. MS (FAB, 3-NBA): m / z (\%) = 548 (100) $[\mathrm{M}+\mathrm{H}]^{+}$, 547 (35) [M] ${ }^{+}$. HRMS (FAB, 3NBA, $\left.\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}+\mathrm{H}]^{+}\right)$calcd: 548.1562; found: 548.1563. EA $\left(\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd: C, 70.19; H, 4.79; N, 7.67; O, 5.84; P, 5.66; S, 5.85. Found: C, 70.17; H, 4.81; N, 7.69; O, 5.82; P, 5.64; S, 5.83.
3.1.1.6. (E)-N-Butyl-2-(1,4-dioxo-3-(triphenyl- λ^{5}-phospha-neylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazine-1-carbothioamide (15f). $\boldsymbol{R}_{\mathrm{f}}=0.28$ (cyclohexane/ethyl acetate; 4:1). Violet crystals (MeOH), 0.450 g (80%). mp: 195-197 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta_{\mathrm{H}}=13.18(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NH} H^{1}\right), 8.10-8.00\left(\mathrm{~m}, 2 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.66-7.55\left(\mathrm{~m}, 8 \mathrm{H}, H^{\mathrm{Ar}}\right)$, $7.28-7.24\left(\mathrm{~m}, 9 \mathrm{H}, H^{\mathrm{Ar}}\right), 6.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{2}\right), 3.58(\mathrm{dd}, J=7.7$, $\left.1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\text {butyl }}\right) 1.60-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {butyl }}\right), 1.35-1.26$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\text {butyl }}\right), 1.02-0.99 \mathrm{ppm}\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{\text {butyl }}\right) .{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta_{\mathrm{C}}=186.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, $185.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 178.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 142.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right), 135.1\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right), 134.6\left(\mathrm{C}_{\mathrm{q}}, C^{\text {Ar }}\right)$, $134.1\left(\mathrm{C}_{\mathrm{q}}, C^{\text {Ar }}\right)$, $132.7\left(+, \mathrm{CH}^{\text {Ar }}\right)$, 132.6 $\left(+, C H^{\mathrm{Ar}}\right), 132.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.7\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.3(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $131.1\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.7\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 130.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $130.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.4(+$, $\left.C H^{\mathrm{Ar}}\right)$, $129.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 128.7\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $127.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $127.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right), 44.6\left(-, \mathrm{CH}_{2}{ }^{\text {butyl }}\right)$, $30.4(-$, $\left.\mathrm{CH}_{2}{ }^{\text {butyl }}\right), 20.1\left(-, \mathrm{CH}_{2}{ }^{\text {butyl }}\right), 14.0 \mathrm{ppm}\left(+, \mathrm{CH}_{3}{ }^{\text {butyl }}\right)$. IR (ATR): $\tilde{\nu}=3340,3053(\mathrm{w}, \mathrm{NH}), 1586,1521(\mathrm{~m}, \mathrm{C}=\mathrm{O})$, 1434 (vs, C=N), 1170 ($\mathrm{s}, \mathrm{C}=\mathrm{P}$), $992 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{C}=\mathrm{S}) . \mathrm{MS}$ ($\mathrm{FAB}, 3-\mathrm{NBA}$): $m / z(\%)=564$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 563$ (30) [M] ${ }^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}_{1}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}+\mathrm{H}]^{+}$) calcd: 564.1875; found: 564.1873. EA $\left(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)$ calcd:

(ii)

Figure 6. Views of (i) HSs mapped over the $d_{\text {norm }}$ property; the labels 1, 2, 3, and 4 represent $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}, \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$, and $\mathrm{N} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{N}$ contacts, respectively; and (ii) 2D fingerprint plots for the interactions above. $70.34 ; \mathrm{H}, 5.38 ; \mathrm{N}, 7.44 ; \mathrm{O}, 5.66 ; \mathrm{P}, 5.52 ; \mathrm{S}, 5.67$.
3.1.2. General Procedure for the Synthesis of Complexes $16 a-f$. A mixture of $\mathbf{1 5 a - f}\left(1.00 \mathrm{mmol}, 1.00\right.$ equiv) with CuCl_{2}.

Figure 7. HSs mapped over the shape index and curvedness properties.
$2 \mathrm{H}_{2} \mathrm{O}\left(0.170 \mathrm{~g}\right.$, $1.00 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Ph}_{3} \mathrm{P}(0.262 \mathrm{~g}$, $1.00 \mathrm{mmol}, 1.00$ equiv) in 40 mL of absolute EtOH was stirred at room temperature for about $2-4 \mathrm{~h}$ (the reaction was monitored by thin-layer chromatography). After removal of the solvent under reduced pressure, the crude product was purified by column chromatography using EtOAc/hexane (5:1) to afford compounds 16a-f.
3.1.2.1. (E)-(2-(1,4-Dioxo-3-(triphenyl- λ^{5}-phosphaneyli-dene)-3,4-dihydronaphthalen-2(1H)-ylidene)-1(ethylcarbamothioyl)hydrazineyl) ((triphenyl- $\lambda^{5}-$ phosphaneyl)oxy)copper (16a). $\boldsymbol{R}_{\mathrm{f}}=0.35$ (cyclohexane/ ethyl acetate; 4:1). Deep blue crystals (MeOH), 0.718 g (82\%). mp: $250-252{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathbf{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=7.73-7.65\left(\mathrm{~m}, 15 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.64-7.58(\mathrm{~m}$, $\left.6 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.56-7.50\left(\mathrm{~m}, 13 \mathrm{H}, H^{\mathrm{Ar}}\right), 5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.05(\mathrm{q}$, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {ethyl }}\right), 1.20 \mathrm{ppm}(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}{ }^{\text {ethyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta_{\mathrm{C}}=170.0$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 169.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 165.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 143.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $137.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right), 134.1\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.6\left(\mathrm{C}_{q}, \mathrm{C}^{\mathrm{Ar}}\right)$, 133.5 $\left(\mathrm{C}_{q}, \mathrm{C}^{\mathrm{Ar}}\right), 133.3\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.9\left(+, 6 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.8(+$, $\left.6 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.7\left(+, 6 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.6\left(+, 6 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.1(+$, $\left.3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.0\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 128.6\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\mathrm{Ar}}\right)$, $128.5\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.3 \times \mathrm{C}^{\mathrm{Ar}}\right), 39.0\left(-, \mathrm{CH}_{2}^{\text {ethyl }}\right), 13.6 \mathrm{ppm}\left(+, \mathrm{CH}_{3}^{\text {ethyl }}\right)$. IR (ATR): $\tilde{\nu}=3054(\mathrm{w}, \mathrm{NH}), 1576,1505(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1482(\mathrm{~s}, \mathrm{C}=\mathrm{N})$, 1178 ($\mathrm{s}, \mathrm{C}=\mathrm{P}$), 1019 (m, $\mathrm{P}=\mathrm{O}$), 995 ($\mathrm{s}, \mathrm{C}=\mathrm{S}$), 536 ($\mathrm{s}, \mathrm{Cu}-$ N), $457 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. MS (FAB, 3-NBA): $m / z(\%)=875$ (65) $[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{49} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1}$, $[\mathrm{M}]^{+}$) calcd: 875.1562; found: 875.1563. EA $\left(\mathrm{C}_{49} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 67.15; H, 4.60; $\mathrm{Cu}, 7.25 ; \mathrm{N}$, 4.79; O, 5.48; P, 7.07; S, 3.66. Found: C, 67.17; H, 4.62; Cu, 7.23; N, 4.77; O, 5.50; P, 7.05; S, 3.64.
3.1.2.2. (E)-(1-(Allylcarbamothioyl)-2-(1,4-dioxo-3-(tri-phenyl- λ^{5}-phosphaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazineyl) ((triphenyl- λ^{5}-phosphaneyl)oxy)copper (16b). $\boldsymbol{R}_{\mathrm{f}}=0.33$ (cyclohexane/ethyl acetate; 4:1). Deep blue crystals (MeOH), $0.745 \mathrm{~g}(84 \%)$. mp: $244-246^{\circ} \mathrm{C}$ (decomp). ${ }^{1}$ H NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=7.83-7.70$ $\left(\mathrm{m}, 12 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.67-7.57\left(\mathrm{~m}, 4 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.56-7.49(\mathrm{~m}, 12 \mathrm{H}$, $\left.H^{\text {Ar }}\right), 7.45-7.27\left(\mathrm{~m}, 6 \mathrm{H}, H^{\text {Ar }}\right), 6.02-5.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\text {allyl }}\right)$, $5.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.35-5.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {allyl }}\right), 4.42-3.91 \mathrm{ppm}$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {allyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right): \delta_{\mathrm{C}}=$ $172.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 172.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 167.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 144.4\left(\mathrm{C}_{\mathrm{q}}\right.$, $\mathrm{C}=\mathrm{N})$, $138.6\left(\mathrm{C}_{q}, \mathrm{C}^{\mathrm{Ar}}\right)$, $134.6\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.5\left(\mathrm{C}_{q}, \mathrm{C}^{\mathrm{Ar}}\right)^{q}$, $134.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right), 133.8\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 133.3\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.7\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.4\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.5\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $130.5\left(+, \mathrm{CH}^{\text {allyl }}\right), 129.9\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.7\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.5\left(+, 2 \times C H^{\mathrm{Ar}}\right), 129.4\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right), 128.3\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.4\left(+, 2 \times C^{\mathrm{Ar}}\right), 126.5\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\mathrm{Ar}}\right)$, $125.2\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\mathrm{Ar}}\right)$, $116.3\left(-, \mathrm{CH}_{2}{ }^{\text {allyl }}\right), 46.6 \mathrm{ppm}\left(-, \mathrm{CH}_{2}{ }^{\text {allyl }}\right)$. IR (ATR): $\tilde{\nu}=$ 3055 (w, NH), 1572, 1503 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1483 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 1187
($\mathrm{s}, \mathrm{C}=\mathrm{P}$), 1017 (vs, $\mathrm{P}=\mathrm{O}$), 1000 (vs, $\mathrm{C}=\mathrm{S}$), 557 (vs, $\mathrm{Cu}-$ N), $432 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. MS (FAB, 3-NBA): $m / z(\%)=887$ (60) $[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, $\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1}$, $\left.[\mathrm{M}]^{+}\right)$calcd: 887.1562; found: 887.1563. EA $\left(\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 67.60; H, 4.54; Cu, 7.15; N, 4.73; O, 5.40; P, 6.97; S, 3.61. Found: C, 67.58; H, 4.56; Cu, 7.17; N, 4.71; O, 5.38; P, 6.95; S, 3.63.
3.1.2.3. (E)-(1-(Benzylcarbamothioyl)-2-(1,4-dioxo-3-(tri-phenyl- λ^{5}-phosphaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazineyl) ((triphenyl- λ^{5}-phosphaneyl)oxy)copper (16c). $\boldsymbol{R}_{\mathrm{f}}=0.36$ (cyclohexane/ethyl acetate; $4: 1$). Deep blue crystals (MeOH), 0.872 g (93%). mp: $262-264{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta_{\mathrm{H}}=8.25-7.75$ $\left(\mathrm{m}, 4 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.74-7.62\left(\mathrm{~m}, 15 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.61-7.39(\mathrm{~m}, 15 \mathrm{H}$, $\left.H^{\text {Ar }}\right), 7.38-7.07\left(\mathrm{~m}, 5 \mathrm{H}, H^{\text {Ar }}\right), 5.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.36-4.23$ $\mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {benzyl }}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathbf{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, acetone$\left.d_{6}\right): \delta_{\mathrm{C}}=172.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 172.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 170.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right)$, $143.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $137.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right)$, $134.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $134.4\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right), 133.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.5$ $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.1\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.9\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 131.2(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $130.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.8\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.7\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.4\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.9\left(+, \mathrm{CH}^{\mathrm{Ar})}\right.$, $128.3\left(+, 2 \times C^{\mathrm{Ar}}\right)$, $128.2\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.7\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $127.1\left(+, 2 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $126.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 126.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 126.1$ $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 125.9\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 125.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 125.3\left(\mathrm{C}_{\mathrm{q}}, 3 \times\right.$ $\left.C^{\text {Ar }}\right), 125.2\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\text {Ar }}\right), 46.3 \mathrm{ppm}\left(-, \mathrm{CH}_{2}{ }^{\text {benzyl }}\right)$. IR (ATR): $\tilde{\nu}=3077(\mathrm{w}, \mathrm{NH}), 1577,1514(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1480(\mathrm{~s}, \mathrm{C}=\mathrm{N})$, 1157 (vs, $\mathrm{C}=\mathrm{P}$), 1017 (vs, $\mathrm{P}=\mathrm{O}$), 999 ($\mathrm{s}, \mathrm{C}=\mathrm{S}$), 548 (vs, $\mathrm{Cu}-\mathrm{N}$), $453 \mathrm{~cm}^{-1}$ (vs, $\mathrm{Cu}-\mathrm{O}$). MS (FAB, 3-NBA): m / z (\%) $=937(75)[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, C $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1}$, [M^{+}) calcd: 937.1718; found: 937.1719. EA $\left(\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 69.11; H, 4.51; Cu, 6.77; N, 4.48; O, 5.11; P, 6.60; S, 3.42. Found: C, 67.11; H, 4.53; Cu, 6.79; N, 4.50; O, 5.13; P, 6.58; S, 3.44.
3.1.2.4. (E)-(2-(1,4-Dioxo-3-(triphenyl- λ^{5}-phosphaneyli-dene)-3,4-dihydronaphthalen-2(1H)-ylidene)-1(isopropylcarbamothioyl)hydrazineyl) ((triphenyl- λ^{5} phosphaneyl)oxy)copper (16d). $\boldsymbol{R}_{\mathrm{f}}=0.31$ (cyclohexane/ ethyl acetate; 4:1). Deep blue crystals (MeOH) , 0.712 g (80\%). mp: $268-270{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=7.78-7.68\left(\mathrm{~m}, 13 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.63-7.57\left(\mathrm{~m}, 6 \mathrm{H}, H^{\mathrm{Ar}}\right)$, 7.56-7.47 (m, 15H, H ${ }^{\text {Ar }}$), 5.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 4.14-3.85 (m, $\left.1 \mathrm{H}, \mathrm{CH}^{\text {lsopropyl }}\right), 1.45-1.23 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}^{\text {Isopropyl }}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta_{\mathrm{C}}=173.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, $172.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 170.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 144.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $135.2\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right), 134.1\left(C_{q}, C^{\text {Ar }}\right), 133.7\left(C_{q}, C^{\text {Ar }}\right), 133.4\left(+, C^{\text {Ar }}\right), 132.8$ $\left(+, 5 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.7\left(+, 5 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.6\left(+, 5 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.5$ $\left(+, 5 \times C H^{\mathrm{Ar}}\right), 132.4\left(+, C H^{\mathrm{Ar}}\right)$, $130.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.8(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right), 129.5\left(+, 5 \times \mathrm{CH}^{\mathrm{Ar}}\right), 129.3\left(+, 5 \times \mathrm{CH}^{\mathrm{Ar}}\right), 127.0\left(\mathrm{C}_{\mathrm{q}}, 3 \times\right.$ $\left.C^{\text {Ar }}\right), 126.7\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\text {Ar }}\right), 46.4\left(+, \mathrm{CH}^{\text {Isopropyl }}\right), 22.7 \mathrm{ppm}(+, 2 \times$ $\left.\mathrm{CH}_{3}^{\text {Isopropyl }}\right)$. IR (ATR): $\tilde{\nu}=3051(\mathrm{w}, \mathrm{NH}), 1589,1513(\mathrm{~m}$, $\mathrm{C}=\mathrm{O}$), 1483 ($\mathrm{s}, \mathrm{C}=\mathrm{N}$), 1163 ($\mathrm{s}, \mathrm{C}=\mathrm{P}$), 1026 ($\mathrm{w}, \mathrm{P}=\mathrm{O}$), 996 (m, C=S), 537 (vs, $\mathrm{Cu}-\mathrm{N}$), $449 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. MS (FAB, 3-NBA): $m / z(\%)=889$ (55) [M] ${ }^{+}$. HRMS (FAB, 3NBA, $\left.\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}]^{+}\right)$calcd: 889.1713; found: 889.1716. - EA $\left(\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 67.44; $\mathrm{H}, 4.75$; $\mathrm{Cu}, 7.14$; N, 4.72; O, 5.39; P, 6.96; S, 3.60. Found: C, 67.42; H, 4.77; Cu, 7.16; N, 4.70; O, 5.41; P, 6.98; S, 3.62.
3.1.2.5. (E)-(1-(Cyclopropylcarbamothioyl)-2-(1,4-dioxo-3-(triphenyl- λ^{5}-phosphaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazineyl) ((triphenyl- λ^{5}-phosphaneyl)oxy)copper (16e). $R_{\mathrm{f}}=0.32$ (cyclohexane/ethyl acetate; 4:1). Deep blue crystals (MeOH), $0.763 \mathrm{~g}(86 \%) . \mathrm{mp}: 249-251^{\circ} \mathrm{C}$
(decomp). ${ }^{1} \mathbf{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=8.16-7.84$ $\left(\mathrm{m}, 13 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.77-7.65\left(\mathrm{~m}, 6 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.63-7.41(\mathrm{~m}, 15 \mathrm{H}$, $\left.H^{\text {Ar }}\right), 5.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.44-1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\text {Cyclopropyl }}\right)$, $0.95-0.79 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}{ }^{\text {Cyclopropyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left(101 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta_{\mathrm{C}}=176.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 176.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right)$, $169.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right)$, $144.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\mathrm{N}\right)$, $135.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\text {Ar }}\right)$, $135.1\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.C^{\text {Ar }}\right)$, $135.0\left(\mathrm{C}_{q}, C^{\text {Ar }}\right)$, $134.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.7\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.6\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.2\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.1\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.0\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 133.4\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.9(+$, $\left.4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.8\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right), 132.7\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.6(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right), 132.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.3\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $129.8\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.6\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.5\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.4(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right)$, $127.2\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $125.5\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\mathrm{Ar}}\right)$, $124.6\left(\mathrm{C}_{\mathrm{q}}, 3 \times\right.$ $\left.\mathrm{C}^{\text {Ar }}\right), 23.3\left(+, \mathrm{CH}^{\text {Cyclopropyl }}\right), 8.9 \mathrm{ppm}\left(-, 2 \times \mathrm{CH}_{2}^{\text {Cyclopropyl }}\right)$. IR (ATR): $\tilde{\nu}=3056(\mathrm{w}, \mathrm{NH}), 1575,1496(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1483(\mathrm{~m}$, $\mathrm{C}=\mathrm{N}), 1179(\mathrm{vs}, \mathrm{C}=\mathrm{P}), 1020(\mathrm{~s}, \mathrm{P}=\mathrm{O}), 997(\mathrm{~s}, \mathrm{C}=\mathrm{S}), 540$ (vs, $\mathrm{Cu}-\mathrm{N}$), $460 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. MS (FAB, 3-NBA): m / z $(\%)=887$ (70) $[M]^{+}$. HRMS (FAB, 3-NBA, $\left.\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}]^{+}\right)$calcd: 887.1562; found: 887.1563. EA $\left(\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 67.60; H, 4.54; $\mathrm{Cu}, 7.15$; N, 4.73; O, 5.40; P, 6.97; S, 3.61. Found: C, 67.62; H, 4.52; Cu, 7.13; N, 4.75; O, 5.42; P, 6.99; S, 3.59.
3.1.2.6. (E)-(1-(Butylcarbamothioyl)-2-(1,4-dioxo-3-(tri-phenyl- λ^{5}-phosphaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)hydrazineyl) ((triphenyl- λ^{5}-phosphaneyl)oxy)copper ($16 f$). $R_{\mathrm{f}}=0.34$ (cyclohexane/ethyl acetate; 4:1). Deep blue crystals (MeOH) , 0.795 g (88%). mp: $257-259{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathbf{H}$ NMR (400 MHz , acetone- d_{6}): $\delta_{\mathrm{H}}=\delta 8.33-$ $7.99\left(\mathrm{~m}, 13 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.89-7.79\left(\mathrm{~m}, 6 \mathrm{H}, H^{\mathrm{Ar}}\right), 7.75-7.54(\mathrm{~m}$, $\left.15 \mathrm{H}, H^{\mathrm{Ar}}\right), 5.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.83-3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\text {butyl }}\right)$ $1.47-1.23\left(\mathrm{~m}, 4 \mathrm{H} 2 \times \mathrm{CH}_{2}{ }^{\text {Butyl }}\right), 0.93-0.76 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}{ }^{\text {Butyl }}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz , acetone- d_{6}): $\delta_{\mathrm{C}}=173.72$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 173.58\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CO}\right), 171.08\left(\mathrm{C}_{\mathrm{q}}, \mathrm{CS}\right), 143.61\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}=\right.$ $\mathrm{N})$, $136.17\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $135.96\left(\mathrm{C}_{q}, \mathrm{C}^{\mathrm{Ar}}\right)$, $135.71\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}^{\mathrm{Ar}}\right)$, $135.50\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 135.36\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 135.34\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $135.16\left(+, 3 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $135.12\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $135.03\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.43\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $134.01\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.50\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $133.02\left(+, 4 \times \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.64\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.50\left(+, \mathrm{CH}^{\mathrm{Ar}}\right)$, $132.31\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 132.12\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.67\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.37$ $\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 131.16\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.82\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 130.48(+$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right), 130.27\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.83\left(+, \mathrm{CH}^{\mathrm{Ar}}\right), 129.35\left(\mathrm{C}_{\mathrm{q}}, 3 \times\right.$ $\left.C^{\text {Ar }}\right), 128.81\left(\mathrm{C}_{\mathrm{q}}, 3 \times \mathrm{C}^{\mathrm{Ar}}\right), 44.9\left(-, \mathrm{CH}_{2}{ }^{\text {Butyl }}\right), 30.9(-$, $\left.\mathrm{CH}_{2}{ }^{\text {Butyl }}\right), 20.5\left(-, \mathrm{CH}_{2}{ }^{\text {Butyl }}\right), 14.4 \mathrm{ppm}\left(+, \mathrm{CH}_{3}{ }^{\text {Butyl }}\right)$. IR (ATR): $\tilde{\nu}=3063(\mathrm{w}, \mathrm{NH}), 1572,1494$ (m, C=O), 1466 (s , $\mathrm{C}=\mathrm{N}$), 1159 (vs, $\mathrm{C}=\mathrm{P}$), 1013 (vs, $\mathrm{P}=\mathrm{O}$), 1013 (vs, $\mathrm{C}=\mathrm{S}$), 547 (vs, $\mathrm{Cu}-\mathrm{N}$), $455 \mathrm{~cm}^{-1}(\mathrm{~s}, \mathrm{Cu}-\mathrm{O})$. MS ($\mathrm{FAB}, 3-\mathrm{NBA}$): $m / z(\%)=903(50)[\mathrm{M}]^{+}$. HRMS (FAB, 3-NBA, $\left.\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2}{ }^{32} \mathrm{~S}_{1},[\mathrm{M}]^{+}\right)$calcd: 903.1875; found: 903.1876. EA $\left(\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{CuN}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}\right)$ calcd: C, 67.72; H, 4.90; $\mathrm{Cu}, 7.03$; N, 4.65; O, 5.31; P, 6.85; S, 3.54. Found: C, 67.74; H, 4.92; Cu, 7.05; N, 4.63; O, 5.29; P, 6.85; S, 3.52.
3.1.3. Crystal Structure Determinations of 15 c and 15 f . The single-crystal X-ray diffraction study was carried out on the Bruker D8 Venture diffractometer with a PhotonII detector at $123(2) \mathrm{K}$ or $298(2) \mathrm{K}$ using $\mathrm{Cu}-\mathrm{Ka}$ radiation ($l=1.54178$ \AA). Dual space methods (SHELXT) ${ }^{35}$ were used for the structure solution, and refinement was carried out using the SHELXL-2014 (full-matrix least-squares on F^{2}). ${ }^{36}$ Hydrogen atoms were refined using a riding model $(\mathrm{H}(\mathrm{N})$ for 15 c free). Semi-empirical absorption corrections were applied. Compound $\mathbf{1 5 f}$ was refined as a twin with 2 domains; both n-propyl and one n-butyl moiety are disordered (see cif-file for details).

15 c : colourless crystals, $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}, M_{\mathrm{r}}=597.64$, crystal size: $0.18 \times 0.06 \times 0.03 \mathrm{~mm}$, triclinic, space group $P \overline{1}$ (no. 2), $a=9.4615(5) \AA, b=12.2923(6) \AA, c=14.1043(7) \AA, \alpha=$ $\left.77.301(2)^{\circ}, \beta=70.645(2)^{\circ}, \gamma=74.755 / 2\right)^{\circ}, V=1477.26(13)$ $\AA^{3}, Z=2, \rho=1.344 \mathrm{Mg} / \mathrm{m}^{-3}, \mu\left(\mathrm{Cu}-\mathrm{K}_{\alpha}\right)=1.79 \mathrm{~mm}^{-1}, F(000)$ $=624, T=123 \mathrm{~K}, 2 \theta_{\max }=144.6^{\circ}, 28,101$ reflections, of which 5812 were independent ($R_{\text {int }}=0.025$), 394 parameters, 2 restraints, $R_{1}=0.031$ (for $5558 I>2 \sigma(I)$), $\mathrm{w} R_{2}=0.084$ (all data), $S=1.05$, largest diff. peak/hole $=0.47 /-0.28$ e \AA^{-3}.

15f: colourless crystals, $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS} \cdot \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}, M_{\mathrm{r}}$ $=1113.23$, crystal size: $0.18 \times 0.12 \times 0.03 \mathrm{~mm}$, triclinic, space group $P \overline{1}$ (no. 2), $a=18.6988(5) \AA, b=18.8744(5) \AA, c=$ 20.8063/6) $\AA, \alpha=103.938(2)^{\circ}, \quad \beta=103.303(2)^{\circ}, \gamma=$ $116.775(2)^{\circ}, V=5856.8(3) \AA^{3}, Z=4, \rho=1.262 \mathrm{Mg} / \mathrm{m}^{-3}$, $\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=176 \mathrm{~mm}^{-1}, F(000)=2336, T=298 \mathrm{~K}, 2 \theta_{\max }=$ $144.6^{\circ}, 96,411$ collected data, merged to 23,046 unique reflections (using a HKLF5 file), 1411 parameters, 2775 restraints (see cif-file for details), $R_{1}=0.065$ (for $18,260 I>$ $2 \sigma(I)), \mathrm{w} R_{2}=0.211$ (all data), $S=1.03$, largest diff. peak/hole $=0.95 /-0.47 \mathrm{e}^{-3}$.

CCDC 2182411 ($\mathbf{1 5 c}$) and 2182412 (15f) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.

4. COMPUTATIONAL METHODS

4.1. Geometrical Optimization and Energy Calcula-
tions. Various quantum mechanical calculations were carried out to confirm the experimental results. The studied complexes were first optimized at the B3LYP/6-31G* level of theory. ${ }^{37,38}$ The vibrational frequency and single-point energy calculations were performed upon the optimized geometries. All the adopted quantum mechanical calculations were executed at the B3LYP/6-31G* level of theory with the help of Gaussian 09 software. ${ }^{39}$
4.2. HS Analysis. In the current study, HS analysis ${ }^{40}$ was executed to give an in-depth qualitative insight into the role of the main intermolecular interactions. Using HS analysis, the normalized contact distance $\left(d_{\text {norm }}\right)$ surface was mapped over a fixed color scale ranging from red $(-0.05 \mathrm{au})$ to blue (+0.75 $\mathrm{au})$. The fingerprint plots were generated using the translated $1.0-2.8 \AA$ range, and reciprocal contacts were considered. Moreover, the shape index and curvedness properties were mapped with the color range of -1.0 au (concave) to 1.0 au (convex) and a range of -4.0 au (flat) to 0.40 au (singular), respectively. The generated HS s and the associated 2D fingerprint plots were extracted using the CrystalExplorer17 software. ${ }^{41}$

5. CONCLUSION

New (E)-2-(1,4-dioxo-3-(triphenylphosphaneylidene)-3,4-di-hydronaphthalen-ylidene)- N -substituted-hydrazine-1-carbothioamides were obtained during a one-pot reaction of 2,3-dichloro-1,4-naphthoquinone with thiosemicarbazides, triphenylphosphine $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ in the presence of triethyl amine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ as a catalyst. The reaction was a type of Eschenmoser nucleophilic addition. Utilizing the newly prepared ligands, their complexation with CuCl_{2} and $\mathrm{Ph}_{3} \mathrm{P}$ was investigated. Autoxidation occurs, and (E)-(2-(1,4-dioxo-3-(triphenyl-phos-phaneylidene)-3,4-dihydronaphthalen-2(1H)-ylidene)-carbamothioyl)hydrazinyl)-((triphenylphosphanyl)oxy)copper
derivatives were formed in very good yields. Quantum mechanical calculations using the DFT method confirmed the stability of the obtained complexes..

■ ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c04113.

NMR (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR), IR, and mass spectra, in addition to HRMS spectra of compounds 15a-f and 16a-f; figures of UV Spectra of compounds 16a-f; and Xray figures and structural data and of compounds $\mathbf{1 5 c}$ and $\mathbf{1 5 f}$ (PDF)

- AUTHOR INFORMATION

Corresponding Authors

Ashraf A. Aly - Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt; © orcid.org/ 0000-0002-0314-3408; Email: ashrafaly63@yahoo.com, ashraf.shehata@mu.edu.eg
Stefan Bräse - Institute of Organic Chemistry, Karlsruher Institut fur Technologie, 76131 Karlsruhe, Germany; Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 EggensteinLeopoldshafen, Germany; © orcid.org/0000-0003-48453191; Email: braese@kit.edu

Authors

Mohammed B. Alshammari - Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij 11942, Saudi Arabia
Martin Nieger - Martin Nieger, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
Mahmoud A. A. Ibrahim - Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt; © orcid.org/0000-0003-4819-2040
Lamiaa E. Abd El-Haleem - Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c04113

Author Contributions

CRediT authorship contribution statement. Mohammed B. Alshammari: editing and revision, Ashraf A. Aly: Conceptualization, writing, and editing, Stefan Bräse: Editing and revision. Martin Nieger: X-ray, Methodology, and editing, Mahmoud A. A. Ibrahim: Software, writing a draft, and editing. Lamiaa E. Abd El-Haleem: Conceptualization, writing, editing, methodology, and writing the draft.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank the DFG-funded coordinative research center TR88/3MET, Karlsruhe Institute of Technology, Karlsruhe, Germany, for providing Prof A.A.A. with a two months project, enabling him to carry out analysis and facilities. We also acknowledge support from the KITPublication Fund of the Karlsruhe Institute of Technology.

REFERENCES

(1) Aithal, K. B.; Kumar, M. R. S.; Rao, B. N.; Udupa, N.; Rao, B. S. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int. 2009, 33, 1039-1049.
(2) Kosiha, A.; Parthiban, C.; Ciattini, S.; Chelazzi, L.; Elango, K. P. Metal complexes of naphthoquinone based ligand: synthesis, characterization, protein binding, DNA binding/cleavage and cytotoxicity studies. J. Biomol. Struct. Dyn. 2018, 36, 4170-4181.
(3) Geisler, H.; Westermayr, J.; Cseh, K.; Wenisch, D.; Fuchs, V.; Harringer, S.; Plutzar, S.; Gajic, N.; Hejl, M.; Jakupec, M. A.; Marquetand, P.; Kandioller, W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg. Chem. 2021, 60, 9805-9819.
(4) Zhivetyeva, S. I.; Zakharova, O. D.; Ovchinnikova, L. P.; Baev, D. S.; Bagryanskaya, I. Y.; Shteingarts, V. D.; Tolstikova, T. G.; Nevinsky, G. A.; Tretyakov, E. V. Phosphonium betaines derived from hexafluoro-1,4-naphthoquinone: Synthesis and cytotoxic and antioxidant activities. J. Fluorine Chem. 2016, 192, 68-77.
(5) Ramirez, F.; Dershowitz, S. The Structure of Quinone-Donor Adducts. I. The Action of Triphenylphosphine on p-Benzoquinone, 2,5-Dichloro-p-benzoquinone and Chloranil. J. Am. Chem. Soc. 1956, 78, 5614-5622.
(6) Loskustov, V. A.; Mamatyuk, V. I.; Beregovaya, I. V. The structure and properties of 3-(triphenylphosphoranylidene)-naphthalene-1,2,4(3H)-trione. Russ. Chem. Bull. 1999, 48, 371-374.
(7) Khasiyatullina, N. R.; Gubaidullin, A. T.; Shinkareva, A. M.; Islamov, D. R.; Mironov, V. F. New bisphosphonium salt containing a 1,4-dihydroxynaphthalene moiety: molecular and supramolecular structure. Russ. Chem. Bull. 2020, 69, 2140-2146.
(8) Huang, W.; Zhong, C.-H. Metal-Free Synthesis of Aryltriphenylphosphonium Bromides by the Reaction of Triphenylphosphine with Aryl Bromides in Refluxing Phenol. ACS Omega 2019, 4, 66906696.
(9) Khalafy, J.; Mohammadlou, M.; Mahmoody, M.; Salami, F.; Poursattar Marjani, A. P. Facile synthesis of new 10 -substituted-5Hnaphtho $[1,2-\mathrm{e}][1,2,4]$ triazolo[3,4-b][1,3,4] thiadiazin-5-ones. Tetrahedron Lett. 2015, 56, 1528-1530.
(10) Al-Alshaikh, M. A.; Lahsasni, S. A. Synthesis of Novel 2,3Disubstituted 1,4-Naphthoquinone Derivatives Containing Indole, Quinoline, Thiazole and Imidazole Moieties. Asian J. Chem. 2013, 25, 10199.
(11) Forezi, L. da S. M.; Cardoso, M. F. C.; Costa, D. C. S.; Silva, F. de C. d.; Ferreira, V. F. 2,3-Dichloro-1,4-Naphthoquinone in Organic Synthesis: Recent Advances. Mini-Rev. Org. Chem. 2017, 14, 375390.
(12) Aly, A. A.; Hassan, A. A.; AbdEl-latief, E.-S. S. M.; El-Sh, S. M. An Update of the Use of Thiocarbohydrazides and Thiosemicarbazides in the Preparation of Heterocycles and Their Biological Importance. J. Heterocycl. Chem. 2018, 55, 2196-2223.
(13) Choudhari, D.; Lande, D. N.; Chakravarty, D.; Gejji, S. P.; Das, P.; Pardesi, K. R.; Satpute, S.; Salunke-Gawali, S. Reactions of 2,3-dichloro-1,4-naphthoquinone with aminophenols: evidence for hydroxy benzophenoxazine intermediate and antibacterial activity. J. Mol. Struct. 2019, 1176, 194-206.
(14) Carroll, F. I.; Miller, H. W. The reaction of 2,3-dichloro-1,4naphthoquinone with p-nitrobenzhydrazide. Org. Prep. Proced. 1970, 2, 259-263.
(15) Hergueta, A. R. Easy Removal of Triphenylphosphine Oxide from Reaction Mixtures by Precipitation with CaBr2. Org. Process Res. Dev. 2022, 26, 1845-1853.
(16) Wattanakanjana, Y.; Janwatthana, K.; Romyen, T.; NimthongRoldán, A. Crystal structures of copper(I) and silver(I) chloride complexes containing 4 -phenylthiosemicarbazide and triphenylphosphine ligands. ScienceAsia 2021, 47S, 28.
(17) Gunasekaran, N.; Bhuvanesh, N. S. P.; Karvembu, R. Synthesis, characterization and catalytic oxidation property of copper(I)
complexes containing monodentate acylthiourea ligands and triphenylphosphine. Polyhedron 2017, 122, 39-45.
(18) Aly, A. A.; Abdallah, E. M.; Ahmed, S. A.; Rabee, M. M.; Abdelhafez, E. M. N. Metal complexes of thiosemicarbazones derived by 2-quinolones with $\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$; Identification by NMR, IR, ESI mass spectra and in silico approach as potential tools against SARS-CoV-2. J. Mol. Struct. 2022, 1265, 133480.
(19) Aly, A. A.; Bräse, S.; Weis, P. Tridentate and bidentate copper complexes of [2.2]paracyclophanyl-substituted thiosemicarbazones, thiocarbazones, hydrazones and thioureas. J. Mol. Struct. 2019, 1178, 311-326.
(20) White, A. R.; Multhaup, G.; Maher, F.; Bellingham, S.; Camakaris, J.; Zheng, H.; Bush, A. I.; Beyreuther, K.; Masters, C. L.; Cappai, R. The Alzheimer's Disease Amyloid Precursor Protein Modulates Copper-Induced Toxicity and Oxidative Stress in Primary Neuronal Cultures. J. Neurosci. 1999, 19, 9170-9179.
(21) Chen, X.; Zhang, X.; Chen, J.; Yang, Q.; Yang, L.; Xu, D.; Zhang, P.; Wang, X.; Liu, J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur. J. Pharmacol. 2017, 815, 147.
(22) Sangeetha, S.; Murali, M. Non-covalent DNA binding, protein interaction, DNA cleavage and cytotoxicity of $[\mathrm{Cu}($ quamol $) \mathrm{Cl}] \cdot \mathrm{H} 2 \mathrm{O}$. Int. J. Biol. Macromol. 2018, 107, 2501-2511.
(23) Hossain, G. M.; Abedin, M. d.; Bachar, S. C. Synthesis and Characterization of N1-Phenylhydrazine-1,2-bis(carbothioamide) and Its Evaluation for Antimicrobial, Antioxidant, and Brine Shrimp Lethality Bioassay. Org. Chem. Int. 2012, 2012, 278741.
(24) Baran, E. J. Structural Data and Vibrational Spectra of the Copper(II) Complex of L-Selenomethionine. Z. Naturforsch. 2005, 60, 663-666.
(25) Casper, J. M.; Remsen, E. E. Phosphoryl stretching frequencies of some tris para-substituted phenylphosphine oxides. Spectrochim. Acta, Part A 1978, 34, 1-4.
(26) Köhler, F. H. Paramagnetic Complexes in Solution: The NMR Approach. eMagRes; John Wiley \& Sons, 2011.
(27) Drago, R. S. Physical Methods in Chemistry, 2nd ed; Saunders College Pub: Philadelphia, 1977.
(28) Gnangnon, B.; Baran, P. Existence or Nonexistence of Cu (II) Complexes with Triphenylphosphine: Abstracts of Papers; 247th ACS National Meeting \& Exposition: Dallas, TX, United States, March 1620, 2014.
(29) Bai, B.; Wang, W.; Wang, W.; Sun, S.; Chen, C. Triphenylphosphine as reducing agent for copper(II)-catalyzed AGET ATRP. Chin. J. Polym. Sci. 2015, 33, 1260-1270.
(30) Toshiyuki, S.; Yoshihiko, F.; Koichiro, S. Synthesis of Copper (I) triphenyl-phosphine complexes. Chem. Lett. 1972, 1, 163-164.
(31) Anitha, K.; Sivakumar, S.; Arulraj, R.; Rajkumar, K.; Kaur, M.; Jasinski, J. P. Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one. Acta Crystallogr., Sect. E: Crystallogr. Commun. 2020, 76, 651655.
(32) Arulraj, R.; Sivakumar, S.; Kaur, M.; Thiruvalluvar, A.; Jasinski, J. P. Crystal structures of three 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones. Acta Crystallogr., Sect. E: Crystallogr. Commun. 2017, 73, 107111.
(33) McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60, 627-668.
(34) McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814-3816.
(35) Sheldrick, G. M. SHELXT- Integrated space-group and crystalstructure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3-8.
(36) Sheldrick, G. M. Crystal structure refinement withSHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
(37) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 30983100.
(38) Lee, C.; Yang, W.; Parr, R. G. Development of the ColleSalvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789.
(39) Frisch, M. J.; Trucks, H. B.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford CT, 2009.
(40) Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
(41) Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17; University of Western Australia, 2017. http://hirshfeldsurface.net.

[^0]: Received: June 30, 2022
 Accepted: August 29, 2022
 Published: September 16, 2022

