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Abstract Difficulties in advancing effective patient-specific therapies for psychiatric disorders

highlight a need to develop a stable neurobiologically grounded mapping between neural and

symptom variation. This gap is particularly acute for psychosis-spectrum disorders (PSD). Here, in a

sample of 436 PSD patients spanning several diagnoses, we derived and replicated a

dimensionality-reduced symptom space across hallmark psychopathology symptoms and cognitive

deficits. In turn, these symptom axes mapped onto distinct, reproducible brain maps. Critically, we

found that multivariate brain-behavior mapping techniques (e.g. canonical correlation analysis) do

not produce stable results with current sample sizes. However, we show that a univariate brain-

behavioral space (BBS) can resolve stable individualized prediction. Finally, we show a proof-of-

principle framework for relating personalized BBS metrics with molecular targets via serotonin and

glutamate receptor manipulations and neural gene expression maps derived from the Allen Human

Brain Atlas. Collectively, these results highlight a stable and data-driven BBS mapping across PSD,

which offers an actionable path that can be iteratively optimized for personalized clinical biomarker

endpoints.

Introduction
Mental health conditions cause profound disability, yet most treatments offer limited efficacy across

psychiatric symptoms (Tohen et al., 2003; McEvoy et al., 2007; aan het Rot et al., 2010;

Cipriani et al., 2018). A key step toward developing more effective therapies for specific psychiatric

symptoms is reliably mapping them onto underlying neural targets. This goal is particularly
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challenging because neuropsychiatric diagnoses and consequently drug development still operate

under ‘legacy’ categorical constraints, which were not quantitatively informed by neural data.

Critically, diagnostic systems in psychiatry (e.g. the Diagnostic and Statistical Manual of Mental

Disorders (DSM) [American Psychiatric Association, 1994]) were built to aid clinical consensus, but

were not designed to guide quantitative mapping of symptoms onto neural alterations

(Phillips et al., 2008; Gillihan and Parens, 2011). Consequently, the current diagnosis system can-

not optimally map onto patient-specific brain-behavioral alterations. This challenge is particularly evi-

dent along the psychosis spectrum disorders (PSD) where there is notable shared symptom variation

across distinct DSM diagnostic categories, including schizophrenia (SZP), schizo-affective (SADP),

bipolar disorder with psychosis (BPP). For instance, despite BPP being a distinct diagnosis, BPP

patients exhibit similar but attenuated psychosis symptoms and neural alterations similar to SZP (e.g.

thalamic functional connectivity (FC) [Anticevic et al., 2014]). It is essential to quantitatively map

such shared clinical variation onto common neural alterations, to circumvent categorical constraints

for biomarker development (Casey et al., 2013; Phillips et al., 2008; Gillihan and Parens, 2011) –

a key goal for development of neurobiologically informed personalized therapies (Anticevic et al.,

2014; Casey et al., 2013).

Recognizing the limitations of categorical frameworks, the NIMH’s Research Domain Criteria

(RDoC) initiative introduced dimensional mapping of functional domains on to neural circuits

(Insel, 2014). This motivated cross-diagnostic multisite studies for mapping PSD symptom and neu-

ral variation (Tamminga et al., 2014; Koutsouleris et al., 2018; Casey et al., 2018; Di Martino

et al., 2014). Multivariate neurobehavioral analyses across PSD and mood spectra reported brain-

behavioral relationships across diagnoses, with the goal of informing individualized treatment

(Drysdale et al., 2017). These studies attempted to address the challenge of moving beyond tradi-

tional a priori clinical scales, which provide composite scores (Cronbach and Meehl, 1955) that may

not optimally capture neural variation (Gillihan and Parens, 2011; Barch et al., 2013). For instance,

despite many data-driven dimensionality-reduction symptom studies (van der Gaag et al., 2006a;

Lindenmayer et al., 1994; Emsley et al., 2003; Dollfus et al., 1996; Blanchard and Cohen, 2006;

Chen et al., 2020; Lefort-Besnard et al., 2018), a common approach in PSD neuroimaging research

is still to sum ‘positive’ or ‘negative’ psychosis symptoms into a single score for relating to neural

measures (Ji et al., 2019a; Anticevic et al., 2014). Importantly, neural alterations in PSD may reflect

a more complex weighted combination of symptoms than a priori composite scores.

While multivariate neurobehavioral studies have a way to address this, such studies face the risk

of failing to replicate due to overfitting (Dinga et al., 2019), arising from high dimensionality of

behavioral and neural features and a comparatively limited number of subjects (Helmer et al.,

2020). Notably, current state-of-the-art large-scale clinical neuroimaging studies have target enroll-

ment totals of ~200–600 subjects (https://www.humanconnectome.org/disease-studies). We there-

fore wanted to test whether a reproducible neurobehavioral geometry can be derived with a sample

size that is on par with current consortia studies in psychiatry.

We hypothesized that a linearly weighted low-dimensional symptom solution (capturing key dis-

ease-relevant information) may produce a robust and reporoducible univariate brain-behavioral map-

ping. Indeed, recent work used dimensionality reduction methods successfully to compute a neural

mapping across canonical SZP symptoms (Chen et al., 2020). However, it remains unknown if this

approach generalizes across PSD. Moreover, it is unknown if incorporating cognitive assessment, a

hallmark and untreated PSD symptom (Barch et al., 2013), explains neural feature variation that is

distinct from canonical PSD symptoms. Finally, prior work has not tested if a low-dimensional symp-

tom-neural mapping can be predictive at the single patient level – a prerequisite for individualized

clinical endpoints.

To inform these gaps, we first tested two key questions: (i) Can data-reduction methods reliably

reveal symptom axes across PSD that include both canonical symptoms and cognitive deficits? (ii)

Do these lower dimensional symptom axes map onto a reproducible brain-behavioral solution across

PSD? Specifically, we combined fMRI-derived resting-state measures with psychosis and cognitive

symptoms (Canuso et al., 2008; Kay et al., 1987) obtained from a public multi-site cohort of 436

PSD patients and 202 healthy individuals collected by the Bipolar-Schizophrenia Network for Inter-

mediate Phenotypes (BSNIP-1) consortium across six sites in North America (Tamminga et al.,

2014). The dataset included included 150 patients formally diagnosed with BPP, 119 patients diag-

nosed SADP, and 167 patients diagnosed with SZP (Appendix 1—table 2). This cohort enabled

Ji et al. eLife 2021;10:e66968. DOI: https://doi.org/10.7554/eLife.66968 2 of 83

Research article Neuroscience

https://www.humanconnectome.org/disease-studies
https://doi.org/10.7554/eLife.66968


cross-site symptom-neural comparisons across multiple psychiatric diagnostic categories, which we

then mapped onto specific neural circuits. First, we tested if dimensionality reduction of PSD symp-

toms revealed a stable solution for individual patient prediction. Next, we tested if this low-dimen-

sional symptom solution yields novel, stable, and statistically robust neural mapping compared to

canonical composite symptom scores or DSM diagnoses. We then tested if the computed symptom-

neural mapping is reproducible across symptom axes and actionable for individual patient predic-

tion. Finally, we anchor the derived symptom-relevant neural maps by computing their similarity

against mechanistically-informed neural maps. Here we used independently collected pharmacologi-

cal fMRI maps from healthy adults in response to putative PSD receptor treatment targets (gluta-

mate via ketamine and serotonin via LSD) (Preller et al., 2018; Anticevic et al., 2015). We also

computed transcriptomic maps from the Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2012;

Burt et al., 2018) for genes implicated in PSD. The primary purpose of this study was to derive a

robust and reproducible symptom-neural geometry across symptom domains in chronic PSD that

can be resolved at the single-subject level and mechanistically linked to molecular benchmarks. This

necessitated the development of novel methods and rigorous power analytics (as we found that

existing multivariate methods are drastically underpowered [Helmer et al., 2020]), which we have

also presented in the paper for full transparency and reproducibility. This approach can be iteratively

improved upon to inform neural mechanisms underlying PSD symptom variation, and in turn applied

to other psychiatric neuro-behavioral spectra.

To our knowledge, no study to date has mapped a data-reduced symptom geometry encompass-

ing a transdiagnostic PSD cohort across combined cognitive and psychopathology symptom

domains, with demonstrable statistical stability and reproducibility at the single subject level. Addi-

tionally, this symptom geometry can be mapped robustly onto neural data to achieve reproducible

group-level effects as well as individual-level precision following neural feature selection. Further-

more, while other other studies have evaluated relationships between neural maps and complemen-

tary molecular datasets (e.g. transcriptomics), no study to our knowledge has benchmarked single-

subject selected neural maps using reproducible neurobehavioral features against both pharmaco-

logical neuroimaging and gene expression maps that may inform single subject selection for tar-

geted treatment. Collectively, this study used data-driven dimensionality-reduction methods to

derive reproducible symptom dimensions across 436 PSD patients and mapped them onto novel

and robust neuroimaging features. These effects were then benchmarked against molecular imaging

targets, outlining an actionable path toward personalized clinical neuro-behavioral endpoints.

Results
The key questions and results of this study are summarized in Appendix 1—table 5 and an overview

of the workflow is presented in Appendix 1—figure 1. Additionally, for convenient reference, a

glossary of the key terms and abbreviations used throughout the study are provided in Appendix 1—

table 1.

Dimensionality-reduced PSD symptom variation is stable and
reproducible
First, to evaluate PSD symptom variation, we examined core PSD psychopathology metrics captured

by two instruments: the Brief Assessment of Cognition in Schizophrenia (BACS) and the Positive and

Negative Syndrome Scale (PANSS). We refer to these 36 items as ‘symptom measures’ throughout

the rest of the paper. We observed group mean differences across DSM diagnoses (Figure 1A,

p<0.05 Bonferroni corrected); however, symptom measure distributions revealed notable overlap

that crossed diagnostic boundaries (Tamminga et al., 2014; Keshavan et al., 2011). Furthermore,

we observed marked collinearity between symptom measures across the PSD sample (Figure 1B),

indicating that a dimensionality-reduced solution may sufficiently capture meaningful varation in this

symptom space. We hypothesized that such a dimensionality-reduced symptom solution may

improve PSD symptom-neural mapping as compared to pre-existing symptom scales.

Here, we report results from a principal component analysis (PCA) as it produces a deterministic

solution with orthogonal axes (i.e. no a priori number of factors needs to be specified) and explains

all variance in symptom measures. Results were highly consistent with prior symptom-reduction
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Figure 1. Quantifying data-driven low-dimensional variation of cross-diagnostic psychosis spectrum disorder (PSD) symptoms and cognitive deficits. (A)

Distributions of symptom scores for each of the DSM diagnostic groups across core psychosis symptom measures (PANSS positive, negative, and

general symptoms tracking illness severity) and cognitive deficits (BACS composite cognitive performance). BPP: bipolar disorder with psychosis (yellow,

N = 150); SADP: schizo-affective disorder (orange, N = 119); SZP: schizophrenia (red, N = 167); All PSD patients (black, N = 436); Controls (white,

Figure 1 continued on next page
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studies in PSD: we identified five PCs (Figure 1C), which captured ~50.93% of all variance (see

Materials and methods and Appendix 1—figure 2; Chen et al., 2020).

The key innovation here is the combined analysis across PSD diagnoses of core PSD symptoms

and cognitive deficits, a fundamental PSD feature (Barch et al., 2013). The five PCs revealed few dis-

tinct boundaries between DSM categories (Figure 1D). Notably, for PCs 2-5 we observed substantial

overlap in PC scores between controls and patients for all DSM diagnostic groups. This overlap is

not unexpected, given that behaviors measured by the BACS and PANSS (e.g. mood, cognition)

occur to some extent in ‘healthy’ individuals not meeting DSM diagnostic criteria (Verdoux and van

Os, 2002; Nuevo et al., 2012; Kelleher and Cannon, 2011; Stefanis et al., 2002). In contrast, PC1

showed marked differentiation between PSD and CON, reflecting global functioning which was

reduced across DSM diagnostic groups.

Figure 1E highlights loading configurations of symptom measures forming each PC. To aid inter-

pretation, we assigned a name for each PC based on its most strongly weighted symptom measures.

This naming is qualitative but informed by the pattern of loadings of the original 36 symptom meas-

ures. For example, PC1 was highly consistent with a general impairment dimension (i.e. ‘Global

Functioning’); PC2 reflected variation in cognition (i.e. ‘Cognitive Functioning’); PC3 indexed a com-

plex configuration of psychosis-spectrum relevant items (i.e. ‘Psychosis Configuration’); PC4 cap-

tured variation in mood and anxiety related items (i.e. ‘Affective Valence’); finally, PC5 reflected

variation in arousal and level of excitement (i.e. ‘Agitation/Excitation’). For instance, a generally

impaired patient would have a highly negative PC1 score, which would reflect low performance on

cognition and elevated scores on most other symptoms. Conversely, an individual with a

high positive PC3 score would exhibit delusional, grandiose, and/or hallucinatory behavior, whereas

a person with a negative PC3 score would exhibit motor retardation, social avoidance, and possibly

a withdrawn emotional state with blunted affect (Gelenberg, 1976). Comprehensive loadings for all

five PCs are shown in Appendix 1—figure 1. Figure 1F highlights the mean of each of the three

diagnostic groups (colored spheres) and healthy controls (black sphere) projected into a three-

dimensional orthogonal coordinate system for PCs 1,2 and 3 (x,y,z axes respectively; alternative

views of the three-dimensional coordinate system with all patients projected are shown in Appen-

dix 1—figure 1). Critically, PC axes were not parallel with traditional aggregate symptom scales. For

instance, PC3 is angled at ~45˚ to the dominant direction of PANSS Positive and Negative symptom

variation (purple and blue arrows respectively in Figure 1F).

PC3 loads most strongly onto hallmark symptoms of PSD (including strong positive loadings onto

PANSS Positive symptom and strong negative loadings onto most PANSS Negative

symptoms). Therefore, we focus on PC3 as an opportunity to quantify a fully data-driven dimension

of symptom variation that is highly characteristic of the PSD patient population. Additionally, this bi-

directional symptom axis captured shared variance from additional symptoms, such as PANSS Gen-

eral items and cognition. PC3 provides an empirical demonstration that using a data-driven

dimensionality-reduced solution (via PCA) can reveal novel symptom patterns underlying PSD

psychopathology.

Figure 1 continued

N = 202). Bar plots show group means; error bars show standard deviations. (B) Correlations between 36 symptom measures across all PSD patients

(N = 436). (C) Screeplot shows the % variance explained by each of the principal components (PCs) from a PCA performed using all 36 symptom

measures across 436 PSD patients. The size of each point is proportional to the variance explained. The first five PCs (green) survived permutation

testing (p<0.05, 5000 permutations). Together they capture 50.93% of all symptom variance (inset). (D) Distribution plots showing subject scores for the

five significant PCs for each of the clinical groups, normalized relative to the control group. Note that control subjects (CON) were not used to derive

the PCA solution; however, all subjects, including CON, can be projected into the data-reduced symptom geometry. (E) Loading profiles shown in dark

gray for the 36 PANSS/BACS symptom measures on the five significant PCs. Each PC (‘Global Functioning’, ‘Cognitive Functioning’, ‘Psychosis

Configuration’, ‘Affective Valence’, ‘Agitation/Excitement’) was named based on the pattern of loadings on symptom measures. See Appendix 1—

figure 2G for numerical loading values. The PSD group mean score on each symptom measure is also shown, in light gray (scaled to fit on the same

radarplots). Note that the group mean configuration resembles the PC1 loading profile most closely (as PC1 explains the most variance in the symptom

measures). (F) PCA solution shown in the coordinate space defined by the first three PCs. Colored arrows show a priori composite PANSS/BACS

vectors projected into the PC1-3 coordinate space. The a priori composite symptom vectors do not directly align with data-driven PC axes, highlighting

that PSD symptom variation is not captured fully by any one aggregate a priori symptom score. Spheres denote centroids (i.e. center of mass) for each

of the patient diagnostic groups and control subjects. Alternative views showing individual patients and controls projected into the PCA solution are

shown in Appendix 1—figure 2A-F.
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Notably, independent component analysis (ICA), an alternative dimensionality reduction proce-

dure which does not enforce component orthogonality, produced similar effects for this PSD sample

(see Appendix 1 - Note 1 and Appendix 1—figure 3A). Certain pairs of components between the

PCA and ICA solutions appear to be highly similar and directly comparable (IC5 and PC4; IC4 and

PC5) (Appendix 1—figure 3B). On the other hand, PCs 1–3 and ICs 1–3 do not exhibit a one-to-one

mapping. For example, PC3 appears to correlate positively with IC2 and equally strongly negatively

with IC3, suggesting that these two ICs are oblique to the PC and perhaps reflect symptom variation

that is explained by a single PC. The orthogonality of the PCA solution forces the resulting compo-

nents to capture maximally separated, unique symptom variance, which in turn map robustly on to

unique neural circuits. We observed that the data may be distributed in such a way that highly corre-

lated independent components emerge in the ICA, which do not maximally separate the symptom

variance associated with neural variance. We demonstrate this by plotting the relationship between
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Figure 2. Dimensionality reduction of PSD symptom measures is highly stable and reproducible. (A) PCA solutions for leave-one-site out cross-

validation (left) and 5-fold bootstrapping (right) explain a consistent total proportion of variance with a consistent number of significant PCs after

permutation testing. Full results available in Appendix 1—figure 4 and Appendix 1—figure 5. (B) Predicted versus observed single subject PC scores

for all five PCs are shown for an example site (shown here for Site 1). (C) Mean correlations between predicted and observed PC scores across all

patients calculated via k-fold bootstrapping for k = 2–10. For each k iteration, patients were randomly split into k folds. For each fold, a subset of

patients was held out and PCA was performed on the remaining patients. Predicted PC scores for the held-out sample were computed from the PCA

obtained from the retained samples. Original observed PC scores for the held-out sample were then correlated with the predicted PC scores derived

from the retained sample. (D) Mean correlations between predicted and observed symptom measure loadings are shown for leave-one-site-out cross-

validation (left), across 1000 runs of 5-fold cross-validation (middle), and 1000 split-half replications (right). For split-half replication, loadings were

compared between the PCA performed in each independent half sample. Note: for panels C-D correlation values were averaged all k runs, all six leave-

site-out-runs, or all 1000 runs of the fivefold cross-validation and split-half replications. Error bars indicate the standard error of the mean.
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parcel beta coefficients for the bPC3GBC map versus the bIC2GBC and bIC3GBC maps (Appendix 1—

figure 11G).

Next, we show that the PCA solution was highly stable when tested across sites, and k-fold cross-

validations, and was reproducible in independent split-half samples. First, we show that the symp-

tom-derived PCA solution remained highly robust across all sites (Figure 2A) and 5-fold cross-valida-

tion iterations (see Materials and methods). The total proportion of variance explained as well as

the total number of significant PCs remained stable (Figure 2A). Second, PCA loadings accurately

and reliably computed the scores of subjects in a hold-out sample (Figure 2B). Specifically, for each

left-out site, we tested if single-subject predicted scores were similar to the originally observed

scores of these same subjects in the full PCA (i.e. performed with all 436 subjects). This similarity was

4.0-4.0

Z-value

0

4.0-4.0

Z-value

0

A B

D E F

Whole-brain TFCE Corrected

No Effect

GBC Positive Symptoms Map

(PC3,GBC)

Whole-brain TFCE Corrected

4.0-4.0

Z-value

0

PANSS 

Positive Symptoms

Total Score (Z)
0 75

P
o

s
it
iv

e

PC3 

‘Psychosis Configuration’

Normalized Score (Z)
10 0 10

P
C

3

C

6
0

6

6 0 6
PC 3 (Z)

N
e

g
a

ti
ve

 (
Z

)

6
0

6

6 0 6
PC 3 (Z)

P
o

s
it
iv

e
 (

Z
)

0
4

8
1

2

PC3 Neg Pos
Map

R
a

n
g

e
 (

Z
)

0
1

2
3

PC3 Neg Pos
Map

V
a

ri
a

n
c
e

G IH J

(PC3,GBC)

GBC PC3 Map

CON

PSD

BPP

SADP

SZP
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red = SZP). (B) bPositiveGBC map showing the relationship between the aggregate PANSS Positive symptom score for each patient regressed onto global
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permutation testing with threshold-free cluster enhancement (TFCE). (D) Distributions of scores for PC3 ‘Psychosis Configuration’ across clinical groups,

again normalized to the control group. (E) bPC3GBC map showing the relationship between the PC3 ‘Psychosis Configuration’ score for each patient

regressed onto GBC across all patients (N = 436). (F) Regions surviving p<0.05 FWE whole-brain correction via TFCE showed clear and robust effects.

(G) Comparison between the Psychosis Configuration symptom score versus the aggregate PANSS Positive symptom score GBC map for every

datapoint in the neural map (i.e. greyordinate in the CIFTI map). The sigmoidal pattern indicates an improvement in the Z-statistics for the Psychosis

Configuration symptom score map (panel E) relative to the aggregate PANSS Positive symptom map (panel B). (H) A similar effect was observed when

comparing the Psychosis Configuration GBC map relative to the PANSS Negative symptoms GBC map (Appendix 1—figure 8). (I) Comparison of the

variances for the Psychosis Configuration, PANSS Negative and PANSS Positive symptom map Z-scores. (J) Comparison of the ranges between the

Psychosis Configuration, Negative and Positive symptom map Z-scores. Symptom-neural maps for all five PCs and all four traditional symptom scales

(BACS and PANSS subscales) are shown in Appendix 1—figure 8.
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Figure 4. Parcellated symptom-neural GBC maps reflecting psychosis configuration are statistically robust and reproducible. (A) Z-scored PC3 Psychosis

Configuration GBC neural map at the ‘dense’ (full CIFTI resolution) level. (B, C) Neural data parcellated using a whole-brain functional partition

(Ji et al., 2019b) before computing subject-level GBC yielded stronger statistical values in the Z-scored Psychosis Configuration GBC neural map as

compared to when parcellation was performed after computing GBC for each subject. (D) Summary of similarities between all symptom-neural bGBC

maps (PCs and traditional symptom scales) across fivefold cross-validation. Boxplots show the range of r values between bGBC maps for each fold and

Figure 4 continued on next page
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high for all sites (Appendix 1—figure 4). Also, we verified that the predicted-versus-observed PCA

scores also remained similar via a k-fold cross-validation (for k = 2 to 10, Figure 2C and Appen-

dix 1—figure 3). Finally, across all five PCs, predicted-to-observed similarity of PCA loadings was

very high. Moreover, PCA loadings were stable when testing via leave-site-out analysis and 5-fold

cross-validation. We furthermore demonstrated the reproducibility of the solution using 1000 inde-

pendent split-half replications (Figure 2D). For each run of split-half replication, PSD subjects were

split into two samples and a PCA was performed independently for each sample. The loadings from

both PCAs were then compared using a Pearson’s correlation. Importantly, results were not driven

by medication status or dosage (Appendix 1—figure 6). Collectively, these data reduction analyses

strongly support a stable and reproducible low-rank PSD symptom geometry.

Dimensionality-reduced PSD symptom geometry reveals novel and
robust neurobehavioral relationships
Next, we tested if the dimensionality-reduced symptom geometry can identify robust and novel pat-

terns of neural variation across PSD patients. We opted to use global brain connectivity (GBC), a

summary FC metric, to measure neural covariance because it yields a parsimonious measure reflect-

ing how globally coupled an area is to the rest of the brain (Cole et al., 2010; see

Materials and methods). Furthermore, we selected GBC because: (i) the metric is agnostic regard-

ing the location of dysconnectivity as it weights each area equally; (ii) it yields an interpretable

dimensionality-reduction of the full FC matrix; (iii) unlike the full FC matrix or other abstracted meas-

ures, GBC produces a neural map, which can be related to other independent neural maps (e.g.

gene expression or pharmacology maps, discussed below). Furthermore, GBC has been shown to be

sensitive to altered patterns of global neural connectivity in PSD cohorts (Anticevic et al., 2013;

Fornito et al., 2011; Hahamy et al., 2014; Cole et al., 2011) as well as in models of psychosis

(Preller et al., 2018; Driesen et al., 2013).

All five PCs captured unique patterns of GBC variation across the PSD (Appendix 1—figure 9),

which were not observed in CON (Appendix 1—figure 10). Again we highlight the hallmark ‘Psy-

chosis Configuration’ dimension (i.e. PC3), here to illustrate the benefit of the low-rank PSD symp-

tom geometry for symptom-neural mapping relative to traditional aggregate PANSS symptom

scales. The relationship between total PANSS Positive scores and GBC across N = 436 PSD patients

(bPosGBC, Figure 3A) was statistically modest (Figure 3B) and no areas survived whole-brain type-I

error protection (Figure 3C, p<0.05). In contrast, regressing PC3 scores onto GBC across N = 436

patients revealed a robust symptom-neural bPC3GBC map (Figure 3E–F), which survived whole-brain

type-I error protection. Of note, the PC3 ‘Psychosis Configuration’ axis is bi-directional whereby indi-

viduals who score either highly positively or negatively are symptomatic. Therefore, a high positive

PC3 score was associated with both reduced GBC across insular and superior dorsal cingulate corti-

ces, thalamus, and anterior cerebellum and elevated GBC across precuneus, medial prefrontal, infe-

rior parietal, superior temporal cortices, and posterior lateral cerebellum – consistent with the

default-mode network (Fox et al., 2005). A high negative PC3 score would exhibit the opposite

Figure 4 continued

the full model. (E) Normalized bGBC map from regression of individual patients’ PC3 scores onto parcellated GBC data, shown here for a subset of

patients from Fold 1 out of 5 (N = 349). The greater the magnitude of the coefficient for a parcel, the stronger the statistical relationship between GBC

of that parcel and PC3 score. (F) Correlation between the bGBC value of each parcel in the regression model computed using patients in Fold one and

the full PSD sample (N = 436) model indicates that the leave-one-fold-out bGBC map was highly similar to the bGBC map obtained from the full PSD

sample model (r = 0.924). (G) Summary of leave-one-site-out regression for all symptom-neural maps. Regression of PC symptom scores onto

parcellated GBC data, each time leaving out subjects from one site, resulted in highly similar maps. This highlights that the relationship between PC3

scores and GBC is robust and not driven by a specific site. (H) bGBC map for all PSD except one site. As an example, Site 3 is excluded here given that

it recruited the most patients (and therefore may have the greatest statistical impact on the full model). (I) Correlation between the value of each parcel

in the regression model computed using all patients minus Site 3, and the full PSD sample model. (J) Split-half replication of bPC3GBC map. Bar plots

show the mean correlation across 1000 runs; error bars show standard error. Note that the split-half effect for PC1 was exceptionally robust. The split-

half consistency for PC3, while lower, was still highly robust and well above chance. (K) bPC3GBC map from PC3-to-GBC regression for the first half (H1)

patients, shown here for one exemplar run out of 1000 split-half validations. (L) Correlation across 718 parcels between the H1 predicted coefficient

map (i.e. panel K) and the observed coefficient map for H1. (M–N) The same analysis as K-L is shown for patients in H2, indicating a striking consistency

in the Psychosis Configuration bPC3GBC map correspondence.
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Figure 5. Multivariate symptom-neural feature mapping using canonical correlation analysis (CCA). (A) Schematic of CCA data (B, N), transformation (, ),

and transformed ‘latent’ (U, V) matrices. Here, each column in U and V is referred to as a canonical variate (CV); each corresponding pair of CVs (e.g. U1

and V1) is referred to as a canonical mode. (B) CCA maximized correlations between the CVs (U and V) (C) Screeplot showing canonical modes

obtained from 180 neural features (cortical GBC symmetrized across hemispheres) and 36 symptom measures (‘180 vs. 36 CCA’). Inset illustrates the

Figure 5 continued on next page
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pattern. Critically, this robust symptom-neural mapping emerged despite no differences between

mean diagnostic group PC3 scores (Figure 3D). These two diverging directions may be captured

separately in the ICA solution, when orthogonality is not enforced (Appendix 1—figure 12). More-

over, the PC3 symptom-neural map exhibited improved statistical properties relative to other GBC

maps computed from traditional aggregate PANSS symptom scales (Figure 3G–J). Notably, the

PC2 – Cognitive Functioning dimension, which captured a substantial proportion of cognitive perfor-

mance-related symptom variance independent of other symptom axes, revealed a circuit that was

moderately (anti-)correlated with other PC maps but strongly anti-correlated with the BACS compos-

ite cognitive deficit map (r = �0.81, Appendix 1—figure 8O). This implies that the PC2 map reflects

unique neural circuit variance that is relevant for cognition, independent of the other PC symptom

dimensions.

Univariate neurobehavioral map of psychosis configuration is
reproducible
After observing improved symptom-neural PC3 statistics, we tested if these neural maps replicate.

Recent attempts to derive stable symptom-neural mapping using multivariate techniques, while

inferentially valid, have not replicated (Dinga et al., 2019). This fundamentally relates to the tradeoff

between the sample size needed to resolve multivariate neurobehavioral solutions and the size of

the feature space. To mitigate the feature size issue we re-computed the bPCGBC maps using a func-

tionally-derived whole-brain parcellation via the recently-validated CAB-NP atlas (Glasser et al.,

2016; Ji et al., 2019b; Materials and methods). Here, a functional parcellation is a principled way

of neural feature reduction (to 718 parcels) that can also appreciably boost signal-to-noise

(Glasser et al., 2016; Ji et al., 2019b). Indeed, parcellating the full-resolution ‘dense’ resting-state

signal for each subject prior to computing GBC statistically improved the group-level symptom-neu-

ral maps compared to parcellating after computing GBC (Figure 4A–C, all maps in Appendix 1—

figure 9). Results demonstrate that the univariate symptom-neural mapping was indeed stable

across fivefold bootstrapping, leave-site-out, and split-half cross-validations (Figure 4D–N, see

Appendix 1 - Note 2), yielding consistent symptom-neural PC3 maps. Importantly, the symptom-

neural maps computed using ICA showed comparable results (Appendix 1—figure 12).

A multivariate PSD neurobehavioral solution can be computed but is
not reproducible with the present sample size
Several recent studies have reported ‘latent’ neurobehavioral relationships using multivariate statis-

tics (Xia et al., 2018; Drysdale et al., 2017; Yu et al., 2019), which would be preferable because

they simultaneously solve for maximal covariation across neural and behavioral features. Given the

possibility of deriving a stable multivariate effect, here we tested if results improve with canonical

correlation analysis (CCA) (Hardoon et al., 2004; Figure 5A).

Figure 5 continued

correlation (r = 0.85) between the CV of the first mode, U1 and V1 (note that the correlation was not driven by a separation between diagnoses). Modes

9 and 12 remained significant after FDR correction. (D) CCA computed with 180 neural features and five PC symptom features (‘180 vs. 5 CCA’). Here,

all modes remained significant after FDR correction. Dashed black line shows the null calculated via a permutation test with 5000 shuffles; gray bars

show 95% confidence interval. (E) Correlation between B and N Q reflects how much of the symptom variation can be explained by the latent neural

features. (F) Proportion of symptom variance explained by each of the neural CVs in the 180 vs. 36 CCA. Inset shows the total proportion of behavioral

variance explained by the neural CVs. (G) Proportion of total symptom variance explained by each of the neural CVs in the 180 vs. 5 CCA. While CCA

using symptom PCs has fewer dimensions and thus accounts for lower total variance (see inset), each neural variate explains a higher amount of

symptom variance than in F, suggesting that CCA could be optimized by first obtaining a low-rank symptom solution. Dashed black line indicates the

null calculated via a permutation test with 5000 shuffles; gray bars show 95% confidence interval. Neural variance explained by symptom CVs are

plotted in Appendix 1—figure 15. (H) Distributions of CV3 scores from the 180 vs. 5 CCA are shown here as an example of characterizing CV

configurations. Scores for all diagnostic groups are normalized to CON. Additionally, (I) symptom canonical factor loadings, (J) loadings of the original

36 symptom measures, and (K) neural canonical factor loadings for CV3 are shown. (L) Within-sample CCA cross-validation appeared robust (see

Appendix 1—figure 17). However, a split-half replication of the 180 vs. 5 CCA (using two independent non-overlapping samples) was not reliable. Bar

plots show the mean correlation for each CV between the first half (H1) and the second half (H2) CCA, each computed across 1000 runs. Left: split-half

replication of the symptom PC loadings matrix ; Middle: individual symptom measure loadings; Right: the neural loadings matrix , which in particular

was not stable. Error bars show the standard error of the mean. Scatterplot shows the correlation between CV3 neural loadings for H1 vs. H2 for one

example CCA run, illustrating lack of reliability. (M) Leave-one-subject-out cross-validation further highlights CCA instability.
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To evaluate if the number of neural features affects the solution, we computed CCA using GBC

from: (i) 180 symmetrized cortical parcels; (ii) 359 bilateral subcortex-only parcels; (iii) 192 symme-

trized subcortical parcels; (iv) 12 functional networks, all from the brain-wide cortico-subcortical

CAB-NP parcellation (Glasser et al., 2016; Ji et al., 2019b). We did not compute a solution using

718 bilateral whole-brain parcels, as this exceeded the number of samples and rendered the CCA

insolvable. Notably, the 359 subcortex-only solution did not produce stable results according to any

criterion, whereas the 192 symmetrized subcortical features (Appendix 1—figure 13) and 12 net-

work-level features (Appendix 1—figure 14) solutions captured statistically modest effects relative

to the 180 symmetrized cortical features (Figure 5B–D). Therefore, we characterized the 180-parcel

solution further. We examined two CCA solutions using these 180 neural features in relation to

symptom scores: (i) all 36 item-level symptom measure scores from the PANSS/BACS (‘180 vs. 36

CCA’, Figure 5C,F); and (ii) five PC symptom scores (‘180 vs. 5 CCA’, Figure 5D,G, see

Materials and methods). Only 2 out of 36 modes for the 180 vs. 36 CCA solution survived permuta-

tion testing and false discovery rate (FDR) correction (Figure 5C). In contrast, all 5 modes of the 180

vs. 5 CCA survived (Figure 5D). Critically, we found that no single CCA mode computed on item-

level symptom measures captured more variance than the CCA modes derived from PC symptom
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Figure 6. Optimizing neural feature selection to inform single-subject prediction via a low-dimensional symptom solution. (A) Leave-one-out cross-

validation for the symptom PCA analyses indicates robust individual score prediction. Top panel: Scatterplot shows the correlation between each

subject’s predicted PC3 score from a leave-one-out PCA model and their observed PC3 score from the full-sample PCA model, r = 0.99. Bottom panel:

Correlation between predicted and observed individual PC scores was above 0.99 for each of the significant PCs (see Figure 1). The red line indicates

r = 1. (B) We developed a univariate step-down feature selection framework to obtain the most predictive parcels using a subject-specific approach via

the dpGBC index. Specifically, the ’observed’ patient-specific dpGBCobs was calculated using each patient’s DGBCobs (i.e. the patient-specific GBC map

vs. the group mean GBC for each each parcel) and the ‘reference’ symptom-to-GBC PC3 map (described in Figure 4B) [dpGBCobs =

DGBCobs � bPC3GBC
obs]. See Materials and methods and Appendix 1—figure 24 for complete feature selection procedure details. In turn, we computed

the predicted dpGBC index for each patient by holding their data out of the model and predicting their score (dpGBCpred). We used two metrics to

evaluate the maximally predictive feature subset: (i) The correlation between PC3 symptom score and dpGBCobs across all N = 436, which was maximal

for P ¼ 39 parcels [r = 0.36, purple arrow]; (ii) The correlation between dpGBCobs and dpGBCpred , which also peaked at P ¼ 39 parcels [r = 0.35, purple

arrow]. (C) The P ¼ 39 maximally predictive parcels from the bPC3GBC
obs map are highlighted (referred to as the ‘selected’ map). (D) Across all n = 436

patients we evaluated if the selected parcels improve the statistical range of similarities between the DGBCobs and the bPC3GBC
obs reference for each

patient. For each subject the value on the X-axis reflects a correlation between their DGBCobs map and the bPC3GBC
obs map across all 718 parcels; the

Y-axis reflects a correlation between their DGBCobs map and the bPC3GBC
obs map only within the ‘selected’ 39 parcels. The marginal histograms show

the distribution of these values across subjects. (E) Each DSM diagnostic group showed comparable correlations between predicted and observed

dpGBC values. The r-value shown for each group is a correlation between the dpGBCobs and dpGBCpred vectors, each of length N. (F) Scatterplot for a

single patient with a positive behavioral loading (PC3 score = 1.42) and also with a high correlation between predicted DGBCpred versus observed

DGBCobs values for the ‘selected’ 39 parcels (� ¼ 0:825). Right panel highlights the observed vs. predicted DGBC map for this patient, indicating that

94.9% of the parcels were predicted in the correct direction (i.e. in the correct quadrant).
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scores, suggesting that the PCA-derived dimensions capture more neurally relevant variation than

any one single clinical item (Figure 5E–G). Additional CCA details are presented in Appendix 1 -

Note 3 and Appendix 1—figure 15.

We highlight here an example canonical variate, CV3, across both symptom and neural effects,

with data for all CVs shown in Appendix 1—figure 16. CV3 scores across diagnostic groups normal-

ized to controls are shown Figure 5H in addition to how CV3 loads onto each PC (Figure 5I). The

negative loadings on to PCs 1, 4, and 5 and the high positive loadings on to PC3 in Figure 5I indi-

cate that CV3 captures some shared variation across symptom PCs. This can also be visualized by

computing how CV3 projects onto the original 36 symptom measures (Figure 5J). Finally, the neural

loadings for CV3 are shown in Figure 5K.

Lastly, we tested if the 180 vs. 5 CCA solution is stable and reproducible, as done with PC-to-

GBC univariate results. The CCA solution was robust when tested with k-fold and leave-site-out

cross-validation (Appendix 1—figure 17) likely because these methods use CCA loadings derived

from the full sample. However, the CCA loadings did not replicate in non-overlapping split-half sam-

ples (Figure 5L, see Appendix 1 - Note 4). Moreover, a leave-one-subject-out cross-validation

revealed that removing a single subject from the sample affected the CCA solution such that it did

not generalize to the left-out subject (Figure 5M). This is in contrast to the PCA-to-GBC univariate

mapping, which was substantially more reproducible for all attempted cross-validations relative to

the CCA approach. This is likely because substantially more power is needed to resolve a stable mul-

tivariate neurobehavioral effect with this many features (Dinga et al., 2019). Indeed, a multivariate

power analysis using 180 neural features and five symptom features and assuming a true canonical

correlation of r ¼ 0:3 suggests that a minimal sample size of N ¼ 8; 145 is needed to sufficiently

detect the effect (Helmer et al., 2020), which is an order of magnitude greater than the available

sample size (Appendix 1—figure 18). Therefore, we leverage the univariate symptom-neural result

for subsequent subject-specific model optimization and comparisons to molecular neuroimaging

maps.

A major proportion of overall neural variance may not be relevant for
psychosis symptoms
Most studies look for differences between clinical and control groups, but to our knowledge no

study has tested whether both PSD and healthy controls actually share a major portion of neural vari-

ance that may be present across all people. If the bulk of the neural variance is similar across both

PSD and CON groups then including this clinically irrelevant neural signal might obscure clinical-rele-

vant neurobehavioral relationships. To test this, we examined the shared variance structure of the

neural signal for all PSD patients (N = 436) and all controls (N = 202) independently by conducting a

PCA on the GBC maps (see Materials and methods). Patients’ and controls’ neural signals were

highly similar for each of the first three neural PCs (>30% of all neural variance in each group)

(Appendix 1—figure 19A–J). These neural PCs may reflect a ‘core’ shared symptom-irrelevant neu-

ral variance that generalizes across all people. These data suggest that the bulk of neural variance in

PSD patients may actually not be symptom-relevant, which highlights the importance of optimizing

symptom-neural mapping. Under this assumption, removing the shared neural variance between

PSD and CON should not drastically affect the reported symptom-neural univariate mapping solu-

tion, because this common variance does not map to clinical features. Thus, we conducted a PCA

using the parcellated GBC data from all 436 PSD and 202 CON (see Materials and methods), which

we will refer to as ‘GBC-PCA’ to avoid confusion with the symptom/behavioral PCA. This GBC-PCA

resulted in 637 independent GBC-PCs. Since PCs are orthogonal to each other, we then partialled

out the variance attributable to GBC-PC1 from the PSD data by reconstructing the PSD GBC matrix

using only scores and coefficients from the remaining 636 GBC-PCs ( ^GBCwoPC1). We then reran the

univariate regression as described in Figure 3, using the same five symptom PC scores across 436

PSD (Appendix 1—figure 20). Removing the first PC of shared neural variance (which accounted for

about 15.8% of the total GBC variance across CON and PSD) from PSD data attenuated the statistics

slightly (not unexpected as the variance was by definition reduced) but otherwise did not strongly

affect the univariate mapping solution. We repeated the symptom-neural regression next with the

first two GBC-PCs partialled out of the PSD data Appendix 1—figure 21, with the first three PCs

parsed out Appendix 1—figure 22, and with the first four neural PCs parsed out Appendix 1—
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Figure 7. Leveraging subject-specific brain-behavioral maps for molecular neuroimaging target selection. (A) Data for two individual patients from the

replication dataset are highlighted for PC3: XPC3 (blue) and YPC3 (yellow). Both of these patients scored above the neural and behavioral thresholds for

PC3 defined in the ‘discovery’ PSD dataset. Patient XPC3 loads highly negatively on the PC5 axis and Patient YPC3 loads highly positively. Density plots

show the projected PC scores for Patients XPC3 and YPC3 overlaid on distributions of PC scores from the discovery PSD sample. (B) Neural maps show

cortical and subcortical DGBCobs for the two patients XPC3 and YPC3 specifically reflecting a difference from the mean PC3. The similarity of DGBCobs and

the bPC3GBC
obs map within the most predictive neural parcels for PC3 (outlined in green). Note that the sign of neural similarity to the reference PC3

map and the sign of the PC3 score is consistent for these two patients. (C) The selected PC3 map (parcels outlined in green) is spatially correlated to

the neural map reflecting the change in GBC after ketamine administration (r = 0.76, Materials and methods). Note that Patient XPC3 who exhibits

DGBCobs that is anti-correlated to the ketamine map also expresses depressive moods symptoms (panel A). This is consistent with the possibility that

this person may clinically benefit from ketamine administration, which may elevate connectivity in areas where they show reductions (Berman et al.,

2000). In contrast, Patient YPC3 may exhibit an exacerbation of their psychosis symptoms given that their DGBCobs is positively correlation with the

ketamine map. (D) Data for two individual patients from the discovery dataset are highlighted for PC5: QPC5 (blue) and ZPC5 (yellow). Note that no

patients in the replication dataset were selected for PC5 so both of these patients were selected from ‘discovery’ PSD dataset for illustrative purposes.

Patient QPC5 loads highly negatively on the PC5 axis and Patient ZPC5 loads highly positively. Density plots show the projected PC scores for Patients

QPC5 and ZPC5 overlaid on distributions of PC scores from the discovery PSD sample. (E) Neural maps show cortical and subcortical DGBCobs for Patients

QPC5 and ZPC5, which are highly negatively and positively correlated with the selected PC5 map respectively. (F) The selected PC5 map (parcels outlined

in green) is spatially anti-correlated with the LSD response map (r = �0.44, see Materials and methods), suggesting that circuits modulated by LSD (i.e.

serotonin, in particular 5-HT2A) may be relevant for the PC5 symptom expression. Here, a serotonin receptor agonist may modulate the symptom-

neural profile of Patient QPC5, whereas an antagonist may be effective for Patient ZPC5.
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figure 23. The symptom-neural maps remain fairly robust, although the similarity with the original

bPCGBC maps does drop as more common neural variance is parsed out.

Optimizing symptom-neural mapping features for personalized
prediction via dimensionality-reduced symptoms
Above we demonstrated that symptom PC scores can be reliably computed across sites and cross-

validation approaches (Figure 2). Next, we show that leave-one-subject-out cross-validation yields

reliable effects for the low-rank symptom PCA solution (Figure 6A). This stable single-subject PC

score prediction provides the basis for testing if the derived neural maps can yield an

individually reliable subset of features. To this end, we developed a framework for univariate neural

feature selection (Appendix 1—figure 23) based on PC scores (e.g. PC3 score). Specifically, we

computed a dot product GBC metric (dpGBC) that provides an index of similarity between an individ-

ual DGBC topography relative to a ‘reference’ group-level bPCGBC map (see Materials and methods

and Appendix 1—figure 23). Using this dpGBC index via a feature selection step-down regression,

we found a subset of parcels for which the symptom-neural statistical association was maximal

(Figure 6A). For PC3, we found P ¼ 39 maximally predictive parcels out of the group neural bPCGBC

map. Specifically, the relationship between PC3 symptom scores and dpGBC values across subjects

was maximal (Figure 6B, top panel, r ¼ 0:36) as was the relationship between predicted dpGBCpred

vs. observed dpGBCobs (Figure 6B, bottom panel, r ¼ 0:35) (see Appendix 1—figure 25 for all PCs).

Importantly, the ‘subset’ feature map (i.e. ½bPC3GBC
obs�P¼39, Figure 6C) exhibited improved statistical

properties relative to the full map (i.e. ½bPC3GBC
obs�P¼718, Figure 6D). Furthermore, the relationship

between observed vs. predicted subset feature maps (i.e. r½dpGBCobs
; dpGBCpred�) was highly consis-

tent across DSM diagnoses (Figure 6E). Finally, a single patient is highlighted for whom the correla-

tion between predicted and observed subset feature maps was high (i.e. r½DGBCpred
;DGBCobs�,

Figure 6F), demonstrating that the dimensionality-reduced symptom scores can be used to quanti-

tatively optimize symptom-neural map features for individuals.

Single patient evaluation via neurobehavioral target map similarity
We showed a quantitative framework for computing a neurobehavioral model at the single-patient

level. This brain-behavior space (BBS) model was optimized along a single dimensionality-reduced

symptom PC axis. Next, we tested a hybrid patient selection strategy by first imposing a PC-based

symptom threshold, followed by a target neural similarity threshold driven by the most highly predic-

tive symptom-neural map features. This is described in Materials and methods, Appendix 1 - Note

5, and Appendix 1—figure 26–27. We found that for patients with a high (either positive or nega-

tive) PC symptom score the symptom-neural relationship was robust (Appendix 1—figure 26A-D),

and these patients could be reliably selected for that particular dimension (Appendix 1—figure

26E,G). Conversely, patients with a low absolute PC score showed a weak relationship with symp-

tom-relevant neural features. This is intuitive because these individuals do not vary along the

selected PC symptom axis. We also tested this patient selection strategy on an independent cross-

diagnostic ‘replication’ sample, which yielded consistent results (Appendix 1—figure 26F,H). Collec-

tively, these results show that data-driven symptom scores can pinpoint individual patients for whom

neural variation strongly maps onto a target neural reference map. These data also highlight that

both symptom and neural information for an independent patient can be quantified in the reference

‘discovery’ BBS using their symptom data alone.

Subject-specific PSD neurobehavioral features track
neuropharmacological map patterns
Next, we use the personalized BBS selection in a proof-of-concept framework for informing molecu-

lar mechanism of possible treatment response by relating subject-specific BBS to

independently acquired pharmacological neuroimaging maps. Here, we examine two mechanisms

implicated in PSD neuropathology via ketamine, a N-methyl-D-aspartate (NMDA) receptor antago-

nist (Krystal et al., 1994), and lysergic acid diethylamide (LSD), primarily a serotonin receptor ago-

nist (Preller et al., 2018; González-Maeso et al., 2007; Egan et al., 1998). We first quantified

individual subjects’ BBS ‘locations’ in the established reference neurobehavioral geometry. The

radarplot in Figure 7A shows original symptoms whereas Figure 7B shows DGBCobs maps for two
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patients from the replication dataset (denoted here with XPC3 and YPC3, see Appendix 1—figure 11

for other example patients). Both of these patients exceeded the neural and behavioral BBS selec-

tion indices for PC3 (defined independently in the ‘discovery’ dataset, Appendix 1—figure 26C).
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Figure 8. Psychosis spectrum symptom-neural maps track neural gene expression patterns computed from the Allen Human Brain Atlas (AHBA). (A)

The symptom loadings and the associated neural map jointly reflect the PC3 brain-behavioral space (BBS) profile, which can be quantitatively related to

human cortical gene expression patterns obtained from the AHBA (Burt et al., 2018). (B) Distribution of correlation values between the PC3 BBS map

and ~20,000 gene expression maps derived from the AHBA dataset. Specifically, AHBA gene expression maps were obtained using DNA microarrays

from six postmortem brains, capturing gene expression topography across cortical areas. These expression patterns were then mapped onto the

cortical surface models derived from the AHBA subjects’ anatomical scans and aligned with the Human Connectome Project (HCP) atlas, described in

prior work and methods (Burt et al., 2018). Note that because no significant inter-hemispheric differences were found in cortical gene expression all

results were symmetrized to the left hemisphere, resulting in 180 parcels. We focused on a select number of psychosis-relevant genes – namely genes

coding for the serotonin and GABA receptor subunits and interneuron markers. Seven genes of interest are highlighted with dashed lines. Note that

the expression pattern of HTR2C (green dashed line) is at the low negative tail of the entire distribution, that is highly anti-correlated with PC3 BBS

map. Conversely, GABRA1 and HTR1E are on the far positive end, reflecting a highly similar gene-to-BBS spatial pattern. (C) Upper panels show gene

expression patterns for two interneuron marker genes, somatostatin (SST) and parvalbumin (PVALB). Positive (yellow) regions show areas where the

gene of interest is highly expressed, whereas negative (blue) regions indicate low expression values. Lower panels highlight all gene-to-BBS map spatial

correlations where each value is a symmetrized cortical parcel (180 in total) from the HCP atlas parcellation. (D) Gene expression maps and spatial

correlations with the PC3 BBS map for two GABAA receptor subunit genes: GABRA1 and GABRA5. (E) Gene expression maps and spatial correlations

with the PC3 BBS map for three serotonin receptor subunit genes: HTR1E, HTR2C, and HTR2A.

Ji et al. eLife 2021;10:e66968. DOI: https://doi.org/10.7554/eLife.66968 16 of 83

Research article Neuroscience

https://doi.org/10.7554/eLife.66968


Furthermore, both patients exhibited neurobehavioral variation in line with their expected locations

in the BBS geometry. Specifically, patient XPC3 from the replication dataset scored highly negatively

on the PC3 axis defined in the ‘discovery’ PSD sample (Figure 7A). In contrast, patient YPC3 scored

positively on the PC3 axis. Importantly, the correlation between the DGBCobs map for each patient

and the group-reference bPC3GBC was directionally consistent with their symptom PC score

(Figure 7B–C).

We then tested if the single-subject BBS selection could be quantified with respect to a neural

map reflecting glutamate receptor manipulation, a hypothesized mechanism underlying PSD symp-

toms (Moghaddam and Javitt, 2012). Specifically, we used an independently collected ketamine

infusion dataset, collected in healthy adult volunteers during resting-state fMRI (Anticevic et al.,

2012a). As with the clinical data, here we computed a DGBC map reflecting the effect of ketamine

on GBC relative to placebo (Materials and methods). The maximally predictive PC3 parcels exhib-

ited high spatial similarity with the ketamine map (r = 0.76, see Materials and methods), indicating

that the DGBC pattern induced by ketamine tracks with the GBC pattern reflecting PC3 symptom

variation.

Critically, because XPC3 is negatively loaded on the PC3 symptom axis, an NMDA receptor antag-

onist like ketamine may modulate symptom-relevant circuits in a way that reduces similarity with the

PC3 map. This may in turn have an impact on the PC3-like symptoms. Consistent with this hypothe-

sis, XPC3 expresses predominantly depressive symptoms (Figure 7A), and ketamine has been shown

to act as an anti-depressant (Berman et al., 2000). This approach can be applied for patients that

load along another axis, such as PC5. Figure 7D–E shows the symptom and neural data for two

patients whom met thresholds for PC5 selection (Appendix 1—figure 26C). Notably, the selected

PC5 map is anti-correlated with a DGBC map reflecting LSD vs. placebo effects (Preller et al., 2018)

(r = �0.44, Figure 7F). Hence areas modulated by LSD may map onto behavioral variation along

PC5. Consequently, serotonergic modulation may be effective for treating QPC5 and ZPC5, via an

antagonist or an agonist respectively. These differential similarities between pharmacological

response maps and BBS maps (Appendix 1—figure 29) can be refined for quantitative patient

segmentation.

Group-level PSD neurobehavioral features track neural gene expression
patterns
To further inform molecular mechanism for the derived BBS results, we compared results with neural

gene expression profiles derived from the Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2012;

Burt et al., 2018; Figure 8A, Materials and methods). Specifically, we tested if BBS cortical topog-

raphies, which reflect stable symptom-neural mapping along PSD, covary with the expression of

genes implicated in PSD neuropathology. We focus here on serotonin receptor subunits (HTR1E,

HTR2C, HTR2A), GABA receptor subunits (GABRA1, GABRA5), and the interneuron markers

somatostatin (SST) and parvalbumin (PVALB). Serotonin agonists such as LSD have been shown to

induce PSD-like symptoms in healthy adults (Preller et al., 2018) and the serotonin antagonism of

‘second-generation’ antipsychotics are thought to contribute to their efficacy in targeting broad PSD

symptoms (Geyer and Vollenweider, 2008; Meltzer et al., 2012; Abi-Dargham et al., 1997).

Abnormalities in GABAergic interneurons, which provide inhibitory control in neural circuits, may

contribute to cognitive deficits in PSD (Benes and Berretta, 2001; Inan et al., 2013; Dienel and

Lewis, 2019) and additionally lead to downstream excitatory dysfunction that underlies other PSD

symptoms (Lisman et al., 2008; Grace, 2016). In particular, a loss of prefrontal parvalbumin-expres-

sion fast-spiking interneurons has been implicated in PSD (Enwright Iii et al., 2018; Lodge et al.,

2009; Beasley and Reynolds, 1997; Lewis et al., 2012). Figure 8B shows the distribution of corre-

lations between the PC3 map and the cortical expression patterns of 20,200 available AHBA genes

(results for other PCs are shown in Appendix 1—figure 30). Seven genes of interest are highlighted,

along with their cortical expression topographies and their similarity with the PC3 BBS map

(Figure 8C–E). This BBS-to-gene mapping can potentially reveal novel therapeutic molecular targets

for neurobehavioral variation. For example, the HTR1E gene, which encodes the serotonin 5-HT1E
receptor, is highly correlated with the PC3 BBS map. This could drive further development of novel

selective ligands for this receptor, which are not currently available (Kitson, 2007).
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Discussion
We found a robust and reproducible symptom-neural mapping across the psychosis spectrum that

emerged from a low-dimensional symptom solution. Critically, this low-rank symptom solution was

predictive of a neural circuit pattern, which reproduced at the single-subject level. In turn, we show

that the derived PSD symptom-neural feature maps exhibit spatial correspondence with indepen-

dent pharmacological and gene expression neural maps that are directly relevant for PSD neurobiol-

ogy. We demonstrate, for the first time in the literature, a transdiagnostic data-reduced PSD

symptom geometry across hallmark psychopathology symptoms and cognitive measures, that shows

stable and robust relationships with neural connectivity with singles subject-level precision. Critically,

we anchor these symptom-neural maps to mechanistically informed molecular imaging benchmarks

that can be linked to relevant pathophysiology, and furthermore demonstrate how these methods

can be combined to inform personalized patient selection decisions.

Deriving an individually predictive low-dimensional symptom
representation across the psychosis spectrum
Psychosis spectrum is associated with notable clinical heterogeneity such deficits in cognition as well

as altered beliefs (i.e. delusions), perception (i.e. hallucinations), and affect (i.e. negative symptoms)

(Lefort-Besnard et al., 2018). This heterogeneity is captured by clinical instruments that quantify

PSD symptoms across dozens of specific questions and ratings. This yields a high-dimensional symp-

tom space that is intractable for reliable mapping of neural circuits (Helmer et al., 2020). Here we

show that a low-rank solution captures principal axes of PSD symptom variation, a finding in line

with prior work in SZP (van der Gaag et al., 2006a; van der Gaag et al., 2006b;

Lindenmayer et al., 1994; Emsley et al., 2003; White et al., 1997; Dollfus et al., 1996;

Blanchard and Cohen, 2006; Chen et al., 2020; Lefort-Besnard et al., 2018).

These results highlights two key observations: (i) Existing symptom reduction studies (even those

in SZP specifically) have not evaluated solutions that include cognitive impairment – a hallmark defi-

cit across the psychosis spectrum (Barch et al., 2013). Here we show that cognitive performance

captures a notable portion of the symptom variance independent of other axes. We observed that

cognitive variation captured 10% of PSD sample variance even after accounting for ‘Global Function-

ing’ psychopathology. (ii) No study has quantified cognitive deficit variation along with core psycho-

sis symptoms via dimensionality reduction across multiple PSD diagnoses. While existing studies

have evaluated stability of data-reduced solutions within a single DSM category (van der Gaag

et al., 2006a; Lindenmayer et al., 1995; Lefort-Besnard et al., 2018), current results show that

dimensionality-reduced PSD symptom solutions can be reproducibly obtained across DSM

diagnoses.

Importantly, on each data-reduced symptom axis, some subset of PSD patients received a score

near zero. This does not imply that these patients were unimpaired; rather, the symptom configura-

tions for these patients were orthogonal to variation along this specific axis. While in the current

paper we demonstrate individual selection based on symptom scores along a single axis, it may also

be possible to use a combination of several symptom dimensions to further inform individual treat-

ment selection. For example, for patients with above-threshold symptom scores along several

dimensions, a combination of these PCs may be more predictive of their neural features and in turn

be a better indication of treatment selection for these individuals. Alternatively, the symptom dimen-

sions can be used as exclusionary criteria for selectively picking out individuals along only one partic-

ular axis (e.g. filtering out patients above-threshold on PCs 1, 3, 4, and five to selectively study

patients with only severe PC2 cognitive deficits). Additionally, the ICA solution revealed oblique

axes which are linear combinations of the PCs, for example IC2 which is oblique to PCs 1, 2, and 3

(Appendix 1—figure 3). However, these ICs do not result in as robust or unique a neural circuit

mapping as do the PCs, as shown in Appendix 1—figure 12. The observation that PSD are associ-

ated with multiple complex symptom dimensions highlights an important intuition that may extend

to other mental health spectra. Additionally, the PSD symptom axes reported here are neither defin-

itive nor exhaustive. In fact, close to 50% of all clinical variance was not captured by the symptom

PCA – an observation often overlooked in symptom data-reduction studies, which focus on attaining

‘predictive accuracy’. Such studies rarely consider how much variance remains unexplained in the

final data-reduced model and, relatedly, if the proportion of explained variance is reproducible
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across samples. This is a key property for reliable symptom-to-neural mapping. Thus, we tested if

this reproducible low-dimensional PSD symptom space robustly mapped onto neural circuit

patterns.

Leveraging a robust low-dimensional symptom representation for
mapping brain-behavior relationships
We show that the dimensionality-reduced symptom space improved the mapping onto neural circuit

features (i.e. GBC), as compared to a priori item-level clinical symptom measures (Figure 3). This

symptom-neural mapping was highly reproducible across various cross-validation procedures and

split-half replication (Figure 4). The observed statistical symptom-neural improvement after

dimensionality reduction suggests that data-driven clinical variation more robustly covaried with neu-

ral features. As noted, the low-rank symptom axes generalized across DSM diagnoses. Conse-

quently, the mapping onto neural features (i.e. GBC) may have been restricted if only a single DSM

category or clinical item was used. Importantly, as noted, traditional clinical scales are uni-directional

(i.e. zero is asymptomatic, hence there is an explicit floor). Here, we show that data-driven symptom

axes (e.g. PC3) were associated with bi-directional variation (i.e. no explicit floor effect). Put differ-

ently, patients who score highly on either end of these data-driven axes are severely symptomatic

but in very different ways. If these axes reflect clinically meaningful phenomena at both tails then

they should more robustly map to neural feature variation, which is in line with reported effects.

Therefore, by definition, the derived map for each of the PCs will reflect the neural circuitry that may

be modulated by the behaviors that vary along that PC (but not others). For example, we named the

PC3 axis ‘Psychosis Configuration’ because of its strong loadings onto conventional ‘positive’ and

‘negative’ PSD symptoms. This PC3 ‘Psychosis Configuration’ showed strong positive variation along

neural regions that map onto the canonical default mode network (DMN), which has frequently been

implicated in PSD (Fryer et al., 2013; Anticevic et al., 2012b; Ongür et al., 2010;

Woodward et al., 2011; Baker et al., 2014; Meda et al., 2014) suggesting that individuals with

severe ‘positive’ symptoms exhibit broadly elevated connectivity with regions of the DMN. On the

contrary, this bi-directional ‘Psychosis Configuration’ axis also showed strong negative variation

along neural regions that map onto the sensory-motor and associative control regions, also strongly

implicated in PSD (Ji et al., 2019a; Anticevic et al., 2014). The ‘bi-directionality’ property of the PC

symptom-neural maps may thus be desirable for identifying neural features that support individual

patient selection. For instance, it may be possible that PC3 reflects residual untreated psychosis

symptoms in this chronic PSD sample, which may reveal key treatment neural targets. In support of

this circuit being symptom-relevant, it is notable that we observed a mild association between GBC

and PC scores in the CON sample (Appendix 1—figure 10). The symptom-neural mapping of

dimensionality-reduced symptom scores also produced notable neural maps along other PC axes

(Appendix 1—figure 9). Higher PC1 scores, indicating higher general functioning, may be associ-

ated with lower global connectivity in sensory/cingulate cortices and thalamus, but higher global

connectivity with the temporal lobe. Higher PC2 scores, indicating better cognitive functioning were

positively associated with higher medial prefrontal and cerebellar GBC, and negatively with visual

cortices and striatum. Importantly, the unique neural circuit variance shown in the bPC2GBC map sug-

gest that there are PSD patients with more (or less) severe cognitive deficits independent of any

other symptom axis, which would be in line with the observation that these symptoms are not treat-

able with antipsychotic medication (and therefore should not correlate with symptoms that are treat-

able by such medications; i.e. PC3). Of note, the statistics in the bPC2GBC map were relatively

moderate, opening up the possibility that a more targeted measure of neural connectivity (e.g. seed

FC, see below) would reveal a robust circuit map for this particular symptom dimension. Given the

key role of cognitive deficits in PSD (Barch et al., 2013), this will be a particularly important direction

to pursue, especially in prodromal or early-stage individuals where cognitive dysfunction has been

shown to predict illness trajectories (Fusar-Poli et al., 2012; Bora et al., 2014; Bora, 2015;

Antshel et al., 2017). The PC4 – Affective Valence axis was positively associated with higher GBC in

cingulate and sensori-motor cortices and subcortically with the thalamus, basal ganglia, and anterior

cerebellum, which may be implicated in the deficits in social functioning and affective aspects of this

symptom dimension. Lastly, positive scores on PC5, which we named ‘Agitation/Excitement’, were

associated with broad elevated global connectivity in the frontal associative and sensori-motor corti-

ces, thalamus, and basal ganglia. Interestingly, however, the nucleus accumbens (as well as
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hippocampus, amygdala, cerebellum, and temporal lobe) appear to be negatively associated with

PC5 score (i.e. more severe grandiosity, unusual thought, delusional and disorganized thinking), illus-

trating another example of a bi-directional axis.

Deriving individually actionable brain-behavior mapping across the
psychosis spectrum
Deriving a neurobehavioral mapping that is resolvable and stable at the individual patient level is a

necessary benchmark for deploying symptom-neural ‘biomarkers’ in a clinically useful way. There-

fore, there is increasing attention placed on the importance of achieving reproducibility in the psy-

chiatric neuroimaging literature (Noble et al., 2019; Balsters et al., 2016; Cao et al., 2019;

Woo et al., 2017), which becomes especially important for individualized symptom-neural mapping.

Recently, several efforts have deployed multivariate methods to quantify symptom-neural relation-

ships (Drysdale et al., 2017; Xia et al., 2018; Smith et al., 2015; Moser et al., 2018;

Rodrigue et al., 2018; Yu et al., 2019), highlighting how multivariate techniques may perhaps pro-

vide clinically innovative insights. However, such methods face the risk of overfitting for high-dimen-

sional but underpowered datasets (Dinga et al., 2019), as recently shown via formal generative

modeling (Helmer et al., 2020).

Here, we attempted to use multivariate solutions (i.e. CCA) to quantify symptom and neural fea-

ture co-variation. In principle, CCA is well-suited to address the brain-behavioral mapping problem.

However, symptom-neural mapping using CCA in our sample was not reproducible even when using

a low-dimensional symptom solution and parcellated neural data as a starting point. Therefore, while

CCA (and related multivariate methods such as partial least squares) are theoretically appropriate

and may be helped by regularization methods such as sparse CCA, in practice many available psychi-

atric neuroimaging datasets may not provide sufficient power to resolve stable multivariate symp-

tom-neural solutions (Helmer et al., 2020). A key pressing need for forthcoming studies will be to

use multivariate power calculators to inform sample sizes needed for resolving stable symptom-neu-

ral geometries at the single subject level. Of note, athough we were unable to derive a stable CCA

in the present sample, this does not imply that the multivariate neurobehavioral effect may not be

reproducible with larger effect sizes and/or sample sizes. Critically, this does highlight the impor-

tance of power calculations prior to computing multivariate brain-behavioral solutions

(Helmer et al., 2020).

Consequently, we tested if a low-dimensional symptom solution can be used in a univariate symp-

tom-neural model to optimize individually predictive features. Indeed, we found that a univariate

brain-behavioral space (BBS) relationship can result in neural features that are stable for individual-

ized prediction. Critically, we found that if a patient exhibited a high PC symptom score, they were

more likely to exhibit a topography of neural DGBC that was topographically similar to the bPCGBC

map. This suggests that optimizing such symptom-neural mapping solutions (and ultimately extend-

ing them to multivariate frameworks) can inform cross-diagnostic patient segmentation with respect

to symptom-relevant neural features. Importantly, this could directly inform patient identification

based on neural targets that are of direct symptom relevance for clinical trial design.

Utilizing independent molecular neuroimaging maps to ‘benchmark’
symptom-relevant neural features
Selecting single patients via stable symptom-neural mapping of BBS solutions is necessary for indi-

vidual patient segmentation, which may ultimately inform treatment indication. However, it is also

critical to be able to relate the derived symptom-neural maps to a given mechanism. Here we high-

light two ways to ‘benchmark’ the derived symptom-neural maps by calculating their similarity

against independent pharmacological neuroimaging and gene expression maps. We show a proof-

of-principle framework for quantifying derived symptom-neural reference maps with two PSD-rele-

vant neuropharmacological manipulations derived in healthy adults via LSD and ketamine. These

analyses revealed that selecting single patients, via the derived symptom-neural mapping solution,

can yield above-chance quantitative correspondence to a given molecular target map. These data

highlight an important effect: it is possible to construct a ‘strong inference’ (Platt, 1964) evaluation

of single patients’ differential similarity to one molecular target map versus another. For instance,

this approach could be applied to maps associated with already approved PSD treatments (such as
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clozapine, olanzapine, or chlorpromazine [Lally and MacCabe, 2015; Miyamoto et al., 2005]) to

identify patients with symptom-neural configurations that best capture available treatment-covarying

neural targets.

Relatedly, AHBA gene expression maps (Burt et al., 2018) may provide an a priori benchmark for

treatment targets that may be associated with a given receptor profile. Here we show that identified

BBS maps exhibit spatial correspondence with neural gene expression maps implicated in PSD –

namely serotonin, GABA and interneuron gene expression. This gene-to-BBS mapping could be

then used to select those patients that exhibit high correspondence to a given gene expression

target.

Collectively, this framework could inform empirically testable treatment selection methods (e.g. a

patient may benefit from ketamine, but not serotonin agonists such as LSD/psilocybin). In turn, this

independent molecular benchmarking framework could be extended to other approaches (e.g. posi-

tron emission tomography (PET) maps reflecting specific neural receptor density patterns

[Farde et al., 1986; Arakawa et al., 2008]) and iteratively optimized for quantitative patient-specific

selection against actionable molecular targets.

Considerations for generalizing solutions across time, severity, and
mental health spectra
There are several constraints of the current result that require future optimization – namely the abil-

ity to generalize across time (early course vs. chronic patients), across a range of symptom severity

(e.g. severe psychotic episode or persistent low-severity psychosis) and across distinct symptom

spectra (e.g. mood). This applies to both the low-rank symptom solution and the resulting symptom-

neural mapping. It is possible that the derived lower-dimensional symptom solution, and conse-

quently the symptom-neural mapping solution, exhibits either time-dependent (i.e. state) or severity-

dependent (i.e. trait) re-configuration. Relatedly, medication dose, type, and timing may also impact

the solution. Another important aspect that will require further characterization is the possibility of

oblique axes in the symptom-neural geometry. While orthogonal axes derived via PCA were appro-

priate here and similar to the ICA-derived axes in this solution, it is possible that oblique dimensions

more clearly reflect the geometry of other psychiatric spectra and/or other stages in disease pro-

gression. For example, oblique components may better capture dimensions of neurobehavioral vari-

ation in a sample of prodromal individuals, as these patients are exhibiting early-stage psychosis-like

symptoms and may show signs of diverging along different trajectories.

Critically, these factors should constitute key extensions of an iteratively more robust model for

individualized symptom-neural mapping across the PSD and other psychiatric spectra. Relatedly, it

will be important to identify the ‘limits’ of a given BBS solution – namely a PSD-derived effect may

not generalize into the mood spectrum (i.e. both the symptom space and the resulting symptom-

neural mapping is orthogonal). It will be important to evaluate if this framework can be used to ini-

tialize symptom-neural mapping across other mental health symptom spectra, such as mood/anxiety

disorders.

These types of questions will require longitudinal and clinically diverse studies that start prior to

the onset of full-blown symptoms (e.g. the North American Prodrome Longitudinal Study (NAPLS)

[Addington et al., 2012; Seidman et al., 2010]). A corollary of this point is that ~50% of unex-

plained symptom variance in the current PCA solution necessitates larger samples with adequate

power to map this subtle, but perhaps clinically essential, PSD variation.

Notably, the current cohort was adequately powered for symptom data reduction that drove uni-

variate neural mapping. However, this sample was insufficiently powered for resolving stable multi-

variate symptom-neural relationships even with dimensionality-reduced symptom features.

Consequently, the limited sample size necessitated choices for dimensionality reduction of the neural

feature space in this study even for univariate analyses. While both parcellation and GBC constitute

principled choices, symptom-relevant neural information may have been lost (which may be embed-

ded in a higher dimensional space). One obvious solution is to increase sample sizes (e.g. via data-

sets such as the UK Biobank [Sudlow et al., 2015]). However, in parallel, it will be critical to develop

neurobiologically informed feature space reduction and/or to optimize the stability of multivariate

solutions via regularization methods. Another improvement would be to optimize neural data reduc-

tion sensitivity for specific symptom variation (Shehzad et al., 2014). We chose to use GBC for our

initial geometry characterizations as it is a principled and assumption-free data-reduction metric that
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captures (dys)connectivity across the whole brain and generates neural maps (where each region can

be represented by a value, in contrast to full functional connectivity matrices) that are necessary for

benchmarking against molecular imaging maps. However, GBC is a summary measure that by defini-

tion does not provide information regarding connectivity between specific pairs of neural regions,

which may prove to be highly symptom-relevant and informative. Thus symptom-neural relationships

should be further explored with higher-resolution metrics, such as restricted GBC (Anticevic et al.,

2013), which can summarize connectivity information for a specific network or subset of neural

regions, or seed-based FC using regions implicated in PSD (e.g. thalamus [Anticevic et al., 2014;

Woodward et al., 2011]).

Here, we focused on the neural blood oxygen level dependent (BOLD) signal from fMRI. How-

ever, other modalities such as diffusion-weighted imaging (DWI), PET imaging, or electroencepha-

lography (EEG) could be leveraged. Additional clinically-relevant information could be derived from

genetics (such as polygenic risk scores [Hyman, 2011; O’Donovan et al., 2009; Cao et al., 2020])

or ecological momentary assessment (EMA) (Corcoran et al., 2018; Niendam et al., 2018), espe-

cially to parse state vs. trait biomarker variation.

Lastly, building on the proof-of-concept molecular neuroimaging comparisons, it will be impera-

tive to eventually test such predictions in formal clinical trials. An actionable next step would be to

optimize patient selection against existing treatments, which could result in higher success rates for

drug development trials and potentially have massive impact for developing new interventions. Criti-

cally, the opportunity to develop, validate, and refine an individual-level quantitative framework

could deliver a more rapid and cost-effective way of pairing patients with the right treatments.

Conclusions
We show that complex and highly heterogeneous PSD symptom variation can be robustly reduced

into a low-rank symptom solution that is cross-diagnostic, individually predictive, generalizable and

incorporates cognitive deficits. In turn, the derived PSD symptom axes robustly mapped onto dis-

tinct yet reproducible neural patterns, which were predictive at the single-patient level. Leveraging

these stable results, we show a proof-of-principle framework for relating the derived symptom-rele-

vant neural maps, at the individual patient level, with molecular targets implicated in PSD via LSD

and ketamine neuro-pharmacological manipulations. Lastly, we used AHBA gene expression maps

to show that identified PSD symptom-relevant neural maps co-vary with serotonin, GABA and inter-

neuron neural gene expression patterns. This set of symptom-neural mapping results can be itera-

tively and quantitatively optimized for personalized treatment segmentation endpoints.

Materials and methods

Overall data collection and study design
We used publicly available behavioral and neural data from the Bipolar-Schizophrenia Network on

Intermediate Phenotypes (BSNIP) consortium (Tamminga et al., 2014). All data were obtained from

the National Data Archive (NDA) repository (https://nda.nih.gov/edit_collection.html?id=2274). Par-

ticipants were collected at six sites across the United States. Full recruitment details are provided in

prior publications (Tamminga et al., 2014; Meda et al., 2015; Sheffield et al., 2017). In brief, par-

ticipants were recruited through advertising in Baltimore MD, Boston MA, Chicago IL, Dallas TX, and

Hartford CT. All assessments were standardized across sites. Participants were excluded if they had

(i) a history of seizures or head injury resulting in >10 min loss of consciousness, (ii) positive drug

screen on the day of testing, (iii) a diagnosis of substance abuse in the past 30 days or substance

dependence in the past 6 months, (iv) history of serious medical or neurological disorder that would

likely affect cognitive functioning, (v), history of serious medical or neurological disorder that would

likely affect cognitive functioning, (vi) insufficient English proficiency, or (vii) an age-corrected Wide-

Range Achievement Test (4th edition) reading test standard score <65. Additionally, participants

were required to have had no change in medication and been clinically stable over the past month.

Participants completed a SCID interview and were given a diagnosis via consensus from study clini-

cians; participants with an Axis one clinical psychosis diagnosis were additionally given assessments

including the Positive and Negative Symptom Scale (PANSS)(Kay et al., 1987). Note that apart from

the measures used in this paper, the full BSNIP dataset includes a rich characterization of measures
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from multiple modalities, including electrophysiological, eye tracking, structural and diffusion neuro-

imaging, as well as a number of clinical batteries, which are not quantified in this study. We used

data from a total of 638 participants with complete behavioral and neural data after preprocessing

and quality control, including 202 healthy controls (CON), 167 patients diagnosed with schizophrenia

(SZP), 119 patients with schizoaffective disorder (SADP), and 150 patients with bipolar disorder with

psychosis (BPP). For full demographic and clinical characteristics of the sample see Appendix 1—

table 2.

Neural data acquisition and preprocessing
Participants completed a neural magnetic resonance imaging (MRI) scan at 3T, including resting-

state functional blood-oxygen-level-dependent imaging (BOLD) and a magnetization-prepared rapid

gradient-echo (MP-RAGE) sequence for T1 weighted data. Full details on scanners and acquisition

parameters used at each of the sites have previously been described (Meda et al., 2012) and are

summarized here in Appendix 1—table 3. Neuroimaging data were preprocessed using the Human

Connectome Project (HCP) minimal preprocessing pipeline (Glasser et al., 2013), adapted for com-

patibility with ‘legacy’ data, which are now featured as a standard option in the HCP pipelines pro-

vided by our team (https://github.com/Washington-University/HCPpipelines/pull/156, copy archived

at swh:1:rev:1334b35ab863540044333bbdec70a68fb19ab611; Repovš et al., 2021). These modifi-

cations to the HCP pipelines were necessary as the BSNIP data did not include a standard field map

and did not incorporate a T2w high-resolution image. The adaptations for single-band BOLD acquisi-

tion have previously been described in detail (Ji et al., 2019a).

A summary of the HCP pipelines is as follows: the T1-weighted structural images were first

aligned by warping them to the standard Montreal Neurological Institute-152 (MNI-152) brain tem-

plate in a single step, through a combination of linear and non-linear transformations via the FMRIB

Software Library (FSL) linear image registration tool (FLIRT) and non-linear image registration tool

(FNIRT) (Jenkinson et al., 2002). Next, FreeSurfer’s recon-all pipeline was used to segment brain-

wide gray and white matter to produce individual cortical and subcortical anatomical segmentations

(Reuter et al., 2012). Cortical surface models were generated for pial and white matter boundaries

as well as segmentation masks for each subcortical gray matter voxel. Using the pial and white mat-

ter surface boundaries, a ‘cortical ribbon’ was defined along with corresponding subcortical voxels,

which were combined to generate the neural file in the Connectivity Informatics Technology Initiative

(CIFTI) volume/surface ‘grayordinate’ space for each individual subject (Glasser et al., 2013). BOLD

data were motion-corrected by aligning to the middle frame of every run via FLIRT in the initial NIFTI

volume space. In turn, a brain-mask was applied to exclude signal from non-brain tissue. Next, corti-

cal BOLD data were converted to the CIFTI gray matter matrix by sampling from the

anatomically defined gray matter cortical ribbon and subsequently aligned to the HCP atlas using

surface-based nonlinear deformation (Glasser et al., 2013). Subcortical voxels were aligned to the

MNI-152 atlas using whole-brain non-linear registration and then the Freesurfer-defined subcortical

segmentation applied to isolate the subcortical grayordinate portion of the CIFTI space.

After the HCP minimal preprocessing pipelines, movement scrubbing was performed

(Power et al., 2013). As done in our prior work (Anticevic et al., 2012a), all BOLD image frames

with possible movement-induced artifactual fluctuations in intensity were flagged using two criteria:

frame displacement (the sum of the displacement across all six rigid body movement correction

parameters) exceeding 0.5 mm (assuming 50 mm cortical sphere radius) and/or the normalized root

mean square (RMS) (calculated as the RMS of differences in intensity between the current and pre-

ceding frame, computed across all voxels and divided by the mean intensity) exceeding 1.6 times

the median across scans. Any frame that met one or both of these criteria, as well as the frame

immediately preceding and immediately following, were discarded from further preprocessing and

analyses. Subjects with more than 50% frames flagged using these criteria were excluded. Next, a

high-pass filter (threshold 0.008 Hz) was applied to the BOLD data to remove low-frequency signals

due to scanner drift. In-house Matlab code was used to calculate the average variation in BOLD sig-

nal in the ventricles, deep white matter, and across the whole gray matter, as well as movement

parameters. These signals, as well as their first derivatives to account for delayed effects, were then

regressed out of the gray matter BOLD time series as nuisance variables (as any change in the BOLD

signal due to these variables are persistent and likely not reflecting neural activity) (Power et al.,

2018). It should be noted that using global signal regression to remove spatially persistent artifact is
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highly controversial in neuroimaging (Power et al., 2017; Yang et al., 2017), but it remains the

field-wide gold standard (though see other recent and emerging approaches at [Glasser et al.,

2018; Aquino et al., 2019]).

Behavioral symptom and cognitive data
The behavioral measures analyzed included the Positive and Negative Syndrome Scale (PANSS), an

assessment of psychosis symptom severity (Kay et al., 1987), and the Brief Assessment of Cognition

in Schizophrenia (BACS) battery, which provided an assessment of cognitive functioning

(Keefe et al., 2004). Only control subjects with complete BACS measures were used for analyses;

PANSS symptom scores were imputed for control subjects for whom the PANSS had not been

administered under the assumption that these subjects were asymptomatic. Only patient subjects

with complete PANSS and BACS measures were used in analyses. The BACS scores used here are

presented as standardized Z-scores normalized to the mean and standard deviation of the control

group for each BSNIP site, as done in prior work (Tamminga et al., 2014). The full PANSS battery is

conventionally divided into three sub-scales: Positive symptom scale (seven items), Negative symp-

tom scale (seven items), and General Psychopathology symptom scale (16 items). The BACS battery

consists of 6 individual sub-scores (Keefe et al., 2004). In total, this yielded 36 symptom variables

per participant. Effects of symptom variation across assessment sites have been rigorously character-

ized in prior publications (Tamminga et al., 2013). Nevertheless, we explicitly tested for site effects

in our analyses, described in detail below.

Principal component analysis of behavioral symptom measures
The principal component analysis (PCA) of behavioral data was computed by including all 36 symp-

tom variables across all N = 436 patients. Variables were first scaled to have unit variance across

patients before running the PCA. Significance of the derived principal components (PCs) was com-

puted via permutation testing. For each permutation, patient order was randomly shuffled for each

symptom variable before re-computing PCA. This permutation was repeated 5000 times to establish

the null model. PCs which accounted for a proportion of variance that exceeded chance (p<0.05

across all 5000 permutations) were retained for further analysis.

Stability and reproducibility of the symptom PCA
Stability of the symptom PCA solution was assessed with within-sample cross-validation. To evaluate

if there were site differences that uniquely drove the PCA solution, we performed a leave-site-out

cross-validation analysis. Specifically, we re-ran the PCA using all patients except those from one

site, which was held out. This process was repeated for each of the six sites. To further evaluate the

stability of the derived PCA solutions, we performed 1000 runs of k-fold cross-validation for values

of k between 2 and 10. For each k-fold run, the full sample of patients was randomly divided into

equally-sized k sets and a PCA was re-computed using subjects in k-1 sets (as the left-out set was

used as the held-out sample).

For each run of leave-site-out and k-fold cross-validations significance was assessed via permuta-

tion testing as described above. The number of significant PCs and the total proportion of variance

explained by these significant PCs remained highly stable across all runs (see Figure 2A and Appen-

dix 1—figure 4 and Appendix 1—figure 5). Additionally, we compared observed and predicted

PCA scores for the held-out sample of patients. Predicted scores for the held-out sample of patients

were computed by weighing their raw symptom scores with the loadings from the PCA computed in

all other patients. Observed scores for held-out patients were obtained from the original PCA com-

puted on the full sample presented in the main text. The similarity between predicted and observed

scores was high for all five significant PCs across all runs of leave-site-out and k-fold cross-validation,

exceeding r = 0.9 in most analyses (see Figure 2B–C and Appendix 1—figure 4 and 5). Notably,

the PCA solution did not show medication status or dosage effects (Appendix 1—figure 6). We also

examined effects of age, sex, and SES in Appendix 1—figure 7. Briefly, we observed a significant

positive relationship between age and PC3 scores, which may be because older patients (whom pre-

sumably have been ill for a longer time) exhibit more severe symptoms along the positive PC3 – Psy-

chosis Configuration dimension. We also observed a significant negative relationship between

Hollingshead index of SES and PC1 and PC2 scores. Lower PC1 and PC2 scores indicate poorer

Ji et al. eLife 2021;10:e66968. DOI: https://doi.org/10.7554/eLife.66968 24 of 83

Research article Neuroscience

https://doi.org/10.7554/eLife.66968


general functioning and cognitive performance respectively, which is consistent with higher Hollings-

head indices (i.e. lower-skilled jobs or unemployment and fewer years of education). We also found

significant sex differences in PC2 – Cognitive Functioning, PC4 – Affective Valence, and PC5 – Agita-

tion/Excitement scores.

We also assessed the similarity of the PCA loadings using leave-site-out and 1000 runs of fivefold

cross-validation frameworks (Figure 2D). Importantly, this cross-validation was designed to test if

the observed loadings remained stable (as opposed to predicted patient-level scores). The loadings

for significant PCs from each leave-site-out PCA solution as well as each run of the fivefold cross-vali-

dation were highly correlated (Figure 2D).

We also assessed the reproducibility of the PCA solution using independent split-half samples.

The leave-site-out and k-fold cross-validation PCA analyses by definition use overlapping samples of

patients for each iteration. Therefore, we additionally conducted a full split-half replication using

entirely non-overlapping sets of patients in each iteration. For each split-half iteration, the full patient

sample was randomly divided into two sets with equal proportions of each of the three diagnostic

groups (BPP, SADP, SZP). Then, a PCA was computed using each of the split-half patient samples.

The loadings from the two PCA solutions were then evaluated for reproducibility. This process was

repeated 1000 times. The loadings for significant PCs were again highly similar even when compar-

ing PCA solutions derived from completely non-overlapping patient samples (Figure 2D).

To predict individual patient PC scores for the leave-one-out analysis (Appendix 1—figure 26A),

a PCA was computed using all patients except one held-out patient (N = 435). In turn, the derived

loadings were then used to compute the predicted PC scores for the left-out patient. This process

was repeated until predicted PC scores were calculated for every patient. Finally, the predicted

score for each patient was evaluated for reproducibility relative to the observed score obtained from

the PCA solution computed using the full N = 436 sample of patients. In addition, we computed an

independent component analysis (ICA) to evaluate the consistency of the behavioral data reduction

solution across methods (see Materials and methods).

Global brain connectivity calculation
Following preprocessing, the functional connectivity (FC) matrix was calculated for each participant

by computing the Pearson’s correlation between every grayordinate in the brain with all other

grayordinates. A Fisher’s r-to-Z transform was then applied. Global brain connectivity (GBC) was cal-

culate by computing every grayordinate’s mean FC strength with all other grayordinates (i.e. the

mean, per row, across all columns of the FC matrix). GBC is a data-driven summary measure of con-

nectedness that is unbiased with regards to the location of a possible alteration in connectivity

(Cole et al., 2016) and is therefore a principled way for reducing the number of neural features while

assessing neural variation across the entire brain.

GBCðxÞ ¼
1

N

X

N

y¼1

rxy (1)

. where GBCðxÞ denotes the GBC value at grayordinate x;

. where N denotes the total number of grayordinates;

. where
X

N

y¼1

denotes the sum from y ¼ 1 to y ¼ N;

. where rxy denotes the correlation between the time-series of grayordinates x and y;

For parcel-wise GBC maps (described below), we first computed the mean BOLD signal within

each parcel (see section below for parcellation details) for each participant and then computed the

pairwise FC between all parcels. Finally, to obtain the parcellated GBC metric we computed the

mean FC for each parcel and all other parcels. This order of operations (first parcellating the dense

data series and then computing GBC) was chosen because it resulted in stronger statistical values

due to increased within-parcel signal-to-noise of the BOLD data (Figure 4A).
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GBCðpÞ ¼
1

N

X

N

q¼1

rpq (2)

. where GBCðpÞ denotes the GBC value at parcel p;

. where N denotes the total number of parcels;

. where
X

N

y¼1

denotes the sum from q ¼ 1 to q ¼ N;

. where rpq denotes the correlation between the time-series of parcels p and q;

Neural data reduction via functional brain-wide parcellation
Here, we applied a recently developed Cole-Anticevic Brain Network Parcellation (CAB-NP) parcella-

tion (Ji et al., 2019b), which defines functional networks and regions across cortex and subcortex

that leveraged the Human Connectome Project’s Multi-Modal Parcellation (MMP1.0) (Glasser et al.,

2016; Ji et al., 2019b). The final published CAB-NP 1.0 parcellation solution can be visualized via

the Brain Analysis Library of Spatial maps and Atlases (BALSA) resource (https://balsa.wustl.edu/

rrg5v) and downloaded from the public repository (https://github.com/ColeLab/

ColeAnticevicNetPartition, copy archived at swh:1:rev:

94772010ac26f487fd6baf1d33d121d57a37e0ed; Cole et al., 2021). The cortex component of the

parcellation solution is comprised of 180 bilateral parcels (a total of 360 across both left and right

hemispheres), consistent with the Human Connectome Project’s Multi-Modal Parcellation (MMP1.0)

(Glasser et al., 2016). The subcortex component is comprised of 358 parcels defined using resting-

state functional BOLD covariation with the cortical network solution (Ji et al., 2019b).

Mass univariate symptom-neural mapping
Behavioral scores (a priori and PCA) were quantified in relation to individual GBC variation (either

dense or parcellated) via a mass univariate regression procedure. The resulting map of regression

coefficients reflected the strength of the relationship between patients’ behavioral PC score and

GBC at every neural location, across all 436 patients. The greater the magnitude of the coefficient

for a given location, the stronger the statistical relationship between GBC and the behavioral varia-

tion across patients. The coefficients were then Z-scored for each map. Significance of the maps was

assessed via nonparametric permutation testing, 2000 random shuffles with TFCE (Smith and Nich-

ols, 2009) type-I error-protection computed via the Permutation Analysis of Linear Models program

(Winkler et al., 2014).

Cross-validation and split-half replication of mass univariate symptom-
neural mapping
Stability of the symptom-neural mapping was assessed following the same cross-validation logic as

described for the symptom-driven PCA solutions. Specifically, fivefold cross-validation was per-

formed by first randomly partitioning all patients (N = 436) into five subsets. Regression of the

behavioral PC scores onto GBC across patients was performed while holding out 1/5 of the patient

sample (N = 349). The correlation between the resulting neural coefficient map was then computed

with the neural map obtained from the full sample calculation. For leave-site-out cross-validation, all

subjects except those from one site were used when calculating the symptom-neural regression

model. The resulting maps were compared to the map from the full sample regression. This process

was repeated six times, each time leaving out subjects in one of the six sites.

Reproducibility of the symptom-neural mapping was assessed with 1000 iterations of split-half

replication. For each iteration, the full sample of subjects was first randomly split into two halves

(referred to as H1 and H2) with the proportion of subjects in each diagnostic group (BPP, SADP,

SZP) preserved within each half. For each iteration we used the H1 PCA solution and loadings to

compute the predicted PCA scores for H2. In turn, the observed H1 scores were computed from a

PCA loadings on the same H1 half-sample of patients. These H1 scores were then regressed against

parcellated GBC for patients in H2. This coefficient GBC map reflects the strength of the relationship

between the predicted PC score and GBC across H2 patients. Finally, the GBC coefficient maps
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derived from the H1 observed and H2 predicted PCA scores were then correlated for each PC axis.

This process was then repeated 1000 times and evaluated for reproducibility.

Principal component analysis of neural data
To evaluate the consistency of the neural GBC, we computed a PCA solution for the parcellated neu-

ral GBC data for all 202 control subjects as well as for all 436 patients (Appendix 1—figure 19). The

resulting neural GBC-derived PCs capture the striking consistency of the neural variance components

irrespective of clinical status, which highlights that the bulk of the neural variance is not symptom-rel-

evant. As with the behavioral PCA, significance of the neural PCA solution was assessed via permuta-

tion testing (1000 random shuffles of parcels within subject). To evaluate the effect of shared neural

variance on the symptom-neural solution, we parsed out common neural PCs from the PSD GBC

data. We first conducted a PCA using the parcellated GBC data from all 436 PSD and 202 CON (a

matrix with dimensions 638 subjects x 718 parcels). This GBC-PCA resulted in 637 independent

GBC-PCs. Since PCs are orthogonal to each other, we then partialled out the variance attributable

to GBC-PC1 from the PSD data by reconstructing the PSD GBC matrix using only scores and coeffi-

cients from the remaining 636 GBC-PCs ( ^GBCwoPC1). We then reran the univariate regression as

described in Appendix 1—figure 2, using the same five symptom PC scores across 436 PSD. We

also repeated the symptom-neural regression with the first two GBC-PCs partialled out of the PSD

data ( ^GBCwoPC1�2), with the first three PCs parsed out ( ^GBCwoPC1�3), and with the first four neural PCs

parsed out ( ^GBCwoPC1�4).

Canonical correlation analysis
Canonical correlation analysis (CCA) is a multivariate statistical technique which examines simulta-

neously the relationships between multiple independent variables and multiple dependent variables

by computing linear combinations of each variable set that maximizes the correlations between the

two sets (Figure 5A). Here, the two variates used were symptom and neural features across all sub-

jects. Each feature was Z-scored prior to computing the CCA solution. Given the size of the ‘dense’

neural feature space reduced the number of neural features in a principled manner via the described

parcellation. This reduced the number of neural features to 180 symmetrized cortical parcels (i.e.

GBC was averaged for each pair of analogous parcels in the left and right hemispheres). Critically,

corresponding cortical parcels in the left and right hemispheres of this parcellation have been shown

to be highly similar (Glasser et al., 2013; Burt et al., 2018). First, we computed the CCA solution

using all 36 item-level symptom measures as behavioral features. In turn, we computed an additional

CCA solution using scores from the significant five PCs.

Each symptom PC is a weighted linear composite of the original symptom measures and each

behavioral CV is a weighted linear composite of the symptom PCs. Therefore, to compute the load-

ings of the 36 symptom measures on each of the behavioral CVs (computed using the symptom

PCs), we multiplied the matrix of loadings from the CCA with the matrix of loadings from the PCA

(Figure 5J).

CCA cross-validation and split-half replication
Stability of the CCA solution was assessed via cross-validation. Five-fold cross-validation of the CCA

was performed by first randomly partitioning all patients (N = 436) into five subsets. The CCA was

then performed between neural and behavioral features using all but one of the subsets. The results

of this CCA was then compared to the full sample CCA. Appendix 1—figure 17A-D shows the com-

parisons across all five five-fold cross-validation runs of the CCA compared to the full model, includ-

ing neural factor loadings, behavioral factor loadings, and projected symptom measure loadings. For

leave-site-out cross-validation, all subjects except those from one site were used in the CCA. The

resulting outputs were then compared to those from the full sample CCA. This process was repeated

for all six sites. These data are shown in Appendix 1—figure 17E-H.

For leave-one-out cross-validation of the CCA, one subject was held out as a CCA was performed

using neural and behavioral features from the other 435 subjects. The loadings matrices and from

the CCA were then used to calculate the ‘predicted’ neural and behavioral latent scores for all five

canonical modes for the holdout subject. This was repeated for every subject, such that predicted

neural and behavioral latent score matrices (N̂ and B̂) were computed, of the same dimensions as (N
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and B) respectively. The corresponding CVs in N̂ and B̂ were then correlated across subjects, as

shown in Figure 5M. If the CCA solution is stable, these correlations should be comparable to the

canonical correlations of the full CCA (Figure 5D).

Reproducibility of the CCA solution was assessed via split-half replication. This was performed by

first randomly splitting the full sample into two halves (H1 and H2) with the proportion of subjects in

each diagnostic group (BPP, SADP, SZP) preserved within each half. A CCA was then performed

separately in each half and the resulting outputs were then compared to each other. This process

was repeated 1000 times to obtain mean and standard deviation performance metrics. These data

are shown in Figure 5L.

Multivariate CCA power analysis
Multivariate power analyses to estimate the minimum sample size needed to sufficiently power a

CCA were computed using methods described in Helmer et al., 2020, using the Generative Model-

ing of Multivariate Relationships tool (gemmr, https://github.com/murraylab/gemmr [v0.1.2, copy

archived at swh:1:rev:672c2fbb8ff8f5b08afb16fe9b790536c69f2cf3; Helmer, 2021]). Briefly, a model

was built by: (1) Generating synthetic datasets for the two input data matrices, by sampling from a

multivariate normal distribution with a joint covariance matrix that was structured to encode CCA

solutions with specified properties; (2) Performing CCAs on these synthetic datasets. Because the

joint covariance matrix is known, the true values of estimated association strength, weights, scores,

and loadings of the CCA, as well as the errors for these four metrics, can also be computed. In addi-

tion, statistical power that the estimated association strength is different from 0 is determined

through permutation testing; (3) Varying parameters of the generative model (number of features,

assumed true between-set correlation, within-set variance structure for both datasets) the required

sample size nreq is determined in each case such that statistical power reaches 90% and all of the

above described error metrics fall to a target level of 10%; and (4) Fitting and validating a linear

model to predict the required sample size nreq from parameters of the generative model. This linear

model was then used to calculate nreq for CCA in three data scenarios: (i) 718 neural vs. 5 symptom

features; (ii) 180 neural vs. 5 symptom features; (iii) 12 neural vs. 5 symptom features.

Independent replication dataset
To illustrate the generalizability of the single-subject prediction results across independent datasets

and DSM disorders, we use an independently collected dataset consisting of 30 patients with a for-

mal diagnosis of schizophrenia (SZP) and 39 patients diagnosed with obsessive compulsive disorder

(OCD). These patients were recruited via clinician referral and regional advertising and assessed at

the Connecticut Mental Health Center in New Haven, CT. Demographic and symptom data are

shown in Appendix 1—table 4.

The behavioral assessment for the replication dataset included the PANSS and the Penn Comput-

erized Neurocognitive Battery (PennCNB)(Moore et al., 2015). Items from the PennCNB were

matched to items from the BACS as follows: BACS digital sequencing (working memory) to LNB (N-

back Total score); BACS symbol coding (attention) -to Penn Continuous Performance Test; BACS

token motor task (motor) to CTAP; BACS Tower of London (abstraction and mental flexibility) to

PCET or RAVEN (Penn Conditional Exclusion Test); BACS verbal fluency (verbal ability) to SPVRT

(Penn Verbal Reasoning Test); BACS verbal memory test to PLLT (Penn List Learning Test)

(Gur et al., 2010).

Neural data were collected using a Siemens 3T scanner with a 64-channel head coil at the Yale

Center for Biomedical Imaging. Imaging acquisition parameters were aligned with those of the

Human Connectome Project (HCP) (Van Essen et al., 2013). High-resolution T1w and T2w structural

images were acquired in 224 AC-PC aligned slices, 0.8 mm isotropic voxels. T1w images were col-

lected with a magnetization-prepared rapid gradient-echo (MP-RAGE) pulse sequence (TR = 2400

ms, TE = 2.07 ms, flip angle = 8˚, field of view = 256�256 mm). T2w images were collected with a

SCP pulse sequence [TR = 3200 ms, TE = 564 ms, flip angle mode = T2 var, field of view = 256�256

mm]. Resting-state BOLD images were collected with a multi-band accelerated fast gradient-echo,

echo-planar sequence (acceleration factor = 6, time repetition (TR) = 800 ms, time echo (TE) = 31.0

ms, flip angle = 55˚, field of view = 210�210 mm, matrix = 84�84, bandwidth = 2290 Hz); 54 inter-

leaved axial slices aligned to the anterior-posterior commissure (AC-PC) with 2.5 mm isotropic

Ji et al. eLife 2021;10:e66968. DOI: https://doi.org/10.7554/eLife.66968 28 of 83

Research article Neuroscience

https://github.com/murraylab/gemmr
https://archive.softwareheritage.org/swh:1:dir:9cdc5f23f36b844f7b898e5bd6ab55482595b81e;origin=https://github.com/murraylab/gemmr;visit=swh:1:snp:921e108c0baaf1ad1f1e90487d5504f502408871;anchor=swh:1:rev:672c2fbb8ff8f5b08afb16fe9b790536c69f2cf3
https://doi.org/10.7554/eLife.66968


voxels. Additionally, a pair of reverse phase-encoded spin-echo field maps (anterior-to-posterior and

posterior-to-anterior) were acquired (voxel size = 2.5 mm isotropic, TR = 7220 ms, TE = 73 ms, flip

angle = 90˚, field of view = 210�210 mm, bandwidth = 2290 Hz). These neural data were prepro-

cessed using the HCP minimal preprocessing pipeline as described in the section ‘Neural data acqui-

sition and preprocessing’ above, with the same motion scrubbing and nuisance signal regression

parameters as were used for the BSNIP dataset.

Neural parcel DGBC feature selection and prediction
For the purposes of patient selection, we were focused on individual differences in neural features

as they co-vary in relation to individual symptom scores. However, this individual variation in neural

features may be small compared to the overall group mean. Hence for each patient, we compute

the difference in each brain location (parcel) between the patient’s actual GBC and the group mean

GBC for that location. This is denoted by DGBC. Importantly, using a de-meaned GBC metric ‘stand-

ardizes’ the data and helps to correct for possible differences in scanners/protocols across different

datasets. Next, we developed an optimized univariate regression framework leveraging a ‘dot prod-

uct’ metric to relate a vector of neural features with a single symptom scalar value. This process for

neural feature selection (results in Appendix 1—figure 26) is shown as a systems flow diagram in

Appendix 1—figure 24. The observed dot product GBC metric (dpGBCobs) is computed as follows:

dpGBCobs
i ¼

DGBCobs
1

.

.

.

DGBCobs
Pselect

0

B

B

@
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C

C
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i

.
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.
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bGBCobs
Pselect

0

B

B

@

1

C

C

A

N�i

(3)

. where for a given subject i,dpGBCobs
i denotes the dot product GBC value of the two vectors

DGBCobs
i � bGBCobs

N�1
across all Pselect parcels,

. DGBCobs
i is a vector of length Pselect denoting a difference map of subject i’s GBCobs map rela-

tive to the group mean GBCobs map, within a given number of parcels Pselect ,
. the bGBCobs

N�i vector denotes the PCA-to-GBC statistical group-level b map for a low-dimen-
sional PC symptom score across selected parcels Pselect for N subjects excluding subject i.

This calculation is then repeated for each subject i, resulting in a final vector

dpGBCobs ¼ ½dpGBCobs
1

; . . . ; dpGBCobs
N � for N subjects. There are several key properties of the dpGBCobs

statistic: (i) it is not inflated by individual GBC map similarity to the group map because each sub-

ject’s DGBCobs map is demeaned relative to the reference group computed independently of the

left-out subject; (ii) this statistic is not biased by the parcel number (which drops with iterative selec-

tion) because the resulting dpGBCobs value variation is quantified relative to the low-dimensional

symptom score across all subjects (see Equation 2). Put differently, the final evaluation considers the

relationship between dpGBCobs and the low-dimensional PC symptom scores across individuals; (iii)

The dot product statistic can yield both positive and negative values – a property which some map

similarity measures lack (e.g. h2); (iv) It is unbounded (unlike a correlation), which is key to maximize

co-variation with low-dimensional symptom scores across individuals (see Equation 2); (v) The

DGBCobs
i map for a given individual is projected onto the basis set of the bGBCobs

N�i map, which is

independent of the left-out individual but directly related to the low-dimensional PC symptom score

variance, thus maximizing the dot product optimization.

Next, we select N � i individuals and compute a univariate regression where participants’ low

dimensional symptom scores are regressed onto the dpGBCobs
N�i values:
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þ � (4)

. where for dpGBCobs each element denotes the dot product value of the DGBCobs
i � bGBCobs

N�1
vec-

tors per subject across P parcels,
. a denotes the regression coefficient in the univariate linear model,
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. where for Sobs each element denotes the observed low-dimensional symptom score (e.g. PC3
score) per subject,

. � denotes the error term in the univariate linear model.

After the dpGBCobs ¼ aSobs þ � regression is computed on N � i subjects, it is applied to the left-

out-subject i. This is repeated for all N subjects and the model is evaluated for the number of parcels

that maximize two key dot product evaluation metrics (Figure 6B):
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Metric B
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. where A denotes the maximum r correlation value for the two vectors of dpGBCpred values and

the predicted Spred low-dimensional symptom scores (e.g. PC3 axis) for N subjects from the
leave-one-out cross-validation,

. where B denotes the maximum r correlation value for the two vectors of obs and pred dpGBC

values for N subjects.

In the initial step in the step-down model, all P ¼ 718 parcels are retained in the initial dot prod-

uct calculation. For each iteration of P selected parcels, the least predictable parcel p (i.e. the parcel

with the weakest value in the PC3 map) is eliminated from the map. Then, the step-down regression

is repeated until P ¼ 1.

Pharmacological neuroimaging acquisition in healthy volunteers - LSD
Methods for the lysergic acid diethylamide (LSD) neuroimaging study are described in detail in prior

publications (Preller et al., 2018). The use of LSD in humans was authorized by the Swiss Federal

Office of Public Health, Bern, Switzerland. The study protocol was approved by the Cantonal Ethics

Committee of Zurich (KEK-ZH_No: 2014_0496). Participants received both written and oral descrip-

tions of the study procedures and the effects and possible risks of LSD. All participants provided

written informed consent in accordance with the Declaration of Helsinki. The study employed a fully

double-blind, randomized, within-subject cross-over design with three conditions: (1) placebo + pla-

cebo (Pla) condition: placebo (179 mg Mannitol and Aerosil 1 mg po) after pretreatment with pla-

cebo (179 mg Mannitol and Aerosil 1 mg po); (2) Pla+LSD (LSD) condition: LSD (100 mg po) after

pretreatment with placebo (179 mg Mannitol and Aerosil 1 mg po), or (3) Ketanserin+LSD (Ket+LSD)

condition: LSD (100 mg po) after pretreatment with the 5-HT2A antagonist Ket (40 mg po). Data

were collected for all subjects in a randomized counterbalanced order at three different sessions

each two weeks apart. For all conditions, the first substance was administered 60 min before the sec-

ond substance, and the first neural scan was conducted 75 min after the second administration, with

a second scan conducted at 300 min post-administration. In the present study, only data from the

two neural scans for the LSD and Pla conditions were evaluated.

Briefly, neuroimaging data acquisition details for the LSD study are as follows. MRI data were

acquired on a Philips Achieva 3.0T whole-body scanner (Best, The Netherlands). A 32-channel

receiver head coil and MultiTransmit parallel radio frequency transmission was used. Images were

acquired using a whole-brain gradient-echo planar imaging (EPI) sequence (repetition time = 2,500

ms; echo time = 27 ms; slice thickness = 3 mm; 45 axial slices; no slice gap; field of view = 240 mm2;

in-plane resolution = 3 mm � 3 mm; sensitivity- encoding reduction factor = 2.0). 240 volumes were

acquired per resting state scan resulting in a scan duration of 10 mins. Additionally, two high-
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resolution anatomical images were acquired using T1-weighted and T2-weighted sequences. T1-

weighted images were collected via a 3D magnetization-prepared rapid gradient-echo sequence

(MP-RAGE) with the following parameters: voxel size = 0.7 mm3, time between two inversion

pulses = 3123 ms, inversion time = 1055 ms, inter-echo delay = 12 ms, flip angle = 8˚,

matrix = 320 � 335, field of view = 224 � 235 mm, 236 sagittal slices. Furthermore T2-weighted

images were collected using via a turbo spin-echo sequence with the following parameters: voxel

size = 0.7 mm3, repetition time = 2500 ms, echo time = 415 ms, flip angle = 90˚, matrix = 320 �

335, field of view = 224 mm � 235 mm, 236 sagittal slices.

Pharmacological neuroimaging acquisition in healthy volunteers -
ketamine
Similar to the LSD study, the ketamine pharmacological neuroimaging protocol employed a within-

subject design where all healthy volunteer participants underwent a single scanning session consist-

ing of two infusions: (i) placebo (saline solution) followed by (ii) ketamine infusion. The study was

approved by the Yale University institutional review board. Participants received both written and

oral descriptions of the study procedures and the effects and possible risks of ketamine, and all par-

ticipants provided written informed consent before beginning the study. Healthy volunteers were

informed prior to scanning that they would undergo one placebo run and one ketamine run but

were blinded to the order of administration. Because of the sustained effects of ketamine, this infu-

sion was always the second of the two runs, consistent with prior work (Anticevic et al., 2012a). A

doctor and two nurses as well as a study coordinator remained present for the duration of the scan.

A bolus of ketamine (0.3 mg/kg of bodyweight) or saline were delivered via infusion 5 s after the

start of the run and then continuously at a rate of 0.65 mg/kg per hour through the duration of the

session. The sequence of scans in each for either the placebo or ketamine infusion was as follows: (i)

resting state (4.67 min); (ii) blood draw (sham if saline condition); (iii) a cognitive working memory

task (total 14 min); (iv) blood draw (sham if saline condition); (v) a cognitive working memory task

(total 14 min); (vii) blood draw (sham if saline condition); (vii) a cognitive working memory task(total

8.63 min). Data from the the cognitive working memory task were not used in the present study and

are actively undergoing a distinct analysis. Participants were scanned at Yale University on a Siemens

Trio 3T whole-body scanner and 32-channel receiver head coil. High-resolution structural T1-

weighted images were acquired using an MP-RAGE sequence and the following parameters: voxel

size = 0.8 mm3, time between two inversion pulses = 3123 ms, inversion time = 1055 ms, inter-echo

delay = 12 ms, flip angle = 8˚, matrix = 320 � 335, field of view = 227 � 272 mm, 227 sagittal slices.

T2-weighted images were acquired with the following parameters:voxel size = 0.8 mm3, repetition

time = 2500 ms, echo time = 415 ms, flip angle = 90˚, matrix = 320 � 335, field of view = 227 � 272

mm, 227 sagittal slices. BOLD images were acquired using a whole-brain gradient-echo planar imag-

ing (EPI) sequence (400 frames at TR = 0.7 ms; TE = 30 ms; slice thickness = 2.5 mm; 54 axial slices;

no slice gap; field of view = 250 mm2; in-plane resolution = 2.5 mm � 2.5 mm). In addition, a field

map and pair of spin-echo gradients were collected at the end of every scanning session.

Pharmacological neuroimaging processing and analysis for LSD and
ketamine samples
All data were preprocessed to be consistent with the BSNIP and replication dataset processing

steps. Specifically, we used the HCP minimal preprocessing pipeline and with the same motion

scrubbing and nuisance signal regression parameters as were used for the BSNIP dataset as

described in the section ‘Neural data acquisition and preprocessing’ above. Parcel-wise GBC maps

were computed as described in the section ‘Resting-state functional connectivity and global brain

connectivity’ above, by first parcellating the dense time-series for each subject and then computing

the parcel-level GBC. As with the BSNIP and replication analyses, parcel GBC was first calculated by

parcellating the dense time-series for every subject and then computing GBC across all 718 parcels

from the whole-brain functional parcellation (Ji et al., 2019b; Glasser et al., 2016). Group-level

GBC maps were computed for every participant for all conditions. We computed the contrast map

for ‘LSD-Placebo’ as well as ‘Ketamine-Placebo’ conditions as a t-test between both the pharmaco-

logical scans versus placebo scans. The Z-scored t-contrast maps between pharmacological and
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placebo conditions were used as a pharmacological target map in relation to the PC-derived neural

GBC maps (Figure 7 and Appendix 1—figure 29).

Neural gene expression mapping
The gene mapping analyses in this study utilize the procedure described in Burt et al., 2018. Briefly,

we used cortical gene expression data from the publicly available Allen Human Brain Atlas (AHBA,

RRID:SCR-007416) , mapped to cortex (Burt et al., 2018). Specifically, the AHBA quantified expres-

sion levels across 20,737 genes obtained from six postmortem human brains using DNA microarray

probes sampled from hundreds of neuroanatomical loci. Recent studies demonstrated the ability to

map expression of each gene onto neuroimaging-compatible templates (Hawrylycz et al., 2012;

Burt et al., 2018). Building on these innovations we mapped gene expression on to 180 symme-

trized cortical parcels from the HCP atlas (Glasser et al., 2016) in line with recently published meth-

ods (Burt et al., 2018). This yielded a group-level map for each gene where the value in each parcel

reflected the average expression level of that gene in the AHBA dataset. These group-level maps

were in turn as a gene expression target map in relation to the PC-derived neural GBC maps.

Code availability
Code and core results presented in this paper are available at https://github.com/AnticevicLab/bbs_

manuscript/ (copy archived at swh:1:rev:4776b571bbf9a27a2f43146728a6834edbb552ce; Ji, 2021).
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Appendix 1

Note 1 - ICA of behavioral symptom data
We performed an independent component analysis (ICA) on the symptom data as a comparison to

our PCA data-reduction solution. Specifically, an ICA was conducted on the behavioral data as an

alternative dimensionality reduction method to the PCA. Five components were selected to allow

for a direct comparison to be made to the results of the PCA (Appendix 1—figure 3). ICA decom-

position was computed on the 436 � 36 (patients x symptom variables) data matrix using Hyvari-

nen’s (Hyvärinen, 1999) FastICA algorithm, executed via the ‘icafast’ package in R (Helwig and

Hong, 2013). Data were mean-centered before decomposition. After decomposition, the source sig-

nal estimate (‘ICA score’) for all subjects for each independent component (IC) was regressed on to

the neural data across patients, as with a priori and PCA scores, described in the methods section.

The proportion of variance explained by each independent component (IC) is shown in Appendix 1—

figure 3A. These percentages are comparable to those observed across all the PCs in Figure 1C.

Appendix 1—figure 3B shows the correlations between subject scores across all five ICs and five

PCs (N = 436). Notably, certain pairs of components between the two solutions appear to be highly

similar and exclusively mapped to each other (IC5 and PC4; IC4 and PC5). The correspondence

between PCs 1–3 and ICs 1–3 appears to be more distributed as opposed to following a one-to-one

mapping, likely because PCs are orthogonal to each other whereas ICs are not necessarily orthogo-

nal. For example, PC3 appears to correspond to IC2, but is negatively related to IC3, suggesting

that these two ICs are oblique to the PC and perhaps share behavioral symptom variation in the ICA

solution that is explained by a single PC3. Of note, PC3 (the ‘Psychosis Configuration’ axis) is a bi-

directional axis whereby individuals who score either highly positively or highly negatively are highly

symptomatic in different ways. The diverging nature of this axis may be not be captured well in the

ICA solution, when orthogonality is not enforced. Appendix 1—figure 12F shows the correlations

across parcels (N = 718 parcels) between the five IC maps (Appendix 1—figure 12A-E) and five PC

maps. Again, the neural pattern resembles that in Appendix 1—figure 12, with certain pairs corre-

sponding highly between the the ICA and PCA solutions. The coefficient maps for each of the five

ICs are shown in Appendix 1—figure 12. To compare the ICA solution to the PCA solution, we per-

formed a correlation between the individual PCA and ICA scores across subjects, as well as between

parcel coefficients of the five PCA maps and five ICA maps across parcels.

Note 2 - Establishing the reproducibility of the data-reduced symptom-
neural mapping solution
Here, we expand on the specific details regarding the cross-validation and reproducibility of the

symptom-neural mapping result described in Figure 4. Specifically, Figure 4D shows a summary of

a fivefold bootstrapping symptom-neural map validation. Here, the patient sample was randomly

split into five folds and each fold was held out once as the regression was performed between symp-

tom scores and parcel-level GBC in the other four folds. The resulting GBC coefficient map was then

correlated with the full sample map performed in all 436 patients. Notably, the correlations between

maps for each of the k-fold runs and the full model reached effects between r = 0.8–0.9. The coeffi-

cient map for one such fold is shown in Figure 4E for and the correlation between the coefficients in

this map and the coefficients of the full regression model (performed in all 436 subjects) is shown in

Figure 4F. Figure 4G shows a similar summary for leave-one-site-out validation for the regression of

all five PC dimensions and traditional symptom scales onto neural GBC. Here, patients from one of

the sites were left out while a regression was performed in all remaining patients. In turn, this effect

was correlated with the coefficient map from the full patient sample. Again, the maps are highly sim-

ilar for all sites, showing that the relationships between behavior and neural data are not driven by

any one site in particular. Here, the coefficient map for one example is shown in Figure 4H for PC3.

Specifically, the results performed without Site three are shown because this is the site with the

greatest number of patients and therefore may be the most likely to impact the final effect. The cor-

relation between the coefficients in the resulting map without Site three and the coefficients of the

full sample regression model are shown in the scatterplot in Figure 4I. Finally, we performed a strati-

fied split-half replication. Here, the full sample of patients was randomly divided into two halves (H1

and H2) with the proportion of each diagnostic group (BPP, SADP, SZP) preserved within each half.
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Then, PCA on the symptom data was computed in each half independently. As noted in the main

text, this resulted in the ‘observed’ PCA values for H1 and H2. In turn, we used loadings from H1

PCA to compute the ‘predicted’ PC scores for subjects in H2, and vice versa. These ‘predicted’ and

‘observed’ PC scores were then independently regressed against parcellated GBC for subjects a

given half. This yielded two maps for each PC: one for the ‘predicted’ PC scores based on H1 data;

and one for the ‘observed’ PC scores from H1 data. These two symptom-neural maps were then cor-

related to evaluate reproducibility of the effects. This process was performed for both H1-to-H2

reproducibility as well as H2-to-H1 reproducibility. We performed 1000 runs of the entire split-half

replication analysis for the PC1-5 maps (Figure 4J. Example data for PC3 H1 and H2 are shown in

Figure 4K–M). These results highlight that the behavioral PC-to-GBC mapping yields a highly repro-

ducible ‘brain-behavior’ effect.

Note 3 - Multivariate canonical correlation analysis of symptom and
neural features in PSD
CCA solves for transformation matrices and such that the correlations between the linearly trans-

formed ‘latent’’ matrices U and V are maximal (see Materials and methods for computational

details). Matrix U contains the latent ‘behavioral’ subject scores for all CV and is a linear composite

of behavioral feature matrix B scaled by the loadings in ; similarly, V is the latent neural score matrix

and is the linear composite of neural features N transformed by . Each column in U and V is known

as a canonical variate (CV); each corresponding pair of canonical variates (e.g. U1 and V1) is referred

to as a canonical mode. The correlations between the transformed latent matrices U and V are maxi-

mized (Figure 5B), under the constraint that the canonical modes are orthogonal and independent

to each other. Hence the correlation between each subsequent pair of CVs is computed from the

residuals of the previous pair, until the number of columns in the smaller of the two matrices is

reached.

In the main text we show that our CCA solution is not reproducible. We also examined whether

the size of the neural feature space affects the CCA solution. To this end, we computed CCA using:

(i) 180 symmetrized cortical parcels; (ii) 359 bilateral subcortex-only parcels; (iii) 192 symmetrized

subcortical parcels; (iv) 12 functional whole-brain networks, from the recently developed cortico-sub-

cortical CAB-NP parcellation (Glasser et al., 2016; Ji et al., 2019b). We show results for subcortical

(192 neural features) in Appendix 1—figure 13, as well as network-level (12 features neural features)

in Appendix 1—figure 14. We evaluated CCA significance via permutation testing whereby patient

order was randomly shuffled 5000 times (such that the association between behavioral and neural

features was violated) and a CCA solution was computed for each shuffle; (see Materials and

methods).

For each CCA solution, we examined how much symptom variance can be accounted for by the

neural feature variance. Specifically, the correlation between behavioral features B and the latent

neural matrix V (i.e. N) reflects the amount of variance in B that can be explained by the neural CVs

in V (Figure 5E). In the main text, Figure 5F shows the proportion of behavioral variance explained

by each of the neural CVs in a CCA performed between 180 neural features and all 36 symptom

measures. Figure 5G shows the result for the five PC-derived symptom dimensions. Given that the

symptom PCs accounted for ~50.93% of total symptom variance (see Figure 1), the percentages

here were scaled to reflect the total proportion of behavioral variance explained by each CV. The

amount of neural variance explained by each behavioral CV is shown in Appendix 1—figure 16.

Next, we examined the proportion of symptom variance explained by each neural canonical vari-

ate (CV). Because the PCs accounted for ~50.93% of total symptom variance (Figure 1), the percen-

tages here were scaled accordingly. While the CCA using PC scores has fewer features than the one

using item-level symptom measures, each neural CV explained more behavioral variance (Figure 5G

versus 5F), suggesting that the PCs may capture neurally-relevant symptom variation with fewer fea-

tures. Each CV has a pair of associated symptom and neural profiles, which can inform interpretation.

This is shown for CV3 in Figure 5H–K. Specifically, the latent scores for an example behavioral

canonical variate (CV3) across diagnostic groups normalized to controls are shown in Figure 5H. The

profile of PC loadings onto CV3 are shown in Figure 5I. Full results are shown in Appendix 1—fig-

ure 16. CCA loadings are computed as the correlation of the latent matrix U (or V) and the input

data matrix B (or N). These CCA loadings reflect the amount of variance in the original data that is
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extracted by the canonical variates. The high negative loadings of CV3 onto PCs 1,4,5 versus the

high positive loadings of CV3 onto PC3 in Figure 5I indicate that CV3 captures complex symptom

variation. This can also be seen by the projecting 36 symptom measure loadings from a given PC

onto CV3 (Figure 5J). Here the most positively loaded items were #7 ‘Delusions’ (PANSS P1), #9

‘Hallucinations’ (PANSS P3), #21 ‘Somatic Concern’ (PANSS G1) and #29 ‘Unusual Thought Content’

(PANSS G9), while negatively loaded items include #16 ‘Poor Rapport’ (PANSS N3), #19 ‘Lack of

Spontaneity’ (PANSS N6), and #28 ‘Uncooperativeness’ (PANSS G8). Conversely, the corresponding

neural factor loadings for CV3 are shown in Figure 5K, illustrating GBC patterns associated with the

CV3 profile. Data for all five CVs are shown in Appendix 1—figure 15.

Interestingly, the cross-validation of the CCA effect was reproducible when using overlapping

cross-validation strategies Appendix 1—figure 17. However, as noted in the main text, the CCA

solution was not reproducible with out-sample cross-validation strategies even though the effect

passed p<0.05 permutation testing. This highlights the importance of rigorously testing for out-of-

sample reproducibility of brain-behavioral effects across independent sub-samples (Helmer et al.,

2020).

Note 4 - Establishing the Reproducibility of the CCA Solution
Here, we outline the details of the split-half replication for the CCA solution. Specifically, the full

patient sample was randomly split (referred to as ‘H1’ and ‘H2’ respectively), while preserving the

proportion of patients in each diagnostic group. Then, CCA was performed independently for H1

and H2. While the loadings for behavioral PCs and original symptom measures are somewhat similar

(mean r» 0:5) between the two CCAs in each run, the neural loadings were not stable across H1 and

H2 CCA solutions. Critically, CCA results did not perform well for leave-one-subject-out cross-valida-

tion (Figure 5M). Here, one patient was held out while CCA was performed using all data from the

remaining 435 patients. The loadings matrices and from the CCA were then used to calculate the

‘predicted’ neural and behavioral latent scores for all five CVs for the patient that was held out of

the CCA solution. This process was repeated for every patient and the final result was evaluated for

reproducibility. As described in the main text, this did not yield reproducible CCA effects

(Figure 5M).

Of note, CCA may yield higher reproducibility if the neural feature space were to be further

reduced. As noted, our approach was to first parcellate the BOLD signal and then use GBC as a

data-driven method to yield a neurobiologically and quantitatively interpretable neural data reduc-

tion, and we additionally symmetrized the result across hemispheres. Nevertheless, in sharp contrast

to the PCA univariate feature selection approach, the CCA solutions were still not stable in the pres-

ent sample size of N ¼ 436. Indeed, a multivariate power analysis (Helmer et al., 2020) estimates

that the following sample sizes will be required to sufficiently power a CCA between 180 neural fea-

tures and five symptom features, at different levels of true canonical correlation (rtrue):

. if rtrue ¼ 0:1: nrequired ¼ 103; 545

. if rtrue ¼ 0:3: nrequired ¼ 8; 145

. if rtrue ¼ 0:5: nrequired ¼ 2; 497

To test if further neural feature space reduction may be improve reproducibility, we also evalu-

ated CCA solutions with neural GBC parcellated according to 12 brain-wide functional networks

derived from the recent HCP-driven network parcellation (Ji et al., 2019b). Again, we computed the

CCA for all 36 symptom measures as well as five PCs (Appendix 1—figure 14). As with the parcel-

level effects, the network-level CCA analysis produced significant results (for CV1 when using 36

symptom measure scores and for all 5 CVs when using the five PC-derived scores). Here, the result

produced much lower canonical correlations (~0.3–0.5); however, these effects (for CV1) clearly

exceeded the 95% confidence interval generated via random permutations, suggesting that they

may reflect the true canonical correlation. We observed a similar result when we evaluated CCAs

computed with neural GBC from 192 symmetrized subcortical parcels and 36 symptoms or 5 PCs

(Appendix 1—figure 13). In other words, data-reducing the neural signal to 12 functional networks

likely averaged out parcel-level information that may carry symptom-relevant variance, but may be

closer to capturing the true effect. Indeed, the power analysis suggests that the current sample size

is closer to that needed to detect an effect with 12 vs. 5 features:
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. if rtrue ¼ 0:1: nrequired ¼ 8; 855

. if rtrue ¼ 0:3: nrequired ¼ 696

. if rtrue ¼ 0:5: nrequired ¼ 213

Note that we do not present a CCA conducted with parcels across the whole brain, as the num-

ber of variables would exceed the number of observations. However, the multivariate power analysis

using 718 neural features and five symptom features estimates that the following sample sizes would

be required to detect the following effects:

. if rtrue ¼ 0:1: nrequired ¼ 421; 608

. if rtrue ¼ 0:3: nrequired ¼ 33; 166

. if rtrue ¼ 0:5: nrequired ¼ 10; 168

This analysis suggests that even the lowest bound of ~10 k samples exceeds the present available

sample size by two orders of magnitude.

Note 5 - Evaluating individual patients in discovery and replication
samples via similarity to target brain-behavior spaces
We tested a hybrid neurobehavioral patient selection strategy for single PC symptom axes by first

imposing a PC-based symptom threshold, followed by a target neural similarity threshold driven by

the most highly predictive symptom-neural map features. Specifically, the ‘neural similarity predic-

tion index (NSPI)’ computes a patient-specific Spearman’s r between that patient’s DGBCobs and the

group reference bPC3GBC
obs map using the maximally predictive P ¼ 39 parcels (see Appendix 1—

figure 27 for whole-brain results and alternative similarity metrics). Appendix 1—figure 26A shows

a significant relationship between each patient’s PC3 symptom score (X-axis) and the neural similar-

ity index (Y-axis). In turn, Appendix 1—figure 26B shows binned results, which provides a visual

intuition for patient segmentation across both the neural and behavioral indices (Appendix 1—fig-

ure 26A, right: binned by � ¼ 0:1 and PC3score ¼ 0:5). For patients at either tail, the neurobehavioral

relationship was robust. Conversely, patients with a low absolute PC3 score showed a weak relation-

ship with symptom-relevant neural features. This is intuitive because these individuals do not vary

along the selected PC symptom axis.

Appendix 1—figure 26C shows the mean NSPI across subjects within each PC symptom bin

along the X-axis. The resulting sigmoid captures that patients exhibit greater neural similarity if their

PC symptom scores are more extreme. To evaluate if this relationship can yield a personalized

patient selection, we computed the absolute NSPI (Appendix 1—figure 26D). The effect was

approximated by a quadratic function, highlighting that patients with extreme PC3 scores (either

positive or negative) exhibited a stronger NSPI (i.e. personalized neural effects that strongly resem-

bled the reference ðbPC3GBC
obsÞP¼39 map). Appendix 1—figure 26E shows the application of this

neurobehavioral selection procedure, demonstrating that PSD patients with extreme PC3 scores

(defined at the top/bottom 10th percentile of the ‘discovery’ sample, þ2:17<PC3score<� 2:41) exhibit

high NSPI values. We observed an inherent trade-off such that if the PC score threshold was raised

then neural target similarity confidence goes up, but fewer patients will be selected. In the discovery

PSD sample, all patients were accurately selected above the following neurobehavioral thresholds:

90
th%tile<PC3score<10

th%tile and j�j>0:4 (Appendix 1—figure 26E, 34/436 patients selected, green

line). We show consistent effects for when the selection was applied to PC5 (Appendix 1—figure

26F; results for all PCs in Appendix 1—figure 28).

To test if the neurobehavioral selection is generalizable, we used an independent cross-diagnostic

sample of 30 patients diagnosed with SZP and 39 diagnosed with obsessive-compulsive disorder

(OCD) (Appendix 1—figure 26G, see Materials and methods and Appendix 1—table 3 for

details). Applying the ‘discovery’ selection thresholds yielded similar results for ~6% of the cross-

diagnostic ‘replication’ sample for PC3 (Appendix 1—figure 26G, full analyses in Appendix 1—fig-

ure 27C). Notably, no replication sample patients were selected along the neurobehavioral thresh-

olds for PC5 (Appendix 1—figure 26H). Although there are SZP patients in the replication cross-

diagnostic sample, few scored highly on PC5 and none met the neural similarity threshold, emphasiz-

ing that not all patients within the same DSM-based diagnosis will exhibit variation along the same

neurobehavioral axis. Collectively, these results show that data-driven symptom scores can pinpoint
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individual patients for whom their neural variation strongly maps onto a target neural reference

map. These data also highlight that both symptom and neural information for an independent

patient can be quantified in the reference ‘discovery’ BBS using their symptom data alone.

Appendix 1—table 1. Glossary of the key terms and abbreviations used in the study.

Abbreviation/
Term Definition

General and Behavioral Terms

PSD Psychosis spectrum disorder; or patients diagnosed with a PSD.

BPP Bipolar disorder with psychosis; or patients diagnosed with BPP.

SADP Schizoaffective disorder with psychosis; or patients diagnosed with SADP.

SZP Schizophrenia with psychosis; or patients diagnosed with SZP.

CON Control subjects.

BACS Brief Assessment of Cognition in Schizophrenia.

PANSS Positive and Negative Syndrome Scale.

Symptommeasures The 36 behavioral items from the BACS and PANSS.

PCA;PC Principal component analysis, and principal component.

ICA; IC Independent component analysis, and independent component.

Neural Terms

FC Functional connectivity (Fisher’s r-to-Z transformed Pearson correlation values).

GBC Global brain connectivity; computed for each brain location as the the mean FC across the whole
brain.

bPCGBC The beta coefficient map from a mass univariate regression of PC scores on to GBC across
subjects.

bPCGBC
obs The beta coefficient map from a mass univariate regression of observed (measured) symptom PC

scores on to observed (measured) GBC across subjects.

bPCGBC
pred The beta coefficient map from a mass univariate regression of predicted symptom PC scores on

to observed (measured) GBC across subjects.

GBC � PCA A PCA performed on the neural GBC data across all N = 638 PSD and CON subjects.

^GBCwoPC1
The GBC matrix reconstructed without the first PC of the GBC-PCA.

^GBCwoPC1�2
The GBC matrix reconstructed without the first two PCs of the GBC-PCA.

^GBCwoPC1�3
The GBC matrix reconstructed without the first three PCs of the GBC-PCA.

^GBCwoPC1�4
The GBC matrix reconstructed without the first four PCs of the GBC-PCA.

Multivariate Analyses Terms

CCA Canonical correlation analysis.

CV Canonical variate from a CCA solution.

180 vs:36CCA The CCA computed between 180 neural features and 36 symptom measures.

5180 vs:5CCA The CCA computed between 180 neural features and five symptom PCs.

N;B The input neural and behavioral data matrices in a CCA, respectively.

N̂; B̂ The predicted neural and behavioral data matrices in the CCA cross-validation, respectively.

Q;	 The neural and behavioral transformation matrices in a CCA, respectively.

U;V The transfomed neural and behavioral data matrices in a CCA, respectively.

Single-Subject Prediction Analyses Terms

DGBC The difference between an individual’s measured GBC map and the mean GBC map computed
for the whole group; reflects individual differences in GBC, which may otherwise be conflated by
the group mean.

bPCGBC
obs
N�1

The beta coefficient map computed across N � 1 subjects, using observed symptom PC and GBC
data.

Continued on next page
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Appendix 1—table 1 continued

Abbreviation/
Term Definition

Sobs The vector of observed symptom scores for a single PC (i.e. from a PCA computed using
symptom measures), with length N-1 (as subject i is left out).

Spred The predicted symptom PC for subject i, using the loadings from a leave-one-out PCA computed
on N-i subjects.

dpGBC Dot product between a subject’s DGBC map and a bPCGBC map.

dpGBCobs
i Dot product between a subject i’s DGBC map and the bPCGBC

obs
N�1

map computed without that
subject.

dpGBC
pred
i

The predicted dpGBC for a subject i, predicted from a regression model using the dpGBCobs
from all other subjects and the predicted Spred for subject i.

Pselect The number of parcels in the subset of the brain map used in a particular analysis. Pselect ¼ 718 for
the full whole-brain map.

BBS Brain-Behavior Space; the symptom and neural mapping for a particular dimension.

Appendix 1—table 2. Clinical and demographic details for the BSNIP sample.

Clinical and demographic measures are shown at the group level for the BSNIP sample used for initial

‘discovery’ analyses. Means and standard deviations were computed for each of the diagnostic

groups. Abbreviations: CON, controls; PSD, psychosis spectrum disorder patients; BPP, bipolar disor-

der with psychosis; SADP, schizoaffective disorder with psychosis; SZP, schizophrenia; CPZ, chlor-

promazine; PANSS, Positive and Negative Syndrome Scale for Schizophrenia, BACS, Brief

Assessment of Cognition in Schizophrenia.

Characteristic CON (N=202) PSD (N=436) BPP (N=150)
SADP
(N=119) SZP (N=167)

Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 37.18 12.18 35.33 12.31 36.29 12.94 35.86 11.87 34.16 11.99

Sex (% male) 42.08 - 48.62 - 31.33 - 44.54 - 67.07 -

Parental Education (years) 13.35 3.42 13.67 3.43 14.16 3.44 13.05 3.95 13.62 2.93

Participant’s Education 14.76 2.27 13.47 2.34 14.22 2.31 13.25 2.22 12.93 2.28

Handedness (% right) 85.64 - 85.78 - 83.33 - 88.24 - 86.23 -

Signal-to-Noise (SNR) 231.03 82.70 218.34 93.44 229.78 100.09 230.93 93.83 198.10 83.13

% Frames Flagged 2.81 3.99 6.17 9.09 6.41 9.67 5.32 9.32 6.57 8.35

Medication (CPZ equivalents) - - 443.20 402.92 318.61 321.06 514.43 462.70 490.64 395.76

PANSS Positive Symptoms 7.03 0.30 15.66 5.35 12.87 4.35 18.19 5.20 16.37 5.15

PANSS Negative Symptoms 7.01 0.16 14.59 5.10 12.01 3.66 15.55 4.52 16.22 5.68

PANSS General Psychopathology 16.04 0.36 31.45 8.67 28.72 8.20 34.57 8.70 31.67 8.30

PANSS Total Psychopathology 30.08 0.61 61.67 16.32 53.59 13.69 68.22 15.72 64.26 16.04

BACS Cognitive Score (Z) 0.02 1.10 �1.22 1.20 �0.83 1.19 �1.30 1.10 �1.52 1.19

Appendix 1—table 3. Scan acquisition parameters for the BSNIP dataset across sites.

Scan acquisition details are shown for the 6 BSNIP acquisition sites. Adapted from Meda et al.,

2015.

BOLD TR (ms) TE (ms) FA (deg.) Slices (N) Slice order Matrix (mm) Voxel (mm) Vendor

Baltimore 2210 30 70 36 I-A 64 � 64 3.4 � 3.4 � 3 Siemens Trio

Hartford 1500 27 70 29 S-A 64 � 64 3.4 � 3.4 � 5 Siemens Allegra

Continued on next page
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Appendix 1—table 3 continued

BOLD TR (ms) TE (ms) FA (deg.) Slices (N) Slice order Matrix (mm) Voxel (mm) Vendor

Detroit 1570/1720 22 60 29 S-A 64 � 64 3.4 � 3.4 � 4 Siemens Trio

Dallas 1500 27 60 29 S-A 64 � 64 3.4 � 3.4 � 4 Philips

Chicago 1775 27 60 29 S-A 64 � 64 3.4 � 3.4 � 4 GE Signa HDX

Boston 3000 27 60 30 S-A 64 � 64 3.4 � 3.4 � 5 GE Signa HDX

T1w TR (ms) TE (ms) FA (deg.) Slices (N) Slice order Matrix (mm) Voxel (mm) Vendor

Baltimore 2300 2.91 9 160 — 256 � 240 1 � 1 � 1.2 Siemens Trio

Hartford 2300 2.91 9 160 — 256 � 240 1 � 1 � 1.2 Siemens Allegra

Detroit 2300 2.94 9 160 — 256 � 240 1 � 1 � 1.2 Siemens Trio

Dallas 6.6 2.8 8 170 — 256 � 256 1 � 1 � 1.2 Philips

Chicago 6.98 2.84 8 166 — 256 � 256 1 � 1 � 1.2 GE Signa HDX

Boston 6.98 2.84 8 166 — 256 � 256 1 � 1 � 1.2 GE Signa HDX

Appendix 1—table 4. Clinical and demographic details for the independent replication cross-

diagnostic sample.

Clinical and demographic measures are shown at the group level for the independent clinical sample

used for replication analyses presented in main text (Figure 7). Means and standard deviations were

computed for each of the diagnostic groups. Abbreviations: CON, controls; PTT, all patients; OCD,

obsessive-compulsive disorder; SZP, schizophrenia; PANSS, Positive and Negative Syndrome Scale

for Schizophrenia, BACS, Brief Assessment of Cognition in Schizophrenia.

Characteristic CON (N=34) PTT (N=69) OCD (N=39) SZP (N=30)

Mean SD Mean SD Mean SD Mean SD

Age (years) 29.91 8.11 33.7 12.89 32.23 12.32 35.63 13.63

Sex (% male) 61.7 - 59.4 - 46.1 - 76.7 -

Parental Education (years) 15.05 3.31 13.98 3.45 14.02 3.78 13.93 3.01

Participant’s Education 16.37 2.34 14.16 2.12 15.22 1.95 12.79 2.34

Handedness (% right) 93.9 - 91.3 - 84.6 - 100.0 -

Signal-to-noise (SNR) 53.45 5.59 51.86 5.63 52.29 5.28 51.33 6.08

% Frames Flagged 0.21 0.53 7.27 15.53 5.11 13.81 10.07 17.37

PANSS Positive Symptoms 7.58 1.06 11.40 4.23 8.97 2.74 14.56 6.16

PANSS Negative Symptoms 7.75 1.57 11.06 3.59 8.80 2.21 14.00 5.39

PANSS General Psychopathology 32.62 2.62 48.80 10.96 42.71 9.07 56.72 13.42

PANSS Total Psychopathology 47.95 5.25 71.26 18.78 60.48 14.02 85.28 24.97

BACS Cognitive Score (Z) 0.00 1.00 �0.67 1.45 �0.07 1.03 �1.45 1.55
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Appendix 1—table 5. Summary of the key questions, results, and supporting data in this study.

Question Results

Corresponding

Figures

Can data-reduction methods (e.g.

principal component analysis, PCA)

reliably map symptom axes across PSD

that include both canonical symptoms

and cognitive deficits?

The PCA on 36 behavioral measures and

436 PSD patients produced five

significant components (PCs) spanning

key symptom domains and oblique to

conventional symptom factors and

diagnostic categories.

Figure 1

Appendix 1—figure

2–3

Are the derived dimensionality-reduced

symptom axes in PSD stable and

replicable?

The behavioral PCA solution was stable

across split-half replication, leave-site-

out, and k-fold cross-validations, and not

driven by medication effects.

Figure 2

Appendix 1—figure

4, 5, 6, 7

Do dimensionality-reduced symptom

axes yield stronger statistical neural

maps across PSD, relative to

conventional scales & diagnoses?

PC symptom scores yielded a much

stronger statistical effect with neural

features (as measured by global brain

connectivity, GBC) across patients than

did conventional symptom scores.

Figure 3

Appendix 1—figures

7, 8, 9, 10

Are the PC brain-behavior maps stable

and replicable?

PC brain-behavior maps are stable and

reproducible across split-half, leave-site-

out and k-fold cross-validations.

Figure 4

Appendix 1—figure

11–12

Can a multivariate approach (e.g.

canonical correlation analysis, CCA) be

used to derive a stable neuro-behavioral

mapping?

CCA produced a stable within-sample

solution, but performed poorly on out-

of-sample cross-validations.

Figure 5

Appendix 1—figures

13, 14, 15, 16, 17, 18

8Is the computed symptom-to-neural

mapping actionable for individual

patient selection?

A majority of neural variance in PSD

patients is not symptom-relevant.

However, brain-behavioral maps can be

optimized to select specific patients

along PC axes. This method can also be

applied to select patients from

independent datasets.

Figures 6 and 7

Appendix 1—figures

24, 25, 26, 27, 28

8Can we inform molecular mechanism

and treatment decisions by relating

patient-specific brain-behavioral maps

to independently-acquired

pharmacological neuroimaging maps?

Pharmacological neuroimaging maps

targeting mechanisms of interest (e.g.

ketamine and LSD) can be used as

independent benchmarks against which

patient-specific brain-behavioral maps

can be evaluated.

Figure 7

Appendix 1—figure

29

9Can we inform molecular mechanism

and potential novel therapeutic targets

by relating brain-behavior maps to gene

expression maps?

Gene expression maps for genes

implicated in PSD neuropathology (e.g.

serotonin and GABA receptors,

interneuron markers) can inform

mechanism and potential novel targets

relating to specific axes of neuro-

behavioral variation.

Figure 8

Appendix 1—figure

30
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Appendix 1—figure 1. Study workflow used study to quantify shared neural and behavioral variation

in individuals diagnosed with PSD. (A) Data from the BSNIP study were acquired from the National

Institute of Health Data Archive (NDA). T1-weighted structural and resting-state BOLD

neuroimaging data were obtained for a total of 638 individuals (202 controls, 150 patients with a

diagnosis of bipolar disorder with psychosis, 119 with a diagnosis of schizoaffective disorder, and

167 patients with schizophrenia). Data were processed through the Human Connectome Project’s

(HCP) Minimal Preprocessing Pipeline with modifications made for ‘legacy’ BOLD and T1w data,

Appendix 1—figure 1 continued on next page
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Appendix 1—figure 1 continued

which are now featured as a standard option in the HCP pipelines provided by our team (https://

github.com/Washington-University/HCPpipelines/pull/156) using Yale High Performance Computing

clusters. (B) Symptom data were first normalized across the sample. The correlation matrix across all

436 PSD patients and 36 symptom measures was computed followed by dimensionality reduction

(e.g. using PCA or ICA). The dimensionality-reduced solution was then cross-validated to assess

stability and reproducibility across sites, k-fold cross-validations, leave-subject-out and split-half

approaches. (C) In parallel, all neuroimaging data were processed as noted above. T1w and resting-

state BOLD images were preprocessed using a modified version of the HCP Minimal Preprocessing

Pipeline, including individual-subject registration of structural and function data, de-noising, and

mapping of BOLD data on a hybrid surface-volume cortico-subcortical format (Connectivity

Informatics Technology Initiative [CIFTI] format, see Materials and methods for details). After

registration to a standard CIFTI template BOLD data were parcellated at the individual subject level

using the Cole-Anticevic Brain-wide Network Partition (CAB-NP), which is a functionally-defined

network and parcel-level partition in the CIFTI space encompassing both cortex and subcortex

(Glasser et al., 2016; Ji et al., 2019b). Lastly, a global brain connectivity (GBC) map for each

subject was computed by taking the mean functional connectivity of each parcel with all other

parcels in the brain at the single subject level. (D) After symptom and neural data were fully

processed in tandem, the symptom-to-neuroimaging mapping was quantified across subjects.

Specifically, the relationship between data-reduced symptom scores and GBC was computed for

each parcel across all patients. This produced a group-level symptom-neural map, which was

subsequently cross-validated using leave-site-out, k-fold, leave subject-out as well as split-half

approaches to assess reproducibility of the effect. Finally, the stable symptom-neural mapping result

was further feature-optimized for single-subject prediction. This yielded a set of parcels for

quantifying patient-specific symptom-neural prediction based on a cross-validated group reference

map as well as comparison of the selected parcels with independent molecular neuroimaging maps

(i.e. pharmacological [Anticevic et al., 2012a; Preller et al., 2018] and gene expression maps

[Burt et al., 2018]).
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Appendix 1—figure 2. Alternative views of the behavioral PCA triplot. (A–C) Alternative views of

the triplot in Figure 1F showing the relationship between the three principal axes of variation in

behavior and standard clinical symptom factors. Each point represents an individual subject

projected into the geometry defined by the first three principal components (PC). Vectors show the

projections of standard symptoms factors. (D–F) Alternative views of the triplot in panels A–C,

where each sphere represents the mean of each a priori clinical group. Vectors show the projections

of standard symptoms factors [PANSS positive (purple), negative (blue), general (pink) symptoms

and BACS cognitive performance (green)]. BPP, bipolar disorder; SADP, schizoaffective disorder;

SZP, schizophrenia; CON, controls. (G) Heatmap of the loadings of each of the 36 symptom

Appendix 1—figure 2 continued on next page
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Appendix 1—figure 2 continued

measures on the five significant PCs (also seen in radarplot in Figure 1E). Positive loadings are

indicated in red; negative loadings are shown in blue. Each PC is named based on its most strongly

loaded items.
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Appendix 1—figure 3. Independent component analysis (ICA) as an alternative method of

dimensionality-reduction of symptom data. (A) Screeplot showing the total proportion of variance

explained by each independent component (IC) in a five-component solution performed across all

36 behavioral measures in 436 patients. The size of each point is proportional to the variance

explained by that IC. (B) Correlation matrix showing correlations of individual subject scores for the

five significant principal components (PCs) from the PCA solution shown in Figure 1 and the five ICs

from the ICA solution, across all 436 subjects. Neural maps for each IC are shown in Appendix 1—

figure 12.
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Appendix 1—figure 4. k-Fold cross-validation for symptom-driven principal component analysis

(PCA). These results show a fivefold cross-validation analysis to test the stability of the PCA solution.

The full patient sample was first randomly split into five sets and patients were randomly assigned to

one of five subsets. Each subset of patients was then used as an independent ‘test sample’ in a PCA

that was derived from the other four subsets. Screeplot shows proportion of variance explained by

each of the PCs in a PCA of all 36 behavioral measures, excluding a subset of 88 patients. The

number of significant PCs determined via a permutation test and the total proportion of variance

explained by these PCs are all comparable to the full model shown in the main text. To obtain a

‘predicted’ PC score for the 88 patients in the excluded subset, the loadings from the model

obtained from the other 348 patients were used. The ‘observed’ PC scores are the scores from the

full model of the same 88 patients. The scatterplot shows that the predicted and observed scores

for PC1 are highly correlated (r = 0.999), suggesting that the PCA solution is stable and predictive at

the individual-subject level. Similarly, predicted and observed scores are highly correlated for all five

PCs. (B–E) The results of the PCA are also highly comparable and predictive for the other four folds.
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Appendix 1—figure 5. Leave-site-out cross-validation for symptom-driven principal component

analysis (PCA). These results show a sixfold leave-site-out cross-validation analysis to test the

stability of the PCA solution when a given site is excluded from the model. The full patient sample

was first split into six sets according to data collection site. Each held-out site was then used as an

independent ‘test sample’ in a PCA that was derived from the other five sites. (A) Proportion of

variance explained by each of the PCs in a PCA of all 36 behavioral measures, excluding one of the

six sites at which data was collected (here we excluded the Boston site). The number of significant

PCs determined via a permutation test and the total proportion of variance explained by these PCs

are all comparable to the full model shown in Figure 1C. To obtain a ‘predicted’ PC score for the 46

patients in the excluded site, the loadings from the model obtained from the other 390 patients

were used. The ‘observed’ PC scores are the scores from the full model of the same 88 patients. The

scatterplot shows that the predicted and observed scores for PC1 are highly correlated (r = 0.999),

suggesting that the PCA solution is stable and robustly predictive at the individual patient level.

Predicted and observed scores are highly correlated for all five PCs. (B–F) The results of the PCA are

also highly comparable for the other five sites, suggesting that possible site differences in evaluating

patient symptoms or patient sample composition are not impacting the obtained PCA solutions.
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B Differences in Mean PC Scores of Patients on No Medication vs Antipsychotic Medication

Appendix 1—figure 6. PCA solution is not driven by medication status or dosage. Antipsychotic

medication dosages were available for N = 338 out of 436 PSD patients, including 59 patients not

on antipsychotic medication. Antipsychotic dosages were converted to chlorpromazine (CPZ)

equivalents (Lencer et al., 2015). (A) Spearman’s r between medication dosage (CPZ equivalents)

and PC scores for each of the five significant principal components (PCs), for medicated patients

(gray points). Patients not on antipsychotic medication are also shown (yellow points, CPZ = 0 mg);

however, they were not included in the calculation of Spearman’s r as they contain no rank

information. (B) Bar plots show the mean PC scores of unmedicated (yellow) versus medicated (gray)

PSD patients for each of the five PCs. Error bars show standard error of the mean. Note that only

PC2 ‘Cognitive Performance’ scores appear to show a significant relationship with medication

consistently; this could be because antipsychotic medication (particularly first-generation

antipsychotics) are related to symptom variance across some PCA-derived symptom dimensions but

do not effectively treat cognitive deficits. Also, cognitive deficits (such as reaction time and fluency)

may be exacerbated due to the neuroleptic effects of first-generation antipsychotics. (C–E)

Alternative views of the triplot (as seen in Appendix 1—figure 2A–C) showing the relationship

between the three principal axes of variation in symptoms and aggregate scores from the PANSS

and BACS symptom scales (i.e. vectors show the projections of standard symptoms factors). Each

point represents an individual patient projected into the geometry defined by the first three

principal components (PC). Each patient is colored according to medication status

(yellow = unmedicated, gray = with medication). As evident from this plot there is no apparent

clustering of patients according to their medication status in the 3D PCA-derived space.
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Appendix 1—figure 7. Effects of age, socio-economic status, and sex on symptom PCA solution.

(A) Correlations between symptom PC scores and age (years) across N = 436 PSD. Pearson’s

correlation value and uncorrected p-values are reported above scatterplots. After Bonferroni

correction, we observed a significant positive relationship between age and PC3 score. This may be

because older patients have been ill for a longer period of time and exhibit more severe symptoms

along the positive PC3 dimension. (B) Correlations between symptom PC scores and socio-

economic status (SES) as measured by the Hollingshead Index of Social Position

(Hollingshead, 1975), across N = 387 PSD with available data. The index is computed as

(Hollingshead occupation score * 7) + (Hollingshead education score * 4); a higher score indicates

lower SES (Padmanabhan et al., 2015). We observed a significant negative relationship between

Hollingshead index and PC1 and PC2 scores. Lower PC1 and PC2 scores indicate poorer general

functioning and cognitive performance respectively, which is consistent with higher Hollingshead

indices (i.e. lower-skilled jobs or unemployment and fewer years of education). (C) The Hollingshead

index can be split into five classes, with one being the highest and five being the lowest SES class
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Appendix 1—figure 7 continued

(Hollingshead, 1975). Consistent with (B) we found a significant difference between the classes after

Bonferroni correction for PC1 and PC2 scores. (D) Distributions of PC scores across Hollingshead

SES classes show the overlap in scores. White lines indicate the mean score in each class. (E)

Differences in PC scores between (M)ale and (F)emale PSD subjects. We found a significant

difference between sexes in PC2 – Cognitive Functioning, PC4 – Affective Valence, and PC5 –

Agitation/Excitement scores. (F) Distributions of PC scores across M and F subjects show the

overlap in scores. White lines indicate the mean score for each sex.

A

PANSS Positive Sx

PANSS Negative Sx

PANSS General Sx

BACS Cognitive Sx

PCA 2 - Cognition

PCA 3 - Psychosis Configuration

PCA 4 - Affective Valence

PCA 1 - Global Dysfunction

PCA 5 - Agitation / Excitement
4.0-4.0 Z-value

PSD > CON

BPP > CON

SZP > CON

SADP > CON

F J

B G K

C H L

D I M

N

r-
v
a

lu
e

1
-1

Correlations between Maps

PRB BPP SZP SADP

Gen

Pos

Neg

Cog

 0.16 −0.36  0.47 −0.27

−0.04 −0.23  0.32 −0.28

−0.20 −0.15 −0.01 −0.10

−0.03 −0.10  0.33 −0.28

PC1 PC2 PC3 PC4 PC5

Gen

Pos

Neg

Cog

−0.96  0.63 −0.51  0.45  0.33

−0.65  0.19  0.29  0.01 −0.09

−0.80  0.34 −0.79  0.52  0.10

 0.34 −0.81  0.71 −0.59 −0.03

PC1 PC2 PC3 PC4 PC5

SADP

SZP

BPP

PRB

 0.22 −0.35  0.50 −0.47 −0.12

 0.17 −0.44  0.20 −0.07 −0.21

 0.13  0.05  0.04  0.10  0.28

 0.21 −0.31  0.29 −0.15 −0.03

O

BPP ≠ SZP ≠ SADP

P

E

Statistical Properties of Derived Maps

• CON     Controls

• PSD      All Psychosis Spectrum Patients

• SADP   Schizoaffective Patients

• SZP      Schizophrenia Patients

• BPP      Bipolar Psychosis Patients

PC1 PC2 PC3 PC4 PC5

PC5

PC4

PC3

PC2

PC1

−0.25  0.23 −0.11  0.24  1.00

−0.46  0.43 −0.53  1.00  0.24

 0.44 −0.47  1.00 −0.53 −0.11

−0.47  1.00 −0.47  0.43  0.23

 1.00 −0.47  0.44 −0.46 −0.25

−
5

0
5

P
C
3

G
e
n

P
C
1

P
C
4

N
e
g

C
o
g

S
Z
P

S
A
D
P

P
R
B

P
C
2

B
P
P

P
C
5

P
o
s

Z
−
s
c
o
re

PSD

P
S
D

Appendix 1—figure 8. Similarity across a priori, categorical and PCA-derived brain-behavioral GBC

maps. Z-scored maps of t-test for the difference in group mean GBC between traditional diagnostic

groups: (A) all patients (PSD) versus all healthy controls (CON); (B) patients with bipolar disorder

(BPP) versus CON; (C) patients with schizophrenia (SZP) versus CON; (D) patients with

schizoaffective disorder (SADP) versus CON. (E) Z-scored map of the F-test for the difference in

group mean GBC between patients in all three diagnostic groups (BPP, SZP, SADP). Z-scored map

of the regression against GBC, across all patients (PSD), of traditional symptom/behavioral scales:

(F) BACS cognitive composite performance score; (G) PANSS total negative symptom score; (H)
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Appendix 1—figure 8 continued

PANSS total positive symptom score; (I) PANSS total general symptom score. Z-scored map of the

regression against GBC, across all patients, of data-derived behavioral dimension scores: (J) PC1

score; (K) PC2 score; (L) PC3 score; (M) PC4 score; (N) PC5 score. (O) Correlation matrices showing

the similarity between brain-behavioral maps in A-N. (P) Violin plots of the distribution of Z-values in

all phenotype maps. Note that although there are strong correlations between the PC maps and the

a priori symptom maps, the statistical properties of some of the PC maps are improved (i.e. the

range of Z-scores is greater, with more extreme values), suggesting a stronger mapping between

neural and behavioral variation.
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Appendix 1—figure 9. Parcellated symptom-neural GBC maps across all PSD patients derived from

PCA dimensionality reduction of symptom measures. (A) All of the maps shown here were

parcellated at the single patient level using the Cole-Anticevic Brain Network Parcellation (CAB-NP)

parcellation (Ji et al., 2019b), which defines functional networks and regions across cortex and

subcortex that leveraged the Human Connectome Project’s Multi-Modal Parcellation (MMP1.0)

(Glasser et al., 2016; Ji et al., 2019b). The final published CAB-NP 1.0 parcellation solution can be

visualized via the Brain Analysis Library of Spatial maps and Atlases (BALSA) resource (https://balsa.

wustl.edu/rrg5v) and downloaded from the public repository (https://github.com/ColeLab/

ColeAnticevicNetPartition). (B–F) Relationships across all patients (N = 436) at each parcel location

between global brain connectivity (GBC) and PC score for each of the significant PCs. Values shown

in each brain parcel is the Z-scored regression coefficient of PC score on to parcel GBC, across all

436 subjects.
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Appendix 1—figure 10. Parcellated symptom-neural GBC maps across all CON subjects derived

from PCA dimensionality reduction of PSD symptom measures. (A) As with PSD maps, all of the

maps shown here were parcellated at the single patient level using the Cole-Anticevic Brain Network

Parcellation (CAB-NP) parcellation (Ji et al., 2019b), which defines functional networks and regions

across cortex and subcortex that leveraged the Human Connectome Project’s Multi-Modal

Parcellation (MMP1.0) (Glasser et al., 2016; Ji et al., 2019b). The final published CAB-NP 1.0

parcellation solution can be visualized via the Brain Analysis Library of Spatial maps and Atlases

(BALSA) resource (https://balsa.wustl.edu/rrg5v) and downloaded from the public repository

(https://github.com/ColeLab/ColeAnticevicNetPartition). (B–F) Relationships across all controls

(N = 202) at each parcel location between global brain connectivity (GBC) and PC score for each of

the significant PCs. Values shown in each brain parcel is the Z-scored regression coefficient of PC

score on to parcel GBC, across all 202 control subjects.
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Appendix 1—figure 11. Individual patients exhibit complex projections into the PCA-derived brain-

behavioral space (BBS) geometry (A) The PC3 group-level cortical map is shown here for comparison

purposes. (B) Neural and behavioral profile for one PSD patients, ‘Patient P1’. Neural data shows

the DGBC for Patient P1 (i.e. GBC demeaned relative to group mean of the entire PSD patient

sample) to reflect the pattern of changes in their GBC relative to the ’average’ of the entire sample.

The bar plot shows five behavioral PC scores for Patient P1. The radarplot shows original scores on

the 36 individual symptom measures for Patient P1 (black circle indicates zero; positive values are

indicated by outward deviation of the gray line). (C–D) Data is shown for two other individual

Patients P2 and P3. (E). Data is shown for one Control C1 participant. Note the difference between

the symptom-neural profiles of Patient P1, a positive PC3 ‘loading’ individual, and Patient P2, a

negative PC3 ’loading’ individual, both of whom were diagnosed with SZP under a conventional

categorical DSM approach. These data further illustrate the need to consider the complex

relationships in the symptom-neural mapping and highlight that individual-level precision in BBS

mapping can be obtained.
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Appendix 1—figure 12. Independent component analysis (ICA) as an alternative method of

dimensionality-reduction for symptom-neural mapping. (A–E) Relationships across all patients

(N = 436) at each brain location between global brain connectivity (GBC) and IC score, for ICs 1–5.

Values shown in each brain parcel is the Z-scored regression coefficient of IC score on to parcel

GBC, across all 436 subjects. (F) Scatterplots showing the relationships across parcels between the

PC3 map and the IC2 and IC3 maps. Sigmoids and a greater range (max - min) indicate an

improvement in the Z-statistics of the PC3 map relative to the IC maps. (G) Correlation matrix

showing correlations of individual parcel regression coefficients for the five significant PCs and the

five ICs (shown in A–E), across all 718 neural parcels. Of note, PC3 ‘Psychosis Configuration’

discovered via the PCA solution appears to be oblique to both IC2 and IC3, suggesting that these

two ICs may capture diverging tails of the PC3 axis; however, the orthogonality of the PCA solution

yielded maximally separated symptom dimensions that mapped on to unique neural variance, as

shown by the superior statistics of the PC3 map versus the IC2/IC3 maps.
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Appendix 1—figure 13. Canonical correlation analysis (CCA) of behavioral and subcortical neural

features. (A) As noted in the main text, CCA maximizes correlations between canonical variates

(CVs), that is matrices U and V. Here we evaluated a version of CCA using subcortical neural parcel

features in relation to item-level symptom measures or dimensionality-reduced PC symptom

measures. (B) Screeplot showing canonical modes for the CVs obtained from 192 subcortical neural

features (GBC of parcels from a neurobiologically-derived functional parcellation of the subcortex)

and 36 single-item PANSS and BACS symptom measures. Inset illustrates the correlation (r = 0.85)

between the CV of the first mode, U1 and V1 (note that the correlation was not driven by a

separation between diagnoses). (C) CCA was obtained from 192 subcortical neural features and five

low-dimensional symptom scores derived via the PCA analysis. Here, all modes remained significant

after FDR correction. Dashed black line shows the null calculated via a permutation test with 5000

shuffles; gray bars show 95% confidence interval. (D) Correlation between the neural data matrix N

and the behavioral data matrix weighted by the transformation matrix (B	) reflects the amount of

variance in N that can be explained by the final latent neural matrix U. Put differently, this

transformation calculates how much of the neural variation can be explained by the latent behavioral

features. (E) Proportion of symptom variance explained by each of the neural CVs in a CCA

performed between 192 subcortical neural features and all 36 behavioral measures. Inset shows the

total proportion of behavioral variance explained by the neural variates. (F) Proportion of total

behavioral variance explained by each of the neural CVs in a CCA performed between 192

subcortical neural features and the five low-dimensional symptom scores derived via the PCA

analysis. Dashed black line shows the null calculated via a permutation test with 5000 shuffles; gray

bars show 95% confidence interval. (G) Correlation between the behavioral data matrix B and the

neural data matrix weighted by the transformation matrix (NQ) reflects the amount of variance in B

that can be explained by the final latent neural matrix V. Put differently, this transformation

calculates how much of the symptom variation can be explained by the latent neural features. (H)

Proportion of symptom variance explained by each of the neural CVs in a CCA performed between

192 subcortical neural features and all 36 behavioral measures. Inset shows the total proportion of
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Appendix 1—figure 13 continued

behavioral variance explained by the neural variates. (I) Proportion of total behavioral variance

explained by each of the neural CVs in a CCA performed between 192 subcortical neural features

and the five low-dimensional symptom scores derived via the PCA analysis. While CCA using

symptom PCs has fewer dimensions and thus lower total variance explained (see inset), each neural

variate explains a higher amount of symptom variance than seen in F, suggesting that CCA could be

further optimized by first obtained a principled low-rank symptom solution. Dashed black line shows

the null calculated via a permutation test with 5000 shuffles; gray bars show 95% confidence interval.
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Appendix 1—figure 14. Canonical correlation analysis (CCA) of behavioral and network-level neural

features. (A) As noted in the main text, CCA maximizes correlations between canonical variates

(CVs), that is matrices U and V. Here we evaluated a version of CCA using network-level neural

parcel features in relation to item-level symptom measures or dimensionality-reduced PC symptom

measures. (B) Screenplot showing canonical modes for the CVs obtained from 192 subcortical neural

features (GBC of parcels from a neurobiologically derived functional parcellation of the subcortex)

and 36 single-item PANSS and BACS symptom measures. Inset illustrates the correlation (r = 0.85)

between the CV of the first mode, U1 and V1 (note that the correlation was not driven by a

separation between diagnoses). (C) CCA was obtained from 192 subcortical neural features and five

low-dimensional symptom scores derived via the PCA analysis. Here, all modes remained significant

after FDR correction. Dashed black line shows the null calculated via a permutation test with 5000

shuffles; gray bars show 95% confidence interval. (B) Screeplot showing the correlations between

the canonical variates of a CCA performed between 12 neural features (mean GBC of 12 whole-

brain networks) and all 36 behavioral measures. Dashed black line shows the null calculated via a

permutation test with 5000 shuffles; gray bars show 95% confidence interval. Inset illustrates the

correlation (r = 0.48) between the canonical variates of the first mode, U1 and V1. Note that the

correlation is not driven by a separation between categorical diagnoses. (C) Screeplot showing the
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Appendix 1—figure 14 continued

correlations between the canonical variates of a CCA performed between 12 network neural

features and the five behavioral principal components. Dashed black line shows the null calculated

via a permutation test with 5000 shuffles; gray bars show 95% confidence interval. Inset illustrates

the correlation (r = 0.37) between the canonical variates of the first mode, V1 and V1. Note that the

strength of the correlations is greatly reduced compared to the parcel-level CCA shown in Figure 5.

(D) The correlation between the neural data N and the transformed behavioral data matrix By

reflects the amount of variance in N that can be explained by behavioral canonical variates V. (E)

Screeplot showing the proportion of neural variance explained by each of the behavioral canonical

variates in a CCA performed between 12 network neural features and all 36 behavioral measures.

Dashed black line shows the null calculated via a permutation test with 5000 shuffles; gray bars show

95% confidence interval. Inset shows the total proportion of neural variance explained by the

behavioral variates. (F) Screeplot of the proportion of neural variance explained by each of the

behavioral canonical variates in a CCA performed between 12 network neural features and the five

PCs of behavior. (G) The correlation between the behavioral data B and the transformed neural data

matrix NQ reflects the amount of variance in B that can be explained by neural canonical variates U.

(H) Screeplot showing the proportion of behavioral variance explained by each of the neural

canonical variates in a CCA performed between 12 network neural features and all 36 behavioral

measures. Dashed black line shows the null calculated via a permutation test with 5000 shuffles; gray

bars show 95% confidence interval. Inset shows the total proportion of behavioral variance

explained by the neural variates.t (I) Screeplot of the proportion of total behavioral variance

explained by each of the neural canonical variates in a CCA performed between 12 network neural

features and the 5 PCs of behavior. Note that although the CCA using behavioral PCs has far fewer

dimensions, each neural variate explains a higher amount of total behavioral variance than neural

variates in H, suggesting that the identified PCs of behavior capture variance with far fewer features.
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Appendix 1—figure 15. Canonical correlation analysis (CCA) results showing the amount of variance

explained in the neural features via behavioral canonical variates. (A) The correlation between the

neural data N and the transformed behavioral data matrix By reflects the amount of variance in N

that can be explained by behavioral canonical variates. (B) Screeplot showing the proportion of

neural variance explained by each of the behavioral canonical variates in a CCA performed between

180 neural features (symmetrized cortical parcel GBC) and all 36 behavioral measures. Dashed black

line shows the null calculated via a permutation test with 5000 shuffles; gray bars show 95%

confidence interval. Inset shows the total proportion of neural variance explained by the behavioral

variates. (C) Screeplot of the proportion of neural variance explained by each of the behavioral

canonical variates in a CCA performed between 180 neural features (symmetrized cortical parcel

GBC) and the five PCs of behavior.
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Appendix 1—figure 16. Canonical correlation analysis (CCA) symptom and neural configurations.

(A) Distributions of scores for the first canonical variate (CV1) by diagnostic group (white: controls;

black: all patients; yellow: bipolar disorder with psychosis; orange: schizoaffective disorder with

psychosis; red: schizophrenia). All scores are normalized to controls. (B) Loadings of the PC-derived

symptom scores for CV1. (C) Loadings of the original item-level symptom measures for CV1. (D)

Loadings of each neural parcel for CV1. (E–T) The same analyses are shown for canonical variates 2–

5. As noted in the main text, these CCA effects were not stable when tested via out-of-sample

cross-validation methods (see Figure 5).
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Appendix 1—figure 17. K-Fold cross-validation of canonical correlation analysis (CCA). In the main

text, we show that CCA effects do not reproduce when tested via out-of-sample cross-validation

methods (see Figure 5). In contrast, here we show that using within-sample K-fold methods yields

effects that appear reproducible but in fact reflect an overfit CCA solution. Panels (A–E) illustrate

the results from a 5-fold cross-validation analysis to test the reproducibility of the CCA solution.

Subjects were first randomly assigned to one of five subsets. Each subset of subjects was then used

as an independent ‘test sample’ in a CCA that was derived from subjects in the other four subsets.

(A) Results of CCA performed in a subsample of N = 349 subjects. Left: screeplot showing the

correlations between the canonical variates of a CCA performed between 180 neural features

(symmetrized cortical parcel GBC) and the five behavioral principal components in N = 349 subjects.

Middle: Screeplot of the proportion of neural variance explained by each of the behavioral canonical

variates in a CCA performed between 180 neural features (symmetrized cortical parcel GBC) and the

five PCs of behavior. Right: Screeplot of the proportion of total behavioral variance explained by

each of the neural canonical variates in a CCA performed between 180 neural features (symmetrized

cortical parcel GBC) and the five PCs of behavior. Dashed black line shows the null calculated via a

permutation test with 5000 shuffles; gray bars show 95% confidence interval. Note that the outcome

of this CCA is highly similar to the full sample CCA shown in the main text, but it is not similar at all

to the split-half cross-validation effects, which reveal how overfit CCA effects seem to be with this

number of features Figure 5. (B) Comparison of the first canonical variate (CV1) in a CCA performed

in a subsample of N = 349 subjects with CV1 from the full model performed with N = 436 subjects.

Left: neural factor loadings for CV1 obtained from the subsample (Fold 1) CCA and from the full

Appendix 1—figure 17 continued on next page
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Appendix 1—figure 17 continued

sample CCA are highly correlated, at r = 0.85. Middle: Behavioral factor loadings are also highly

correlated between the Fold 1 CCA and the full CCA, at r = 0.85. Right: Additionally, absolute

values of individual symptom measure loadings associated with CV1 are highly correlated between

the Fold 1 CCA and the full CCA. (C) Summary of correlation values between Fold 1 CCA and full

CCA results, as in panel B, across all 5 CVs. Note that the neural and behavioral factor loadings as

well as individual symptom measure loadings are highly preserved between the sample CCA and the

full model. (D) Summary of correlation values between all five subsample CCAs and the full sample

CCA, for all five CVs. Each of the five CVs is plotted along the X-axis; each point represents the

correlation between one of the fivefold subsample CCAs and the full CCA, hence there are five

points (in the fivefold cross-validation) for each CV. (E) Results of a CCA performed in a subsample

of N = 357 subjects, with subjects from one site left out (leave-one-site-out, LOSO). Panels as

described in A. (F) Comparison of the first canonical variate (CV1) in a LOSO CCA and the CV1 from

the full model performed with N = 436 subjects. Panels as described in B. (G) Summary of

correlation values between the LOSO CCA and full CCA results, as in panel B, across all five CVs.

Panels as described in C. (H) Summary of correlation values between all six LOSO CCAs and the full

sample CCA, for all five CVs. Panels as described in D; each point represents the correlation

between one of the six LOSO CCAs and the full CCA.
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Appendix 1—figure 18. Multivariate power analysis for CCA. Sample sizes were calculated

according to Helmer et al., 2020, see also Materials and methods and https://gemmr.readthedocs.

io/en/latest/. We computed the multivariate power analyses for three versions of CCA reported in

this manuscript: (i) 718 neural vs. five symptom features; (ii) 180 neural vs. five symptom features; (iii)

12 neural vs. five symptom features. (A) At different levels of features, the ratio of samples (i.e.

subjects) required per feature to derive a stable CCA solution remains approximately the same

across all values of rtrue. As discussed in Helmer et al., 2020, at rtrue ¼ 0:3 the number of samples

required per feature is about 40, which is much greater than the ratio of samples to features

available in our dataset. (B) The total number of samples required (nreq) for a stable CCA solution

given the total number of neural and symptom features used in our analyses, at different values of

rtrue. In general these required sample sizes are much greater than the N = 436 (horizontal gray line)

PSD in our present dataset, consistent with the finding that the CCA solutions computed using our

data were unstable. Notably, the ‘12 vs. 5’ CCA assuming rtrue ¼ 0:3 requires only ~700 subjects,

which is closest to the N = 436 used in the present sample. This may be in line with the observation

of the CCA with 12 neural vs five symptom features (Appendix 1—figure 15C) that the canonical

correlation (r ¼ 0:38 for CV1) clearly exceeds the 95% confidence interval, and may be closer to the

true effect. However, to to confidently detect effects in such an analysis (particularly if rtrue is actually

less than 0.3), a larger sample would likely still be needed.
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Appendix 1—figure 19. Principal component analysis (PCA) of neural features in control and patient

subjects. (A) Results of PCA performed on neural features (718 whole-brain parcel GBC) across all

control subjects (N = 202). (B) Results of PCA performed on neural features (718 whole-brain parcel

GBC) across all patient subjects (N = 436). (C) Note that the first neural PC in control subjects (panel

A) and in patient subjects (panel B) are highly similar (r = 0.90 across parcels). This may reflect a

component of neural variance common across all humans. (D–I) The second and third PCs are also

similar between control and patient subjects. (J–L) The fourth PC is markedly dissimilar between

control and patient subjects, suggesting that this component may reflect neural variance which

deviates in individuals with psychiatric symptoms. (M–O) The fifth PC is also highly dissimilar

between controls and patients, also possibly reflecting diagnosis-relevant differences in neural

variance. (P) Screeplot showing the total proportion of variance explained by the first 100 PCs from

the PCA performed across all 718 neural features in 202 control subjects. The size of each point is

proportional to the variance explained by that PC. The first 8 PCs (green) were determined to be

significant using a permutation test. Inset shows the proportion of variance both accounted and not

accounted for by the eight significant PCs. Together, these 8 PCs capture 51.95% of the total

variance in neural GBC in the sample. (Q) Screeplot showing the total proportion of variance

explained by the first 100 PCs from the PCA performed across all 718 neural features in 436 patient
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Appendix 1—figure 19 continued

subjects. The size of each point is proportional to the variance explained by that PC. The first 15 PCs

(green) were determined to be significant using a permutation test. Inset shows the proportion of

variance both accounted and not accounted for by the 15 significant PCs. Together, these five PCs

capture 57.4% of the total variance in neural GBC in the sample. (R) Correlations between the first

15 neural PCs in controls (CON) and patients (PSD). The first three PCs are common across both

control and patient subjects, possibly reflecting common components of human neural variance.

After this, the PCs diverge, possibly reflecting differences in neural variance of healthy individuals

and those with psychiatric symptoms.
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Appendix 1—figure 20. Comparison between the PSD bPCGBC maps computed using GBC and

GBC with the first neural PC parsed out. If a substantial proportion of neural variance is not be

clinically relevant then removing the shared neural variance between PSD and CON should not

drastically affect the reported symptom-neural univariate mapping solution, because this common

variance will not map to clinical features. We therefore performed a PCA on CON and PSD GBC to

compute the shared neural variance (see Materials and methods), and then parsed out the first

GBC-PC from the PSD GBC data ( ^GBCwoPC1). We then reran the univariate regression as described in

Figure 3, using the same five symptom PC scores across 436 PSD. (A) The bPC1GBC map, also

shown in Appendix 1—figure 10. (B) The first GBC-PC accounted for about 15.8% of the total GBC

variance across CON and PSD. Removing GBC-PC1 from PSD data attenuated the bPC1GBC

statistics slightly (not unexpected as the variance was by definition reduced) but otherwise did not
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Appendix 1—figure 20 continued

strongly affect the univariate mapping solution. (C) Correlation across 718 parcels between the two

bPC1GBC map shown in A and B. (D–O) The same results are shown for bPC2GBC to bPC5GBC maps.
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Appendix 1—figure 21. Comparison between the PSD bPCGBC maps computed using GBC and

GBC with the first two neural PCs parsed out. We performed a PCA on CON and PSD GBC and

then parsed out the first three GBC-PC from the PSD GBC data ( ^GBCwoPC1�2, see Materials and

methods). We then reran the univariate regression as described in Figure 3, using the same five

symptom PC scores across 436 PSD. (A) The bPC1GBC map, also shown in Appendix 1—figure 10.

(B) The second GBC-PC accounted for about 9.5% of the total GBC variance across CON and PSD.

(C) Correlation across 718 parcels between the two bPC1GBC map shown in A and B. (D–O) The

same results are shown for bPC2GBC to bPC5GBC maps.
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Appendix 1—figure 22. Comparison between the PSD bPCGBC maps computed using GBC and

GBC with the first three neural PCs parsed out. We performed a PCA on CON and PSD GBC and

then parsed out the first three GBC-PC from the PSD GBC data ( ^GBCwoPC1�3, see Materials and

methods). We then reran the univariate regression as described in Figure 3, using the same five

symptom PC scores across 436 PSD. (A) The bPC1GBC map, also shown in Appendix 1—figure 10.

(B) The second GBC-PC accounted for about 9.5% of the total GBC variance across CON and PSD.

(C) Correlation across 718 parcels between the two bPC1GBC map shown in A and B. (D–O) The

same results are shown for bPC2GBC to bPC5GBC maps.
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Appendix 1—figure 23. Comparison between the PSD bPCGBC maps computed using GBC and

GBC with the first four neural PCs parsed out. We performed a PCA on CON and PSD GBC and

then parsed out the first four GBC-PC from the PSD GBC data ( ^GBCwoPC1�4, see Materials and

methods). We then reran the univariate regression as described in Figure 3, using the same five

symptom PC scores across 436 PSD. (A) The bPC1GBC map, also shown in Appendix 1—figure 10.

(B) The second GBC-PC accounted for about 9.5% of the total GBC variance across CON and PSD.

(C) Correlation across 718 parcels between the two bPC1GBC map shown in A and B. (D–O) The

same results are shown for bPC2GBC to bPC5GBC maps.
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Appendix 1—figure 24. Workflow for optimizing the neural feature selection for a predictive symp-

tom-neural subject specific model. We optimized the selection of a subset of neural parcels from the

group bGBCobs
N map (where N is the total number of subjects) that could be predicted via a single

symptom score across subjects (e.g. for the PC3 beta map and PC3 symptom scores). (START) We

start with Pselect set as the full parcellated map,Pselect ¼ bGBCobs
N . Hence initially there are 718

elements in the vector Pselect, each representing the value of a parcel (jPselectj ¼ 718). Next, since

jPselectj>1, the selection process enters the A. Feature Selection Loop (in red). Selects subset of

parcels Pselect (A.1) for which the predictive model will be evaluated. This loop iteratively removes

parcels from the Pselect vector (A.2) and each time passes the updated Pselect as input in the Feature

Evaluation Loop (in blue). B. Feature Evaluation Loop (shown in blue). Using a multi-step algorithm,

this loop produces the set of metrics to be evaluated at the final output using a leave-one-subject

out approach. B.1: For each subject i, this first step is to compute the ‘observed’ dot product metric

dpGBCobs
i for that subject. This is the dot product between DGBCobs

i and bGBCobs
N�i using the Pselect

features. DGBCobs
i is the vector of the parcel-wise difference between subject i’s GBC map and the

group mean GBC map; bGBCobs
N�i denotes group-level relationship between symptom variation and

GBC excluding subject i. This group bGBCobs
N�i is used as a reference for the dot-product. B.2: Next

for subject i we compute their predicted symptom score S
pred
i . First, a symptom-prediction model is

built using Xobs
N�i (all item-level symptom measures excluding subject i). This yields the ‘observed’

model scores and coefficients excluding subject i (SobsN�i). The symptoms for excluded subject i are

then used to obtain the predicted symptom score S
pred
i , as done in Figure 6A. B.3: Lastly, for

excluded subject i the loop computes the ”predicted’ dot product metric dpGBC
pred
i to compare it to

the ”observed’ value for model evaluation. Here, a regression model is computed relating dpGBCobs
N�i

to SobsN�i, excluding subject i. This yields regression coefficients a, which are then used to predict the

dpGBC
pred
i for the excluded subject i using their predicted symptom scores Spredi . Once i>N (i.e.

dpGBC
pred
i and S

pred
i have been computed for all subjects), the algorithm moves to step ”C’. C.

Feature Evaluation Metrics (shown in purple). C.1: This step captures feature evaluation metrics

across N subjects for the model that was computed using the selected features (Pselect). Specifically,

three vectors (outputs from ‘B’) are computed: dpGBCobs
N (the vector of observed dpGBC values for all

N subjects); dpGBCpred
N (the vector of predicted dpGBC values for all N subjects); and S

pred
N (the vector

of predicted model symptom scores for all N subjects). C.2: Generates two feature evaluation

metrics across the entire sample (rðdpGBCobs
N ; S

pred
N Þ and rðdpGBCobs

N ; dpGBC
pred
N Þ). C.3: The feature
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Appendix 1—figure 24 continued

evaluation metrics for the selected Pselect are generated, such that they can be evaluated across all

Pselect iterations (red loop). D. Final Feature Selection (in green). This step evaluates the metrics

computed for all Pselect iterations, starting from from jPselectj ¼ 718 to jPselectj ¼ 1. D.1: The input is the

vector of rðdpGBCobs
N ; S

pred
N Þ and the vector of rðdpGBCobs

N ; S
pred
N Þ for all 718 models. D.2: The most

predictive feature subset is obtained by finding the model for which rðdpGBCobs
N ; S

pred
N Þ and

rðdpGBCobs
N ; dpGBC

pred
N Þ were maximized, which leads to the final output features (STOP). Note: that

the algorithm imposed a threshold of jPselectj>30 to ensure that the correlation metrics were not

unstable based on a small feature set.
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Appendix 1—figure 25. Optimizing neural feature selection to inform statistically reliable single-

subject prediction via low-dimensional symptom scores only. (A) Individual PC-derived symptom

scores for PC1 can be robustly predicted, as shown by leave-one-out cross-validation for the

symptom PCA analyses. Here for the leave-one-out cross-validation, a PCA was computed in all

except one subject (N = 435) and the PCA loadings were then used to compute the predicted PC

scores for the left-out subject. This was repeated such that predicted scores were calculated for
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Appendix 1—figure 25 continued

every subject, using loadings from a PCA computed in the other 435 subjects. Observed scores

were obtained from a PCA computed using the full sample of subjects (N = 436). Top panel:

Scatterplot at left shows the correlation between each subject’s predicted PC1 score from leave-

one-out PCA model and their observed PC1 score from the full-sample PCA model, r = 0.99. Red

line shows perfect prediction, r = 1. (B) Top panel indicates that PC symptom scores can yield robust

neural feature selection. DGBC denotes an individual subject GBC demeaned parcel-wise relative to

the group mean GBC. The process is described in detail in the Materials and methods and

in Appendix 1—figure 26. The correlation between PC1 behavioral score and [DGBC � PC1 beta]

across all 436 subjects was maximal for P ¼ 79, at r = 0.27 (purple arrow). Bottom panel: For each

value of p, the regression was performed in 435 subjects and was then used to predict the [DGBC

� PC1 beta] of the selected parcels in the left-out subject. The mean correlation between the

predicted [DGBC�PC1 beta] and the actual observed [DGBC � PC1 beta] across all 436 subjects was

highest for P ¼ 79, with r = 0.19 across all subjects, highly consistent with the across-subject analysis

in the top panel. (C) Comparing the correlation between DGBCobs
;DGBCpred, for the full map

(P ¼ 718) versus the selected map (P ¼ 79) shows that the predictability of DGBC is improved by

using the selected parcels in the selected maps. (D–O) Similar results for PCs 2–5. Note that for PC4

and PC5 a local maximum (P ¼ 50 and P ¼ 31 respectively) was selected after imposing a threshold

of P>30 to ensure that the correlation metrics used for evaluation were not made unstable from a

small number of parcels in computing the dpGBC.
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Appendix 1—figure 26. Evaluating patient-specific similarity to derived symptom-neural targets via

data-reduced symptom scores. (A) Scatterplot of PC3 symptom score (X-axis) versus PC3 neural

similarity prediction index (NSPI, Y-axis) for all 436 PSD subjects. The NSPI is defined as the

Spearman’s correlation between DGBCobs and the bPC3GBC
obs map of the maximally-predictable

‘selected’ P ¼ 39 parcels. Alternative metrics are shown in Appendix 1—figure 28. (B) Bins across

axes express subject counts within each cell as a heatmap, indicating a high similarity between

symptom PC score and PC3 NSPI for a number of patients. (C) Mean NSPI is computed for a given

bin along the the X-axis to visualize patient clustering. Note the sigmoidal shape of the distribution

reflecting greater neural similarity at more extreme values of the PC3 score. (D) The absolute value
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Appendix 1—figure 26 continued

of the mean NSPI reflects the magnitude irrespective of neural similarity direction. This highlights a

quadratic effect, showing that patients with higher PC3 symptom scores (either positive/negative)

exhibited higher neural correspondence of their maps with the target neural reference map. (E)

Using the NSPI and PC scores we demonstrate one possible brain-behavioral patient selection

strategy. We first imposed a PC score symptom threshold to select patients at the extreme tails (i.e.

outside of the 10th� 90th%tile behavioral range [>+2.17 or <�2.41]). Note that this patient selection

strategy excludes patients (shown in gray) below the PC symptom score threshold. This yielded

n = 38 patients. Next, for each patient we predicted the sign of their individual NSPI based on their

individual PC3 score, which served as the basis for the neural selection. Next, at each NSPI threshold

we evaluated the proportion of patients correctly selected until there were no inaccurately selected

patients in at least one PC3 direction (green line or higher). The number of accurately (A) vs.

inaccurately (I) selected patients within each bin is shown in red and blue respectively. Note that as

the neural r threshold increases the A/I ratio increases. (F) The neural and behavioral thresholds

defined in the ‘discovery’ sample were applied to an independent ‘replication’ dataset (N = 69, see

Materials and methods), yielding a similar final proportion of accurately selected patients. (G) The

same brain-behavioral patient selection strategy was repeated for PC5 in the discovery sample

(thresholds of 10th%tile = �1.89 and 90
th%tile = +1.47; NSPI threshold of � = 0.4 optimized for PC5).

Results yielded similar A/I ratios as found for PC3. (H) The neural and behavioral thresholds for PC5

defined in the discovery sample were applied to the replication sample. Here the results failed to

generalize due true clinical differences between the discovery and replication samples.
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Appendix 1—figure 27. Metrics quantifying the relationship between individual-level neural effects

relative to the group mean and individual-level PC-derived symptom scores. The relationship

between various symptom-neural similarity metrics and the behavioral PC3 symptom scores across

N = 436 PSD patients are shown. The goal was to evaluate metrics that maximize the spread of the

Y-axis, while maintaining a centered distribution of scores around zero to yield an interpretable
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Appendix 1—figure 27 continued

symptom-neural variation pattern across subjects. Specifically, along the Y-axis we examined either

the Pearson’s correlation (top panels in A and B) or Spearman’s r (bottom panels in A and B)

between two neural maps at the individual patient level: (i) the group-level bPC3GBC map and (ii) an

individual subjects’ raw GBC map which can be expressed as either a raw map (left panels in A and

B) or as DGBCobs relative to the group mean map (right panels in A and B). (A) These four panels

show group-level symptom-neural relationships for sample using the entire 718-parcel neural map.

As noted, the neural similarity metrics on each Y-axis show the relationship between individual-

patient neural GBC (or DGBCobs) and the group-level bPC3GBC map across 718 parcels. Note that the

r and rho values reported in the corner of each plot reflect the group-level relationship between the

neural similarity metric and the individual-level PC3 symptom score computed across across 436

patients. (B) These four parcels show group-level symptom-neural relationships using only the

selected 39 PC3 parcels derived from the feature selection workflow (Appendix 1—figure 25). The

metric used in the main text is the r within selected parcels (shown with a light purple envelope)

because the spread along Y-axis was maximized and the values centered around zero for both the x

and the Y-axis. Furthermore, the r metric is desirable given violations of normality that the r metric

assumes. (C) The neural-behavioral similarity plot for the Discovery BSNIP sample was binned by � ¼

0:1 & PC3score ¼ 0:5 to provide a visual intuition for patient segmentation across both the neural and

symptom indices. For patients with highly positive or negative scores, the neuro-behavioral

relationship was robust. Conversely, patients with a low absolute PC3 score showed a weak

relationship with symptom-relevant neural features. (D) The neural-behavioral similarity plot for the

independent replication sample (see Materials and methods for sample details) was binned by � ¼

0:1 & PC3score ¼ 0:5, using the same neural similarity index (�[DGBCobs, bPC3GBC
obs] within selected 39

parcels) and projected PC3 symptom scores. Although the grid is far more sparse (total N = 69 for

this sample), a similar pattern between PC3 symptom score and neural similarity index emerges.
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Appendix 1—figure 28. Evaluating patient-specific similarity to derived symptom-neural targets via

data-reduced symptom scores for all PCs. As noted in the main text for PC3, here we plot the PC

symptom score (X-axis) versus the neural similarity prediction index (NSPI, Appendix 1—figure 26)

for all 436 PSD patients. The NSPI is defined as the Spearman’s correlation between DGBCobs and

the bPC3GBC
obs map of the maximally-predictable ‘selected’ P parcels (Y-axis for each plot).

Alternative metrics were evaluated in Appendix 1—figure 27. (A) A parameter sweep was

performed for 0<|rho|<1 in bins of 0.1, for all subjects with PC1 score<�3.97 ‘negative behavioral

threshold’ set at the 10th percentile (P90-Disc) of the distribution and for all patients with PC1 score >

+3.60 (‘positive behavioral threshold’ set at the 90th percentile (P90-Disc) of the distribution). The

number of patients accurately selected within each bin is shown in red; the number of inaccurately

selected patients is shown in blue. Note that this selection process excludes a number of patients

(shown in gray) who do not meet the PC threshold cutoff. Note that as the neural r threshold

increases the proportion of accurate to inaccurate selections increases and the number of

inaccurately selected subjects decreases. For illustrative purposes, a neural threshold of r = 0.5 is

applied at the point where no inaccurate selections occur for the positive behavioral threshold. (B)

The neural and symptom score thresholds defined in discovery patients were applied on an

independent external ‘replication’ dataset (N = 69, see Materials and methods). For the symptom
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Appendix 1—figure 28 continued

score (p90-Disc = �3.97 and p90-Disc = +3.60 ) and neural (r = 0.5) thresholds as those defined in the

discovery sample, no patients are selected for PC1. (C–D) Similar data to A–B for PC2, using PC

score thresholds of p90-Disc = �2.43 and p90-Disc = +2.32 and a PC map threshold of r = 0.3 on a

subset of P ¼ 68 optimized parcels. (E–F) Similar data to A–B for PC3 using PC score thresholds of

p90-Disc = �2.41 and p90-Disc = +2.17 and a PC map threshold of r = 0.4 on a patients of P ¼ 39

optimized parcels. (G–H) Similar data to A–B for PC4, using PC score thresholds of p90-Disc = �1.69

and p90-Disc = +1.72 and a PC map threshold of r = 0.2 on a subset of P ¼ 50 optimized parcels. (I–

J) Similar data to A–B for PC5, using PC score thresholds of p90-Disc = �1.89 and p90-Disc = +1.47

and a PC map threshold of r = 0.4 on a subset of P ¼ 31 optimized parcels.
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Appendix 1—figure 29. Examining most predictive parcels for all PC-driven symptom-neural effects

and their relationship with pharmacological neuroimaging maps. (A) (Left) The selected group-level
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Appendix 1—figure 29 continued

bPC1GBC map showing the 79 selected parcels derived from the feature selection workflow

(Appendix 1—figure 25). (Middle) The same parcels are highlighted from the group-level DGBC

LSD map reflecting the pharmacological effect relative to placebo. (Right) the group-level ketamine

DGBC map reflecting the pharmacological effect relative to placebo. (Bottom bar plot) Here we

show four values: (i) Spearman’s � between the ketamine DGBC and bPC1GBC maps (KET,PC1); (ii)

Spearman’s � between the LSD DGBC and bPC1GBC maps (LSD,PC1); i(ii) Absolute value of the

difference for the (i) and (ii), i.e. differential similarity; |(KET,PC1) - (LSD,PC1)|; (iv) Spearman’s �

between the ketamine DGBC response and LSD ketamine DGBC response maps (KET,LSD). These

relationships are quantified within both the selected 79 features (dark gray bars) and the full P=718

neural map (light gray bars). (B–E) These analyses are repeated and shown for PCs 2–5. Note that a

strong differential similarity for a pair of pharmacological maps may indicate a strategy for patient

treatment selection along a particular brain-behavioral axis. Specifically, in this framework patients

loading on PC3 behaviorally (or neurally) would be indicated as highly similar to neural variation

induced by ketamine but not LSD. Such metrics may be clinically useful for selecting one

pharmacological target over another in the process making individual patient segmentation

decisions.
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Appendix 1—figure 30. Quantifying the relationship between PC-derived symptom-neural effects

and expression maps for genes implicated in psychosis spectrum disorder (PSD) neurobiology. (A)

The symptom loading profile (radarplot) and neural loading map derived in the main analyses are
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Appendix 1—figure 30 continued

shown for the PC1 BBS. (B) The distribution shows the Pearson’s correlation coefficients between

the PC1 symptom-neural map and all 20,200 gene expression maps derived from the Allen Human

Brain Atlas (AHBA, see Materials and methods and for details on gene expression analyses see

[Burt et al., 2018]). In this analysis we focused on a select number of PSD-relevant genes, as

highlighted in the main text for PC3 specifically Figure 8. Seven genes of interest are shown.

Specifically, these include two interneuron marker genes, somatostatin (SST) and parvalbumin

(PVALB); two GABAA receptor subunit genes: GABRA1 and GABRA3; and three serotonin receptor

subunit genes: HTR1E, HTR1F, and HTR2A. The percentile for each highlighted gene relative to the

entire distribution of 20,200 genes is reported in square brackets. Note that the gene expression

maps of HTR1F and PVALB are at the negative tail of the entire distribution, that is, anti-correlated

with PC1 symptom-neural map. Conversely, GABRA3, SST, and HTR1E are on the far positive end,

reflecting a highly similar spatial pattern of the gene expression maps with the PC1 symptom-neural

map. (C–J) PC symptom-neural map profiles and distributions of gene expression map similarities

are also shown for PCs 2–5. Note that some of these exemplar genes show a strong spatial similarity

(or anti-similarity) with the PC-derived neural maps relative to the entire distribution of all gene-PC

map pairs.

Ji et al. eLife 2021;10:e66968. DOI: https://doi.org/10.7554/eLife.66968 83 of 83

Research article Neuroscience

https://doi.org/10.7554/eLife.66968

