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Abstract: Maize lethal necrosis (MLN), caused by co-infection of maize chlorotic mottle virus and
sugarcane mosaic virus, can lead up to 100% yield loss. Identification and validation of genomic
regions can facilitate marker assisted breeding for resistance to MLN. Our objectives were to identify
marker-trait associations using genome wide association study and assess the potential of genomic
prediction for MLN resistance in a large panel of diverse maize lines. A set of 1400 diverse maize
tropical inbred lines were evaluated for their response to MLN under artificial inoculation by
measuring disease severity or incidence and area under disease progress curve (AUDPC). All lines
were genotyped with genotyping by sequencing (GBS) SNPs. The phenotypic variation was significant
for all traits and the heritability estimates were moderate to high. GWAS revealed 32 significantly
associated SNPs for MLN resistance (at p < 1.0 x 107°). For disease severity, these significantly
associated SNPs individually explained 3-5% of the total phenotypic variance, whereas for AUDPC
they explained 3-12% of the total proportion of phenotypic variance. Most of significant SNPs were
consistent with the previous studies and assists to validate and fine map the big quantitative trait locus
(QTL) regions into few markers’ specific regions. A set of putative candidate genes associated with the
significant markers were identified and their functions revealed to be directly or indirectly involved
in plant defense responses. Genomic prediction revealed reasonable prediction accuracies. The
prediction accuracies significantly increased with increasing marker densities and training population
size. These results support that MLN is a complex trait controlled by few major and many minor
effect genes.
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1. Introduction

Maize (Zea mays L.) is an important cereal crop and a major determinant of food security in
Sub-Saharan Africa (SSA) [1]. Maize is grown around 25 million hectares in SSA translating to 38 million
metric tons of grain yield. However, maize productivity is severely affected by abiotic and biotic factors
including drought, diseases, pests, and socio-economic factors [2]. Recently, maize lethal necrosis
(MLN) has led to complete yield losses and thus affected food security negatively [3]. In 2011, MLN
was first reported in Bomet District in Kenya with 30-100% yield losses and in 2012 similar symptoms
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were observed in Chepalungu, Narok, and Naivasha districts in Kenya [4]. It was later confirmed in
several countries such as Rwanda [5], Ethiopia [1], DRC [6], and Uganda [4].

MLN is a viral disease resulting from the synergistic infection of two viruses, maize chlorotic
mottle virus (MCMYV) belonging to the Tombusviridae group and any virus from the Potyviridae
group, mostly Sugarcane mosaic virus (SCMV) in SSA [4]. Similar to many viral diseases, MLN is
mainly spread by insect vectors of the two viruses and with few incidences through infected seed [7].
MCMYV is transmitted in a semi persistent manner by beetles and thrips with thrips playing a major
role in the movement of MCMYV in Africa [1,8] while SCMV by aphids in a non-persistent manner [3].

Many economic traits in maize are controlled by quantitative genes/loci and are affected to
genotype X environment interactions. Therefore, the identification of these genomic regions has
gained popularity in maize breeding programs [9]. Presently, various next generation genotyping
methods have been developed to facilitate the identification of genes by allowing genotyping with high
throughput markers [10]. Furthermore, the exploration of the genes associated with the trait of interest
through genome wide association studies (GWAS) presents great opportunities for maize breeding.
GWAS is an approach used to identify genes and understand the genetic architecture of complex traits
by exploiting linkage disequilibrium (LD) resulting from trait and marker associations [11]. GWAS
offers numerous advantages compared to the traditional marker assisted selection (MAS) in that it
uses natural populations for instance a collection of individual varieties or inbred lines [12]. Thus,
it has a power to dissect historical recombinations through LD analysis [13]. This in turn provides a
greater ability and resolution to identify favorable genetic loci controlling the trait of interest and an
opportunity to analyze the architecture of complex quantitative traits [14]. However, GWAS is prone to
false positive quantitative trait locus (QTL) detections that arise from stratification differences in genetic
population structure [15]. These type 1 errors can be controlled using Bayesian model-based cluster
that was developed to infer population structures in complex pedigree populations and relatedness
in association mapping panels [16]. It involves a set of random markers that are used to estimate
the population structure (Q) which is then incorporated together with the kinship relations of the
sample into a mixed linear model (MLM) to test associations [17]. Besides population structure,
LD also determines the resolution of GWAS [13]. In maize, GWAS has been successfully used to
understand the genetic architecture of several maize diseases such as gray leaf spot [18], fusarium ear
rot [19], MLN [15], and SCMYV [20]. These studies have shown the utility of GWAS in identifying genes
controlling the traits of interest.

A vast number of molecular markers are available allowing breeders to use in plant breeding
programs [21]. Genomic prediction (GP) contrary to the traditional MAS utilizes genome-wide markers
to estimate the effects of all loci and thereby compute a genomic estimated breeding value (GEBVs) [22].
Complexity of most of economically important traits in maize makes the use of genome-wide markers
in GP more effective and comprehensive in their improvement [23]. Various approaches utilizing
GP have been proposed; including ridge regression-BLUPs [24], Bayesian methods, and machine
regression [25]. Among different biometrical approaches in plant breeding, RR-BLUPs commonly used
to predict the performance of the unphenotyped lines for complex traits [25]. GP has been applied in
maize for important diseases like MLN [15], MCMYV [26], northern leaf blight [27], and fusarium ear
rot [19]. These studies showed the potential of GP in improving resistance to important maize diseases.

In the present study we used a set of 1400 diverse maize tropical inbred lines to evaluate their
response to MLN under artificial inoculations and genotype them with genotyping by sequencing
(GBS) to apply GWAS and GP. The objectives of this study were to (1) evaluate large diverse array of
tropical and sub-tropical lines to assess their response of MLN under artificial inoculation, (2) validate
earlier findings and further identify new marker-trait associations using GWAS, and (3) assess the
potential of GP for MLN resistance in maize.
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2. Materials and Methods

2.1. Plant Materials and Trial Design

Fourteen hundred maize inbred lines developed either through pedigree breeding and doubled
haploids (DH) technology under IMAS (Improved Maize for African Soils), DTMA (Drought Tolerant
Maize for Africa), and WEMA (Water Efficient Maize for Africa) projects at the International Maize
and Wheat Improvement Center (CIMMYT) were used. The inbred lines were evaluated in one-row
3-m plots with two replicates in alpha lattice design in two seasons at MLN Screening Facility at the
Kenya Agriculture and Livestock Research Organization (KALRO) center at Naivasha (Latitude 0°43’ S,
longitude 36°26” E, 1896 asl), Kenya. The subset of lines from IMAS and DTMA panels were used in
our earlier studies [15,26] however, lines from WEMA panel and all lines from IMAS and DTMA panel
are additionally included in this study. Two seeds were planted per hill and thinned three weeks after
emergence to one plant per hill in order to ensure a uniform number of plants per entry. All standard
agronomic practices were followed.

2.2. Viral Inoculum and Artificial Inoculation

The SCMV and MCMV isolates collected from MLN hotspot areas in Kenya were used to develop
inoculum for this study. The isolates were confirmed by enzyme-linked immunosorbent assay (ELISA).
Maintenance of inoculum purity was carried out on the susceptible hybrid H614 in separate greenhouses
until artificial inoculation of entries in the field. MLN inoculum was prepared from an optimized
combination of MCMV and SCMYV viruses in the ratio of 1:4 [1,15] to ensure uniform MLN pressure
in the experiment. Plant leaves used for inoculum were cut into small pieces and ground in 10 mM
potassium phosphate at pH 7.0. The resulting sap extract was centrifuged at 12,000 rpm for two
minutes and decanted with carborundum at 0.02 g/mL. Plants were inoculated twice at an inoculation
spray pressure of 10 kg/cm? using a backpack mist blower with an open nozzle of 2 inches in diameter.
The presence of both viruses (SCMV and MCMYV) in the inoculated field trials was confirmed by ELISA
at approximately two weeks after inoculation. Disease severity (DS) was visually scored three weeks
after second inoculation at 10-day intervals with four observations made. The scoring was done on
a scale of 1 (resistance, no disease symptoms) to 9 (highly susceptible, complete plant death). After
analyzing DS for each time score, we selected the third score (40 days post-inoculation) for further
analysis because of its higher heritability estimate and full expression of disease symptoms. Area
under the disease progress curve (AUDPC) was calculated for each plot to provide a measure of the
progression of MLN severity across time.

2.3. Phenotypic and Genotypic Data Analysis

Analysis of variance was calculated for DS and AUDPC within and across environments for inbred
lines by restricted maximum likelihood method using META-R (Multi Environment Trait Analysis R
software). The mixed model used to estimate the variance components was:

MLN ~ Replications (Environment) + Environment + Lines + Lines X Environment + Blocks (Environment).

Seasons were treated as environments. Broad sense heritability was estimated as the ratio of
genotypic to phenotypic variance. Best linear unbiased estimate (BLUE) and best linear unbiased
predictor (BLUP) for each genotype were obtained for within and across environments.

Out of the 1400 lines evaluated in the field, 915 lines were genotyped with GBS. DNA of all
915 inbred lines was extracted from 3—4 leaves stage seedlings and genotyped using Genotyping by
Sequencing platform at the Institute for Genomic Diversity, Cornell University, Ithaca, USA as per the
procedure described in earlier studies [28]. The ~955K GBS SNP datasets were filtered where a minor
allele frequency of <0.05, heterozygosity of >5% and missing data rates >10% were excluded from
further analysis in TASSEL ver. 5.2.
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2.4. Population Structure, PCA, and Linkage Disequilibrium Analysis

The LD and principal components (PCs) were calculated using Tassel ver. 5.2. LD decay rate
between each pair of SNPs was analyzed with the squared Pearson correlation coefficient (r?). The
rate of LD decay with physical distance was visualized and average pairwise distances at which LD
decayed at 2 = 0.1 and 0.2 were calculated in R software. Structure V2.3.4 software was used to
divide the population into subgroups using 5085 SNPs (MAF > 0.4) and 915 maize inbred lines. The
population structure of the studied maize panel was further investigated by the STRUCTURE software.
The population structure identified from STRUCTURE software was subjected to STRUCTURE
HARVESTER to identify Delta K values. The reasonable subgroups number (K) was obtained using
Delta K value from Structure Harvester. We used K values ranging from 1 to 10. The strong Markov
Chain Monte Carlo (MCMC) after the non-repeated iteration was set to 10,000 times at the beginning
and then set to 10,000 times with the number of iterations set at 2. The PCs and categorical data
were plotted by CurlyWhirly v1.15 (http://ics.hutton.ac.uk/curlywhirly/) and R software to obtain the
explained variance of each PCs.

The BLUP values obtained for DS and AUDPC were used in GWAS as phenotypes. The kinship
matrix obtained with a centered identity by state (IBS) and the first five PCs which explained maximum
variation were used to correct the population structure in a mixed linear model using TASSEL ver.
5.2 [29]. Genome wide scans for marker-trait associations were conducted with mixed linear model.
The amount of phenotypic variation explained by the model was assessed using the R2 statistics,
calculated by fitting all significant SNPs simultaneously in a linear model in R. Multiple testing
correction was performed by using false discovery rate (FDR p < 0.01) and significant associations
were declared when the p-values are less than 1 x 107°. The 50 bp source sequences of the significantly
associated SNPs were used to perform BLAST searches against the B73 RefGen v2 genome set in Maize
GDB (http://www.maizegdb.org). The putative candidate genes identified in MaizeGDB were within
or adjacent to each associated SNP.

2.5. Genomic Prediction

GP was carried out with RR-BLUP [30] with five-fold cross-validation. BLUEs across environments
were used for this analysis for DS and AUDPC. So as to examine the effects of training population and
marker density on genomic prediction accuracy, we used five levels of training population size (i.e.,
230, 456, 685, and 915) with 6300 SNPs and five levels of marker density (i.e., 500, 1000, 2000, 4000,
and 6300 SNPs) with 915 lines to evaluate the prediction accuracy of each trait. Combined population
prediction approach where all panels are combined and randomly sampled to form both a training set
and a testing set was used. The prediction accuracy was obtained as the correlation between GEBVs
and the observed phenotypes divided by the square root of the estimated heritability. Sampling of the
training and validation sets were repeated 100 times.

3. Results

3.1. Phenotypic Analysis

ANOVA across environments revealed significant genotypic variance for both MLN-DS and
MLN-AUDPC (Table 1). For both MLN-DS and AUDPC values, GxE interaction variances were
significant at p < 0.05. This ruled out the possibility of bias due to environment-specific disease
responses in a combined analysis. The frequency of the phenotypic values in both MLN-DS and
AUDPC revealed an approximately normal distribution (Figure 1). Across environments, heritability
was moderate for MLN-DS with 0.42 and high for AUDPC with 0.86.
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Table 1. Mean, range, and variance components for disease severity (DS) and AUDPC for maize inbred

line association mapping panel

DS (1-9) AUDPC
Mean 6.25 135.28
Minimum 5.30 58.69
Maximum 7.12 216.05
LSD 0.93 20.43
oZg 0.55 ** 2303.16 **
0% GyE 0.78 ** 143.36 *
o2e 1.40 1267.99
2 0.42 0.86

**+ Siomificance at p < 0.05 and p < 0.01, respectively. 062G 02Gyg and 02, represents variance at genotypic, genotype
gn P P P Y- 3 P g g yp
x environment interactions and error, respectively, h>—heritability.

MLN-DS AUDPC
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= by 7 ?%% g - W}/ /
: 8. / . g 8- 7 -
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| M;_N disea;e severitly (Scale -1-9) | AUDPC value

Figure 1. Phenotypic distribution of disease severity (MLN-DS) on the scale of 1-9 and the area under
disease progress curve (AUDPC) values for maize lethal necrosis (MLN).

3.2. PCA and Population Structure

The first three PCs explained about 72% of the total variance. PC1 and PC2 explained 32% and
22% of the total variance, respectively (Figure 2a). We identified Delta K values because LnP (D) was
continuously increasing with the K value and was not best for identifying the groups. The line plot
for Delta K values suggested that the population could be structured in to two or three groups in
order of possibility as shown by the peaks (Figure 2b,c). In the whole set of panels, lines derived from
IMAS project were distributed along with group of lines derived from DTMA and WEMA panel unlike
DTMA panel which was more structured (Figure 2c).
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Figure 2. Population structure and PCA plot of 914 maize inbred lines estimated from 5085 SNPs.
(a) PCA plot for the entire population and colored by the group divisions (DTMA, IMAS, and WEMA).
(b) Plot of Delta K was calculated for K = 2 to K = 9. (c¢) Population structure of the lines for K = 2 and
K=3.

3.3. Linkage Disequilibrium and GWAS

LD of the whole genome was estimated using 49,547 SNPs (MAF > 0.05). The genome-wide LD
decay was plotted as LD (r?) between adjacent pair of markers versus distance in kb (Figure 3). Results
showed that LD decayed differently in the physical distance. A rapid decline in LD was observed with
increasing physical distance. At a cut-off value of r? = 0.1 and 0.2, the average physical distance was
1.78 kb and 0.62 kb, respectively.

Genome-wide LD Plot

1.0

04

02
I

0.0

Distance (kb)

Figure 3. Linkage disequilibrium (LD) plot representing the average genome-wide LD decay in
the panels with genome-wide markers. The values on the y-axis represents the squared correlation
coefficient r? and the x-axis represents the physical distance in (kb).
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From the GBS data, a set of 215,137 high-quality SNPs were retained for GWAS. The GWAS results
for MLN-DS and AUDPC across environments are shown in Manhattan plots and Q-Q plots of P
values comparing expected —log10 p value to observed —log10 p value in Figure 4. We detected 32
significantly associated SNPs for MLN resistance whereby 5 SNPs overlapped between the two traits
(Table 2, p < 1.0 x 107°). For MLN-DS, 18 significantly associated SNPs individually explained 3-5% of
the total phenotypic variance and together explained 17.05% of the total phenotypic variance. Whereas
for AUDPC, 19 significantly associated SNPs individually explained 3-12% of the total proportion
of phenotypic variance and together explained 24.5% of the total phenotypic variance. Among these
significantly associated SNPs, S1_44539940 on chromosome 1 and S4_199711804 on chromosome 4 are
found to be the most significantly associated SNPs for DS and AUDPC, respectively. Among several
genomic regions identified for MLN resistance, allelic effects on MLN resistance was prominent in
selected eight SNPs. The phenotypic values of the different allele classes of these SNPs in association
panel for MLN-DS and AUDPC value were presented in Figure 5. A set of putative candidate genes
associated with the significant markers were identified and their functions revealed, they were directly
or indirectly involved in plant defense responses (Table 2).

MLN disease severity o - .

logio(p)
Observed —loga(p)

MLN AUDPC *

15

—logilp)
10
!
Observed -log:o(p)

Chromosome Expected —logo(p)

Figure 4. Manhattan and Q-Q plots for the GWAS of MLN for disease severity and the AUDPC value.
The dashed horizontal line in Manhattan plots depicts the significance threshold (p = 1 x 1077). The
x-axis indicates the SNP location along the 10 chromosomes, separated by different colors. the red line
in the Q-Q plots depicts the line of best fit whereby for both traits the plot of expected —logiy(p) against
observed —logio(p) falls above the line of best fir.
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Table 2. Details of the MLN resistance associated SNP markers and their probable candidate genes identified in the large set of association mapping panel.

SNP Chr Position (bp) MLM P-Values R? MAF*  Allele MAE ** Putative Candidate Genes Predicted Function of Candidate Gene

MLN disease severity

S51_44539940 1 44539940 9.66E-09 0.05 0.10 g/t 0.42 GRMZM2G024159 protein YIPF5 homolog
S1_281333891 1 281333891 8.46E-08 0.04 0.17 C/G 0.07 GRMZM2G177046 bZIP transcription factor
S3_147938951 3 147938951 8.93E-08 0.04 0.12 C/G -0.22 GRMZM2G044867 unknown
S3_149313702 3 149313702 2.50E-07 0.04 0.22 A/G -0.02 GRMZM2G428168 S-glutathionylation and deglutathionylation
53161574458 3 161574458 9.25E-07 0.04 0.09 C/G -1.97 GRMZM2G145346 PAK-box/P21-Rho-binding
S3_161574468 3 161574468 4.40E-07 0.03 0.11 T/A 0.73 GRMZM2G145346 PAK-box/P21-Rho-binding
53161574470 3 161574470 1.25E-06 0.03 0.09 A/G 0.75 GRMZM2G145346 PAK-box/P21-Rho-binding
S3_161574471 3 161574471 2.69E-07 0.04 0.09 C/A 0.8 GRMZM2G145346 PAK-box/P21-Rho-binding
54199711804 4 199711804 4.76E-07 0.04 0.29 /T -0.11 GRMZM2G134857 uncharacterized protein
S7_140411743 7 140411743 4.84E-07 0.04 0.07 (@) 1.49 GRMZM2G071015 BAG-associated GRAM protein
57_143109798 7 143109798 9.81E-07 0.03 0.37 gT 0.71 GRMZM2G179021 RNA regulation of transcription.
57_166270242 7 166270242 5.95E-07 0.04 0.11 G/C 0.54 GRMZM2G520980 unknown

59_9599125 9 9599125 5.21E-07 0.03 0.08 A/C 1.25 GRMZM2G159402 transcriptional activation
S9_149758216 9 149758216 4.94E-08 0.04 0.25 T/C 0.11 GRMZM2G540298 unknown

510_3189860 10 3189860 4.97E-07 0.04 0.05 A/G -1.16 GRMZM5G862857 uncharacterized protein
510_138075442 10 138075442 7.56E-07 0.03 0.26 G/C 0.77 GRMZM2G117667 GDSL-like Lipase/Acylhydrolase superfamily protein
510_138075445 10 138075445 7.56E-07 0.03 0.26 gT 0.77 GRMZM2G117668 unknown
510_140985097 10 140985097 3.94E-07 0.04 0.08 T/C 0.06 GRMZM2G109753 scramblase family protein

Total R? 17.05

Area under disease progress curve

51_44539940 1 44539940 6.92E-16 0.1 0.1 (@) 10.15 GRMZM2G024159 Yip1 domain containing protein
51_253798682 1 253798682 7.08E-07 0.03 0.33 G/A 23.06 GRMZM2G043127 translocase of the outer mitochondrial membrane

S2_28895383 2 28895383 1.86E-07 0.03 0.42 A/G 7.3 GRMZM2G077420 unknown

S3_33757503 3 33757503 7.85E-07 0.03 0.13 T/C -18.42 GRMZM2G563119 unknown

53_55239348 3 55239348 5.33E-07 0.03 0.37 C/G 4.69 GRMZM2G520940 protein coding

53_56468811 3 56468811 5.63E-09 0.04 0.43 A/G 3.02 GRMZM2G409309 powdery mildew resistant protein5
53136082606 3 136082606 2.87E-07 0.04 0.39 G/C 323 GRMZM2G092169 uncharacterized protein
53_147938951 3 147938951 1.04E-07 0.04 0.12 C/G -0.22 GRMZM2G044867 unknown
53_190890553 3 190890553 9.37E-07 0.03 0.15 G/A 1.6 GRMZM2G563190 mitochondrial electron transport/ATP synthesis.
54199711804 4 199711804 1.89E-19 0.12 0.29 g/t -2.87 GRMZM2G134857 uncharacterized protein
54200034077 4 200034077 3.06E-07 0.03 0.16 A/G 12.07 GRMZM2G465165 ATP binding/amino acid phosphorylation
S5_182091386 5 182091386 8.77E-07 0.03 0.25 T/A 39.18 GRMZM2G137426 protein dimerization activity

56_99770682 6 99770682 1.04E-06 0.03 0.39 T/G 22.51 GRMZM2G112337 MAP65-2 microtubule-associated protein
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SNP Chr Position (bp) MLM P-Values R? MAF*  Allele MAE ** Putative Candidate Genes Predicted Function of Candidate Gene
MLN disease severity
56_148513637 6 148513637 8.16E-07 0.03 0.07 A/G 47.5 GRMZM2G020856 O-fucosyltransferase family protein
S7_8677545 7 8677545 1.16E-08 0.05 0.24 C/G -10.84 GRMZM2G107408 uncharacterized protein
S7_168745410 7 168745410 3.55E-07 0.03 0.4 A/G 1.59 GRMZM2G039757 tolB protein-related
S8_150798179 8 150798179 5.92E-07 0.03 0.43 A/IC -7.05 GRMZM2G531490 unknown
510_138075442 10 138075442 2.75E-07 0.03 0.26 G/C 0.77 GRMZM2G117667 GDSL-like Lipase/Acylhydrolase superfamily protein
510_138075445 10 138075445 2.75E-07 0.03 0.26 /T 0.77 GRMZM2G117668 unknown
Total R? 24.75
* is minor allele frequency, ** is minor allele effect, and MLM is mixed linear mod.
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Figure 5. Box plots showing the phenotypic values of the different allele classes of eight SNPs identified in GWAS for MLN disease severity and AUDPC value. The
SNP names and alleles are mentioned below. The black horizontal lines in the middle of the boxes are the median values for the MLN disease severity and AUDPC

value in the respective allele classes.
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3.4. Genomic Prediction

Prediction accuracies generated for MLN-DS and AUDPC are shown in Figure 6. GP accuracy
was increased gradually with increasing in marker density from 500 to 6300. When training population
size (TPS) was 915, the mean prediction accuracy of MLN-DS was 0.60 with marker density of 500;
0.64 with marker density of 1500; 0.68 with marker density of 3000; 0.71 with marker density of 4500;
and 0.72 with marker density of 6,300. The mean prediction accuracy for AUDPC at 500, 1500, 3000,
4500, and 6300 SNPs were 0.36, 0.42, 0.45, 0.46, and 0.50, respectively. Increase in training population
size from 230 to 915 showed slight increase in the prediction accuracies at constant marker density.
When TPS was 915, 685, 456, and 230 lines, the mean prediction accuracy was 0.72, 0.61, 0.59, and 0.57,
respectively for MLN-DS and 0.50, 0.48, 0.45, and 0.36, respectively for AUDPC values.
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Figure 6. Effect of the number of markers and number of individuals on the accuracy of genomic
prediction when the number of markers and size of the training population varied for MLN-DS
and AUDPC.

4. Discussion and Conclusions

For the last six years, MLN has been recognized as one of the major diseases constraining yield
production in SSA. Thus, effective breeding strategies for MLN resistant germplasm have to be
employed [3]. In this study, we phenotyped and genotyped a large set of diverse maize lines and
applied GWAS and GP in order to understand the genetic architecture of MLN resistance, validate
previous findings in subtropical germplasm and analyze population structure. We also reported the
results of the analysis of the population structure and LD patterns in the used maize germplasm panel.

Results in this study showed that the genetic variance for both the traits were significant and the
heritability was moderate to high. This information was consistent with previous studies on MLN
resistance which observed significant genetic variances and moderate to high heritability [2,15,26,31].
Higher estimates of heritabilities depict the ability of the traits for improvement of the maize germplasm
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for MLN resistance. The high quality of the phenotypic data makes it more suitable for association
mapping studies [17].

For GWAS, MLM has been used successfully in multiple populations for correcting population
stratification using kinship matrix [32]. The resolution and the required marker density of GWAS
depends on the extent of LD in the population [33]. Our study LD was decayed rapidly and at cut
off points of r* = 0.1 and 0.2 the distance was 1.78 kb and 0.62 kb, respectively thus suggesting the
potential of GWAS for this study. Previous studies showed that GBS and the association power was
enhanced when LD decay distance throughout all the 10 chromosomes in an association mapping
panel was less than 5 kb at r? = 0.1 [34-36]. The observed LD decay was also in line with the LD decay
observed on tropical maize panels used for haploid male fertility study [37].

The line plot for Delta K values suggested that the population could be structured into two or
three groups. The three groups could be associated with the three panels we used. These association
panels represent breeding programs from across Africa and Latin America posing the possibility of
false positives arising from population structure. Therefore, we used the first five PCs with relative
kinship matrix to correct for false associations.

The genetic architecture of MLN has been reported in biparental and association panels [15,26,31].
The present study showed that GWAS analyses is powerful for revealing marker-trait associations for
both MLN-DS and AUDPC using high marker density. We identified 32 SNPs significantly associated
with these two traits using GWAS with 18 SNPs were for MLN-DS and 19 SNPs for AUDPC. For
MLN-DS, these SNPs were distributed across all chromosomes (chr) except chr 2, 5, 6, and 8. Five
SNPs are common whereas 13 and 14 SNPs are specific for MLN-DS and AUDPC, respectively. These
results suggest that in the used panel, MLN is controlled by minor genes distributed across the genome
and thus explaining that MLN is complex in nature. We identified a genomic region S1_44539940
and S4_199711804 are valuable for both the traits. Ten SNPs (S3_33757503, S3_55239348, S3_56468811,
S3_136082606, S3_147938951, S3_149313702, S3_161574458, S3_161574468, S3_161574470, S3_161574471,
and S3_190890553) were detected on chromosome 3 either for MLN-DS and/or AUDPC localized to the
map bins 3.04 and 3.05 corroborating with a previous study on MLN [16].

Among the 32 SNPs identified together for MLN disease severity and AUDPC values, most were
overlapped with SNPs reported in earlier three studies where multiple populations were used with
linkage mapping, joint linkage association mapping (JLAM), and GWAS approaches [15,26,31]. SNP
S4_199711804 is another significantly associated SNP found in this study is falling within the confidence
interval of major effect QTL, qMLN4-235 reported for MLN [26]. Among 10 SNPs found on chromosome
3, 53_55239348, S3_56468811 were coincided with the QTL reported for both MCMV and MLN [26],
whereas SNPs S3_136082606, S3_147938951, S3_149313702, were coincided with QTL reported for
MLN in four biparental populations [31]. Four SNPs, S3_161574458, S3_161574468, S3_161574470,
and S3_161574471 are overlapping with the QTL reported for MLN in three DH populations [26].
Interestingly SNP 53_190890553 was falling very close to the MCMV and MLN resistance associated
QTL gMCMV2-189, identified through both GWAS [15] and JLAM across three DH populations [26].

Nevertheless, the SNP identified on chromosome 6, S6_148513637 is falling very close to the
consistent QTL qMLNG6-158 reported for both MCMV [26], and MLN [31]. Interestingly, a QTL
for SCMV resistance is very close region from diversity panel [36]. Another marker S6_99770682
is overlapped with QTL gMLN6-100 reported through JLAM and located very close to the QTL
gMLNG6-89 reported in biparental populations [31]. Two SNPs on chromosome 7, S7_140411743 and
57_143109798 are located within the QTL qMLN?7-144 which has confidence interval of 139 to 149 Mbp
reported in biparental populations [26]. Other SNP on chromosome 7 S7_166270242 is located within
the QTL gqMLN7_152 which had confidence interval of 152 to 167 Mbp [26]. Another SNP detected on
chromosome 8, S8_150798179 is falling within the confidence interval of the QTL detected for MCMV
in DH population [26]. Three SNPs located closely on chromosome 10 even though detected as new
markers but located very closely to the QTL gqMLN10_137 detected across DH populations through
JLAM [26]. The results of the present study help to reduce the detected QTLs big confidence interval
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and helps to focus on few markers or specific region which can enhance the efficiency of markers in
improving MLN resistance. The allelic effect of some of these markers clearly support the effective role
in improving the level of MLN resistance (Figure 5). These consistent regions or SNPs could potentially
help the breeders to design effective strategy to introgress these QTL in relevant breeding materials
through marker assisted breeding.

In the previous MLN studies, a set of putative candidate genes significantly associated with MLN
were identified, i.e., candidate gene GRMZM?2G109805 on chr 5 involved in hypersensitivity reaction,
GRMZM2G018943 that functions as a translation initiation factor elF-2B involved in mutations in
host factors, GRMZM2G056612 and GRMZM2G008109 involved in protein serine/threonine kinase
activity that plays a role in cell signaling for pathogen perception and plant defense activation [15]. In
addition, Gowda et al. [15], reported two putative candidate genes namely GRMZM2G471517 and
GRMZM2G404316 that are antifreeze pathogenesis-related proteins with ice binding properties. In
the present study, GWAS revealed a set of putative candidate genes some of which are involved in
plant defense, cell development, and signaling. The putative gene GRMZM2G159402 is annotated as
being involved in RNA biosynthesis and transcriptional activation for tissue specific expression in
maize [38]. We also annotated GRMZM2G024159 which is one of the housekeeping genes in maize
primarily involved in maintaining basic cellular functions [39].

Another putative candidate gene GRMZM2G071015 encodes for a BAG-associated GRAM protein
and is involved at the most elementary level for modifying and controlling maize leaf lipidomes
which could play a role as an indicator for respective stress [37]. GRMZM2G428168, is involved
in protein modification, and S-glutathionylation and deglutathionylation. It is involved in maize
glutathione-S-tranferase (GST) protein expression which plays a role in plant defense for instance biotic
stress [40]. Numerous studies have shown the induction of GSTs in early stages of bacterial, fungal, and
viral infections and that silencing of these GSTs could modify disease symptoms and multiplication
rates [41]. This putative candidate gene could play a role in MLN resistance as these GSTs can detoxify
toxic substances that accumulate during infection by their conjugation with glutathione and attenuation
of oxidative stress [41]; however, more research is needed to reveal the exact relevance of the GST gene
in MLN resistance.

The candidate gene GRMZM2G177046 is involved in RNA biosynthesis and basic-region leucine
zipper (bZIP) transcription factor activation that regulate plant growth and development and are also
involved in stress responses and hormone signaling [42]. It is an ocs element binding (OBF) factor
1 and notably, OBFs are a group of promoter sequences belonging to a very specific class of bZIP
transcription factors required for the expression of both genes of pathogens in infected plants and plant
defense genes [43]. The OBFs bind to a family of related, 20-bp DNA promoter sequences called ocs
elements which bacterial and viral pathogens use to express genes in plants [43]. Moreover, the ocs
elements also regulate the transcription of GSTs which involved in plant defense responses [41].

Mitogen activated protein kinase (MAPK) cascades are conserved signal transduction pathways
that translate external stimuli into cellular responses in all eukaryotes [44]. The MAPK kinase kinases
(MAPKKK) are activated by upstream signals to phosphorylate a MAPK kinase (MKK) that in turn
activated a specific MAPK. MAPK pathways are activated in signaling pathways such as plant innate
immunity, plant defense, and hormone responses [43,45]. GRMZM2G400470 is a MAPKK2 which
was reported to be activated in an MAPK cascade namely MEKK1-MKK1/MKK2-MPK4 in Arabidopsis
during plant pathogen perception [46]. It was also induced upon Fusarrium verticilliodes inoculation
in a CO441 maize genotype thus explaining its importance in resistance in the particular genotype
to F. verticilliodes that causes ear rot and accumulation of mycotoxins [46]. Furthermore, we also
found another putative candidate gene GRMZM2G409309 which is associated with a powdery mildew
resistant protein 5/trichome Birefringence-like 38 and has also shown to be involved in the partial
resistance in maize common rust caused by the fungus Puccinia sorghi. In Arabidopsis, PMD5 mutant
lines have cell walls rich in pectin and increases résistance to the powdery mildew pathogens Erisyphe
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cichoracearum and E. orontii and further studies have suggested its importance in non-host resistance in
the crop [46,47].

Unlike traditional MAS, GP incorporates all available genome-wide markers thus capturing all
major and minor marker effects. GP has been applied successfully in previous studies in maize with
moderate to high prediction accuracies [27,35,48] making it an effective and powerful approach for
complex trait improvement. In the present study, GP revealed moderate to high prediction accuracies
for MLN-DS and AUDPC (Figure 6) that supported their quantitative nature. These results were
comparable with earlier studies for MLN in which Gowda et al. [15] and Sitonik et al. [26] reported
moderate to high prediction accuracies. The results also showed that the prediction accuracies were
significantly associated with marker density which also agreed with previous studies whereby the
prediction accuracies increased with increase in marker density [49]. This indicates that higher marker
density is required to obtain higher prediction accuracies for complex traits. However, the tradeoff
between cost of high-density genotyping and gain in prediction accuracy be considered carefully for
breeding application. Interestingly varying training population size did not show big differences
in prediction accuracies possibly because of the different training population sets used had more
information as compared to others. MLN-DS showed a higher prediction accuracy compared to
AUDPC possibly because it is less complex compared to AUDPC. Gowda et al. [31], reported that QTL
mapping and joint linkage association mapping (JLAM) results suggested that the genetic architecture
of MLN was possibly less complex compared to traits such as grain yield while the complexity of
MLN was showed more from the GP results. Therefore, it is important to incorporate GP in breeding
programs because it allows the capture both small effect QTLs together with major effect QTLs [11].

In conclusion, we used a large set of lines together comprising 1400 inbreds to understand and
validate the genetic architecture of MLN resistance and identified 32 SNPs significantly associated with
MLN resistance. The GP results revealed that it can be used to improve resistance to MLN and also to
predict germplasm response to MLN. However, more research is necessary to validate the identified
candidate genes and their functions to relate specifically to MLN resistance.
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