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Introduction

Cardiac resynchronisation therapy (CRT) has now been 
established as a valuable adjunct therapy in patients with 
heart failure and intraventricular conduction disturbances. 
CRT is an example where the first evidence of its efficacy 
was demonstrated in patients, while the underlying patho-
physiology was only studied later. In other words: ‘bed-
side’ research preceded ‘bench’ studies. In subsequent years 
research moved back and forth between basic research and 
patient studies. This combination of research has led to a 
better, although not complete, understanding of the patho-
physiology of dyssynchrony and of its treatment by CRT. 
Out of this research came the ground-breaking insight that 
‘simple’ disturbances in impulse conduction, which were 
initially considered innocent, proved to result in a host of 
molecular and cellular derangements that lead to a vicious 
circle of remodelling processes that facilitate the develop-
ment of heart failure. As a consequence, CRT primarily cor-
rects conduction abnormalities, but secondarily improves 
myocardial properties at many levels. Interestingly, correc-
tions by CRT are not exactly the reversal of paths induced 
by dyssynchrony, a property that may open new avenues for 
treatment of heart failure.

Electro-mechanics of dyssynchrony

First, it should be acknowledged that the term dyssyn-
chrony is ill defined. Most commonly, it refers to condi-
tions with increased timing differences of either electrical 
or mechanical activation in the ventricles. Indicators used 
to this purpose range from the width of the QRS com-
plex in the ECG to the difference in time to peak shorten-
ing of strain curves. In most cases electrical dyssynchrony 
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coincides with mechanical dyssynchrony, but mechanical 
dyssynchrony is found in the absence of a wide QRS com-
plex. The most common causes of ‘true’ dyssynchrony are 
right ventricular (RV) pacing and left bundle branch block 
(LBBB). Under these circumstances the normal activation 
pattern is disturbed because the left ventricle is no longer 
activated via the left bundle branch and Purkinje fibres. 
Instead, the electrical activation spreads from the right ven-
tricle through the septum towards the left ventricle. Since 
activation moving from myocyte to myocyte is much slower 
than that through the Purkinje system, the left ventricular 
(LV) free wall—which is the site most remote from the right 
ventricle—is activated last. Several clinical [1, 2] and pre-
clinical [3] electrocardiac mapping studies have shown that 
the activation in LBBB hearts follows a specific pattern. LV 
depolarisation moves from the septum in a circumferential 
and longitudinal direction. However, because conduction 
often appears slow at the RV-LV junctions, an important 
contribution of activation comes from the wavefront pass-
ing over the apex towards the LV lateral wall (referred to 
as U-shaped activation pattern). A characteristic feature is 
also the slow transseptal conduction in LBBB [3], possibly 
caused by the vertical orientation of the laminar sheets of 
myocytes in the septum. The prolonged activation of the left 
ventricle results in a widened QRS complex on the surface 
electrocardiogram (ECG).

Each action potential triggers the contraction process in 
myocytes. Indeed, in vivo the sequence of onset and peak 
shortening is similar to that of the sequence of electrical 

activation [4]. Recent measurements of electrical activation 
and peak shortening showed a tight correlation, even in CRT 
candidates. Interestingly, the slope of the regression line 
differed between patients, suggesting as yet poorly under-
stood differences between patients [4]. The dyssynchronous 
electrical activation of the left ventricle causes the early-
activated septum to contract against a reduced load, which 
leads to pre-stretch of the LV free wall [5]. This pre-stretch 
increases the contractile force of the LV free wall that, in 
turn, paradoxically stretches the septum later in systole. 
Both types of systolic stretching can be considered wasted 
work [5, 6].

This ‘wasted’ work expresses the poorly coordinated 
contraction, which also results in a poorer pump function, 
for example expressed as lower rate of rise of the LV pres-
sure (LV dP/dtmax). Longer lasting LBBB in dogs results in 
increases of end-diastolic and end-systolic volume and a 
decrease in ejection fraction (Fig. 1; [7]).

Remodelling in dyssynchronous hearts: turning the 
squirrel’s summer coat into a winter coat

The worsening of pump function with longer lasting LBBB 
is the consequence of a variety of remodelling processes in 
the myocardium. These processes can partly be attributed to 
neurohormonal activation, triggered by poor pump function 
(Fig. 1). A recent human study showed that the baroreflex 
alters activity within five seconds after changing the acti-
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Another part of the remodelling process appears to be 
triggered by the regional differences in mechanical load. As 
consistently observed in humans and dogs, mechanical load 
is low in early-activated regions and high in late-activated 
regions [5, 12, 13]. The latter changes are also reflected by 
changes in regional blood flow and oxygen consumption 
[14, 15]. In the long run, this redistribution of mechanical 
load within the ventricular wall leads to asymmetric hyper-
trophy [16, 17].

Other factors that contribute to remodelling are the 
impaired pump function, which leads to ventricular dila-
tation and thereby increased wall stress, which in turn 
stimulates the remodelling processes. Moreover, the unco-
ordinated and dyssynchronous contraction increases the 
oxygen demand of the myocardium while decreasing the 
diastolic perfusion time. This combination may lead to 
lower coronary perfusion reserve and thus higher sensitivity 
to ischaemia, hibernation and stunning.

A series of studies in the canine model of LBBB, whether 
or not in combination with tachypacing-induced heart fail-
ure [17–19] as well as in the mouse heart after chronic RV 
pacing [20], have shed light on the changes at the cellular 
and molecular level in asynchronous hearts. These changes 
are quite complex, partly mimicking the asymmetry of mac-
roscopic hypertrophy in dyssynchronous hearts. Expression 
of some genes and proteins is increased or depressed uni-
formly, while others show regional differences in expres-
sion. Examples of uniformly depressed genes and proteins 
are virtually all potassium channels, several calcium chan-
nels and β-adrenergic receptors [18, 19]. Also the foetal 
gene program and apoptosis-related genes are activated 
uniformly in dyssynchronous failing hearts. In contrast, the 
L-type calcium channel and the transient outward potas-
sium current (Ito) show a more pronounced downregulation 
in the late-activated regions than in the early-activated ones 
[18]. In addition, in the late-activated LV lateral wall stress 
response kinases as well as TNFα were upregulated [21] and 
the gap junction protein connexin 43 showed lateralisation, 
the latter being associated with slowing down of conduction 
velocity (Fig. 1; [22]).

Altogether, these global and regional changes lead to a 
complicated ‘molecular fingerprint’ of remodelling in the 
dyssynchronous heart. These extensive gene expression 
changes may be compared with the change of the coat of 
some animals between the seasons, a change that is driven 
by temperature and sunlight and is effectuated by alterations 
in gene expression. The observation that CRT is able to cor-
rect the LBBB-induced abnormalities (see below) can then 
be compared with the recovery of the red squirrel’s beautiful 
summer coat from the grey winter coat.

vation sequence [8]. Increased sympathetic activation has 
been demonstrated in dogs during chronic ventricular pac-
ing [9] and greater systemic vascular resistance in patients 
during ventricular pacing [10]. A recent clinical investiga-
tion showed that, in CRT responders, CRT creates a more 
uniform sympathetic stimulation, as assessed by tracer-
uptake studies [11].

Fig. 2 Echocardiographic remodelling in canine LBBB hearts and its 
reversal upon CRT. Presented are relative changes in (a) LV end-dia-
stolic volume (LV EDV), (b) total LV wall mass, (c) septal (squares) 
and LV lateral wall (circles) mass in the LBBB (open symbols) and 
LBBB + CRT groups (closed symbols). *: p < 0.05 between LBBB and 
LBBB + CRT group at 16 weeks. + : p < 0.05 between 8 and 16 weeks 
within the LBBB + CRT group. Values are presented as mean values 
and SD. BVP biventricular pacing, LBBB left bundle branch block, LV 
left ventricular (From Vernooy et al. [17])
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of ‘cardiac memory’ develops within approximately two 
weeks of CRT in patients [34]. These ‘cardiac memory’ 
effects are also known from temporary halting of RV pac-
ing, so inducing dyssynchrony in patients [35]. Studies in 
canine hearts using RV pacing have shown that ‘cardiac 
memory’ involves extensive remodelling at the molecular 
and cellular level, at least partly related to abnormal myo-
cardial stretch [36]

Molecular, immunohistochemical and cellular studies on 
myocardial biopsies show significant reduction in collagen 
deposition and TNFα immunoreaction and reduced cellular 
apoptotic activity after CRT [37]. Moreover, patients with 
effective CRT more frequently display chronic enhance-
ment of circulating apelin, a secreted hormone that can 
block adverse remodelling and has positive inotropic effects 
[38]. Circulating biomarkers of extracellular matrix remod-
elling also accompany successful CRT therapy, includ-
ing decreases in tenascin-C, and metalloproteinases [39]. 
Chronic CRT also has anti-inflammatory effects, reducing 
monocyte chemoattractant protein-1, interleukin-8, and 
interleukin-6 [40].

Intermittent dyssynchrony: healing the heart like a 
bone?

The above-mentioned aspects of reversal towards a near-
normal myocardial function are to be expected based on 
the normalisation of contraction patterns. However, there 
are indications that resynchronisation after a period of dys-
synchrony creates an even better condition than a heart that 
has never experienced dyssynchrony. This is already sug-
gested by the survival curves of LBBB and non-LBBB 
patients receiving CRT. While the activation patterns during 
CRT are expected to be the same in LBBB and non-LBBB, 
absolute survival tends to be better in CRT-treated LBBB 
patients than in their non-LBBB counterparts [41].

Experimentally, dogs subjected to 6 weeks of atrial 
tachypacing (synchronous heart failure) were compared 
with dogs, in which in week 3 and 4 rapid atrial pacing was 
replaced by rapid RV pacing, thereby inducing temporary 
dyssynchrony. Myocytes from the latter hearts displayed 
substantial improvement in function and calcium transients 
during resting condition as well as during β2-adrenergic 
stimulation [42] This improvement appeared to relate to 
higher expression of negative regulators of Gi signalling 
(yielding Gαs-biased β2-adrenergic stimulation) that was 
higher than during LBBB and even than during control 
[42], thus indicating activation of pathways that are spe-
cifically activated during resynchronisation after a period of 
dyssynchrony.

Another example of the potential benefit of temporary 
dyssynchrony comes from a study involving the trans-

The extensive CRT effects

There are indeed quite some studies supporting the myocar-
dial recovery by CRT, mentioned above. The primary and 
immediate aim of CRT is to reduce the timing differences in 
electrical activation as compared with the situation during 
the conduction abnormality. Importantly, CRT (commonly 
applied by using biventricular pacing) increases dyssyn-
chrony as compared with normal conduction (narrow QRS 
complex) and does not benefit, but rather harms, patients 
with narrow QRS complexes [23, 24]. These results strongly 
indicate that CRT requires a certain electrical substrate to be 
effective, the best substrate apparently being LBBB [25].

In connection to the immediate electrical effects of CRT, 
also LV pump function changes in a beat-to-beat fashion, 
and remains increased as pacing is continued [17, 26]. The 
immediate haemodynamic effect of CRT is also used to 
optimise pacing settings [27]. Interestingly, there is no con-
sistency in the findings regarding the relation between the 
size of the acute haemodynamic and the long-term echocar-
diographic changes [28, 29].

In experimental LBBB models, where heart rate is kept 
at a physiological level, chronic application of CRT almost 
completely recovered the normal geometry and resolved the 
asymmetric hypertrophy of the LV, as determined by stan-
dard echocardiography (Fig. 2; [30]). In the tachycardia-
induced LBBB heart failure model, three weeks of rapid 
biventricular pacing created only a minor improvement in 
overall pump function, yet considerable molecular changes 
that did point towards recovery. First of all, CRT normalised 
the abnormally distributed expression of L-type calcium 
channel, CaMKinase II, TNFα and p38 [18, 31]. This nor-
malisation process fits with the idea that the local contraction 
pattern is a determinant of local gene expression. However, 
also uniformly depressed genes and proteins such as Akt, 
BAD, Ik, SERCA, β-MHC recovered [31]. Moreover, CRT 
reduced myocardial catecholamine levels, accompanied 
by increased expression of β1-adrenergic receptor expres-
sion [31]. Yet, the CRT applied at 200 bpm did not result in 
recovery of Ito and several calcium channels, which were 
all uniformly depressed during dyssynchronous heart failure 
[18].

The importance and contribution of remodelling pro-
cesses in the total benefit of CRT is also illustrated by 
the common observation that echocardiographic ‘reverse 
remodelling’ (defined as an increase in LV ejection fraction 
and/or reduction in LV end-systolic volume) continues to 
increase over time, even after years of CRT [32]. Electro-
physiologically, a human study shows a moderate reduction 
in intrinsic, non-paced QRS duration after longer lasting 
CRT [33]. More pronounced electrophysiological changes 
appear when observing the T-wave during CRT and dur-
ing temporary halting of CRT in patients. Doing so, a kind 
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raising the preload in isolated working hearts. Additional 
proof came from experiments that showed that disruption of 
microtubules with colchicine and blocking stretch activated 
channels with gadolinium abrogated the protective effect of 
pacing postconditioning [47].

Summarising, the aforementioned data indicate that after 
a period of dyssynchrony, recovery by resynchronisation 
does not lead to a return exactly back to baseline. Rather, 
while some derangements appear not amenable, some new 
pathways (related to sympathetic stimulation and/or myo-
cardial stretch) appear to be activated that lead to a new, 
supra-normal state. In this regard a comparison may be 
made with bone healing after a fracture: the fraction heals, 
and due to the ‘callus’ tissue formed it becomes even stron-
ger than before the fracture. It is premature to make extrapo-
lations to possible applications of intermittent pacing in the 
field of CRT. However, better understanding the molecular 
mechanisms of the benefits of intermittent dyssynchrony 
may lead to novel targets for the treatment of heart failure.

Conclusions

Evidence is increasing that dyssynchrony can lead to a 
major and distinctive way of remodelling within the ven-
tricular wall, involving processes that might affect long-
term outcome. An important part of that remodelling may 
be linked to the abnormal contraction pattern rather than to 
global haemodynamics. Theoretical and practical implica-
tions of this hypothesis remain to be proven.
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