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Simple Summary: Cancer is among the main causes of death of millions of individuals worldwide.
Although survival has improved with conventional treatments, the appearance of resistant cancer
cells leads to patient relapses. It is, therefore, necessary to find new antitumor therapies that can
completely eradicate transformed cells. Bacteria-based tumor therapy represents a promising alter-
native treatment, particularly the use of live-attenuated Salmonella enterica, with its potential use as
a delivery system of antitumor heterologous molecules such as tumor-associated antigens, cytotoxic
molecules, immunomodulatory molecules, pro-apoptotic proteins, nucleic acids, and nanoparticles.
In this review, we present the state of the art of current preclinical and clinical research on the use of
Salmonella enterica as a potential therapeutic ally in the war against cancer.

Abstract: Over a century ago, bacterial extracts were found to be useful in cancer therapy, but this
treatment modality was obviated for decades. Currently, in spite of the development and advances in
chemotherapies and radiotherapy, failure of these conventional treatments still represents a major
issue in the complete eradication of tumor cells and has led to renewed approaches with bacteria-
based tumor therapy as an alternative treatment. In this context, live-attenuated bacteria, particularly
Salmonella enterica, have demonstrated tumor selectivity, intrinsic oncolytic activity, and the ability to
induce innate or specific antitumor immune responses. Moreover, Salmonella enterica also has strong
potential as a delivery system of tumor-associated antigens, cytotoxic molecules, immunomodulatory
molecules, pro-apoptotic proteins, and nucleic acids into eukaryotic cells, in a process known as
bactofection and antitumor nanoparticles. In this review, we present the state of the art of current
preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the
war against cancer.

Keywords: Salmonella enterica; cancer therapy; immunotherapy

1. Introduction

In 1891, William B. Coley, a surgeon specializing in bone sarcomas, reported that
treating his patients with malignancies with cultures of the bacterium responsible for
erysipelas, eliminated the tumors [1]. These findings led to the development of “Coley’s
Toxin”, a combination of the heat-inactivated bacteria Streptococcus pyogenes and Serratia
marcescens, used until 1963; this extract was used in the treatment of sarcomas, carcinomas,
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lymphomas, melanomas, and myelomas. The development of radiotherapy and chemother-
apy accounted for the gradual dismissal of Coley’s toxin [2]. Further studies (1976) using
intravesical attenuated Mycobacterium bovis, the Bacille of Calmette-Guérin, proved to be the
most effective in reducing the recurrence and progression of bladder cancer by triggering
an inflammatory response. This approach remains in clinical use [3-7]. Although the use of
bacteria in cancer treatment was abandoned for decades, recent advances in the fields of
immunology and biotechnology have led to its resurgence [8]. Some of the advantages of
bacterial cancer therapy in cancer management include: (a) its low cost, (b) its immunos-
timulatory activity (adjuvant), (c) its availability in biosafe strains, (d) a low incidence of
side effects, and (e) its tendency to strictly colonize the tumor microenvironment [8]. To
date, several bacterial genera have been reported to harbor antitumor activity and have
been classified as: aerobic microorganisms such as the genus Mycobacterium; strict anaer-
obes such as Clostridium and Bifidobacterium; and facultative anaerobes such as those in
the genera Escherichia, Listeria, Lactococcus, and Salmonella, among others. Salmonella,
an intracellular facultative anaerobe bacillus, is the most fully studied bacterial genus in
cancer treatment. In this genus, Salmonella enterica serovar Typhi (Salmonella Typhi) and
Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) can specifically target
tumors and induce an antitumor response [7,8]. There is a great diversity of Salmonella
enterica-attenuated strains that foster biosafety in preclinical assays and clinical trials [9].

2. Live-Attenuated Salmonella enterica Strains in Cancer Therapy

Various genes have been mutated to attenuate Salmonella enterica and minimize its
virulence and pathogenicity, thus obtaining biosafe strains [10]. The reported mutations
include: metabolic pathway auxotrophic mutations, virulence- and toxicity-associated
mutations, and mutations that promote tumor selectivity and directionality toward the
tumor. According to available information, auxotrophic mutations in metabolic pathways
include those that compromise purine biosynthesis [11], and those affecting the biosynthesis
of amino acids, including aromatic amino acids [12]; there are also combinations of several
mutations [13] that preclude replication in unfavorable milieus lacking these molecular
substrates, and hence, do not create greater risks in the host. These include Salmonella with
mutations in the genes aroA, aroC, and aroD pertaining to the Shikimato pathway; these
mutations prevent the production of aromatic amino acids, thus disabling the bacterium’s
replication ability within the host, since these amino acids or their precursors are essential
to its survival [6,14-20]. Other examples include bacteria that depend on the amino
acids leucine and arginine [21-27]. Mutations have also been performed in Salmonella
enterica genes that play a role in the biosynthesis of nucleic acids, such as the purl gene
deletion [28,29] and mutations in the guaBA operon that negatively intervenes in the
biosynthesis of guanine nucleotides [30,31].

Another group of mutations compromise the virulence-associated gene profile of
Salmonella enterica, such as the mutation in the msbB gene [28,29] that interferes with the
synthesis of lipid A, an indispensable component for lipopolysaccharide (LPS), the molecule
associated with septic shock induced by Salmonella enterica; other mutations have been
described in genes faG, rdaF, dam [32], sptP [33], and gmd [34] that also play a role in the
formation of LPS [35], and mutations in genes pagP§, pagL7, and IpxR9 that affect lipid
A [36,37] in Salmonella enterica. Of special note are the mutations described in the PhoP/PhoQ
genes [38], responsible for bacterial survival [39], and the mutations in the relA and spoT
genes involved in bacterial virulence [40-42].

Salmonella enterica mutations also foster tumor selectivity and directionality, as in
the case of mutations in operon znuABC that encodes the high-affinity zinc receptor and
maintains tumor selectivity [43]. Other mutations are present in genes associated with
adenylate cyclase, necessary for adaptation to osmotic gradients [44].

Research that has focused on the creation of safer strains while still maintaining
tumoral tropism, has led to various gene mutations, such as mutant attenuations of genes
Pur, Ilv, Arg or Pur, Ilv, Ura [45], or the Salmonella enterica recombinants mutated in genes
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Table 1. Attenuated Salmonella enterica strains used in murine malignancy models.

aroA and hisG, in combination with deletions in the cheY gene associated with chemotaxis;
the fiGHI gene associated with motility; the genes invG, phoP, sseD, and ssrB associated with
invasiveness; and the gene purA associated with metabolism [46]. Finally, commercially
available strains with vaccine purposes have also been used; they have been mutated in the
Gal E gene and lack the Vi antigen [47]. In general, the described mutations have permitted
the generation of biosafe attenuated strains with proven antitumor activity in preclinical
and clinical trials. Table 1 summarizes some of the Salmonella enterica-attenuated strains
used in antitumor therapy.

Species Strain Mutation Tr‘eated Reference
Malignancy
Mutations in genes of metabolic pathways
Salmonella Plasmacytoma,
. . SL3235 aroA Non-Hodgkin [6,11-14]
Typhimurium )
ymphoma
Salmonella hisG46, DEL407
Typhimurium SL7207 aroA544::Tn10 (Tc°) Lung cancer [15,16]
Sali.nonel.la YB1 asd Hepatf)cellular [17]
Typhimurium carcinoma
Salmonella
Typhimurium LVRO1 aroC B cell lymphoma [18,19]
Sal’.ﬂond.la BRD509 aroA and aroD Murine melanoma [20]
Typhimurium
Prostate cancer,
Salmonella Spinal glioma,
Typhimurium ALR Leu,Arg Pancreatic cancer, (21271
and Fibrosarcoma
Salmonella VNP20009 purl,msbB Metastatic [28,29]
Typhimurium melanoma
Salmonella Breast
Tvphi CVD915 guaBA adenocarcinoma, [30,31]
M T cell lymphoma
Mutations in genes associated with virulence
Salmonella VNP20009 purl,msbB Metastatic [28,29]
Typhimurium melanoma
Sali.nonellla RES88 aroA and dam Breast Carcinoma [32]
Typhimurium
Salr'nonel‘la SB824 sptP::Kan Fibrosarcoma [33]
Typhimurium
aroA::Tnl0,
Salmonella gmd::Plac-
Tvphimuriam ST8 T7RNAP,htrA:: Colon cancer [34]
M PpepT-asd-PsodA,
infA::Ptet-tetR.
Salmonella rfaL, rfaG, rfaH,
Typhimurium 14028 rfaD, rfaP and msbB Colon cancer 331
Salmonella 5634 pagP, pagL and IpxR Colon carcinoma [36,37]

Typhimurium
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Species Strain Mutation Tr.eated Reference
Malignancy
51111:1101’161.1(1 LH340 PhoP/PhoQ Prostate cancer [39]
Typhimurium
Salmonella Colon
Typhimurium PPGPP relA:zcat,spoT::kan adenocarcinoma [40-421
Gene mutations associated with tumor selectivity
Salmonella Breast
Typhimurium SA186 znuABC Adenocarcinoma (431
Salmonella 4550 .
Typhimurium X Cya-1, Crp-1 Adenocarcinoma [44]
Mutations in multiple genes
Salmonella Pur, Ilv, Arg
Typhimurium Y5721 and Pur, Ilv, Ura. Melanoma [45]
Salmonella cheY, fliGHI, invG,
Tvphimurium SL1344 phoP, sseD, sstB, Colon Carcinoma [46]
yp aroA, and purA
Chemical
Salmonella attenuation, Murine
Typhi TY21A UDP-glucose- bladder cancer (471

4-epimerase

3. Selectivity and Permanence of Salmonella enterica in the Tumor Microenvironment

Several studies have documented that Salmonella enterica has the ability to specifically
target tumors [48,49], but how this tropism is not completely understood [45]. The tumor
microenvironment is characteristically hypoxic (<10 mmHg) [50], acidic [10], necrotic [10],
and one in which the immune response is suppressed [5], but favoring the selectivity and
permanence of Salmonella enterica within the tumor microenvironment [10]. Kasinskas et al.,
demonstrated that Salmonella Typhimurium accumulates in the quiescence zone, possibly
sensing certain chemical secreted by tumor cells [51]. Subsequent studies have suggested
that some molecules such as serine, aspartate, ribose and galactose possess chemotactic
activity [51,52]. Recently, ethanolamine, a component used by Salmonella to colonize the
gastrointestinal tract, has been found to be overexpressed in different types of neoplasias,
and may also act as a chemoattractant of the bacterium towards the tumor [53-55]. After
the bacteria has detected these chemotactic factors, systems involved in motility such as
CheA/CheY are essential to colonization efficiency and bacterial distribution in malignant
tissues [51,52,56-58]. However, other studies have suggested that motility-promoting
bacterial proteins are not involved in Salmonella enterica tumor tissue colonization [46,55,59].
The accumulation of Salmonella enterica in tumor tissue has also been associated with
impaired innate and adaptive antitumor immune responses [60-62]. In addition, Salmonella
colonizing tumors, form biofilms as protection against phagocytosis by immune or tumor
cells [63]. Other studies have stated that the aromatic amino acid (ar0A) and purine (purA)
pathways of Salmonella enterica are also of relevance in the bacterium’s establishment within
the tumor, since mutations in these metabolic pathways lead to a decrease in bacteria in
the tumor tissue [46,59]. These mechanisms may explain the preferential accumulation
of Salmonella enterica in the tumor rather than in normal tissue, and thus potentiate their
antitumor activity (Figure 1).
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Figure 1. Tumor selectivity and inherent antitumor activity of Salmonella enterica. After Salmonella
enterica enters the host through the mucosas or intravenously, it can specifically target tumor tissue
due to hypoxia, acidity, necrosis, suppressed immune response, and the presence of chemoattractants
of the bacterium in the tumor microenvironment. Subsequently, Salmonella enterica, activates inherent
antitumor mechanisms, including its oncolytic activity per se, and the induction of the innate and
adaptive immune responses.

4. Intrinsic Antitumor Activity of Salmonella enterica

Salmonella enterica inherent or intrinsic antitumor activity has been demonstrated
in different preclinical and clinical studies [4,5]. This activity has been evaluated in
several cancer models, for instance: (a) murine cancer models, including sarcomas [4],
leukemia [64], colon cancer [46,64], prostate cancer [65], T-cell metastatic lymphoma [66],
B-cell lymphoma [67], breast and colorectal cancer [68], among other. In this models
the administration of Salmonella enterica reduced the tumor growth; (b) murine models
of xenotransplantation human cancer, including prostate and breast cancer [21,24,68,69],
osteosarcoma [25], pancreatic cancer [26], and spinal gliomas [27], among others; most
results report that Salmonella enterica inhibit tumor growth, increasing survival in these
murine models; (c) Patient-Derived Orthotopic Xenograft (PDOX) murine models [70,71], in
which Salmonella enterica A1-R colonized and decreased the size of the tumor in metastatic
colon cancer [70], osteosarcomas [72-77], and melanoma models [78-82]. Tumor cells that
are refractory to drug therapy [72,73,75,76,79,82], and kinase inhibitors [74,80] were also
eliminated by Salmonella enterica A1-R in PDOX murine models.

The intrinsic antitumor activity of Salmonella enterica has also been evaluated in clinical
trials of solid tumors, using intravenous doses of the VNP20009 strain (bearing mutation in
the msbB and pur I genes). Results revealed no side effects due to the bacterial infection,
but only modest colonization with no significant antineoplastic activity [29].

The documented antitumor activity of Salmonella enterica may be further enhanced by
the route of administration; for instance, there is no significant difference in the colonization
rate nor in the decrease in tumor volume if it is administered intravenously or via the
peritoneum in comparison with oral administration. However, the oral route appears to be
safer but the intravenous route promotes greater antitumor activity [46,83].

The described studies document the intrinsic antitumor activity of Salmonella enterica,
but the mechanisms through which the bacterium acts remain to be further elucidated; some
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authors have suggested that they involve the inactivation of death signaling pathways in
the tumor cell, and the induction of the antitumor innate and adaptive immune responses.

4.1. Salmonella enterica Activates Death Domain Pathways in Tumor Cells

Once Salmonella enterica is incorporated into the tumor microenvironment, it triggers
a series of mechanisms with the aim to eliminate the transformed cell. These include:
(1) competition with cancer cells for nutrients [10], (2) the release of antitumor bacte-
rial toxins [84-88], (3) decreased angiogenesis [88], (4) activation of autophagy [89,90],
(5) an increase in the amounts of calreticulin [43,91]; (6) Salmonella also has the ability to
inhibit the expression of metalloproteinase-9 (MMP-9), an enzyme associated with the
degradation of the extracellular matrix, angiogenesis, and tumor progression, mediated by
its interference in the AKT/mTOR pathway [92]; (7) it induces sensitization to drug therapy
by decreasing the levels of glycoprotein P (GP) [93-95], and (8) it induces the expression of
gasdermin-D (GSDM-D), exposure to calreticulin (CRT), and the release of high-mobility
group proteins (HMGB-1) into the extracellular medium, thus activating immunogenic cell
death, particularly pyroptosis; this process is mediated by the excision of caspase-1 and the
subsequent release of IL-f3 [96].

4.2. Salmonella enterica Activates the Antitumor Innate Immune Response

Among the antitumor activities induced by Salmonella enterica, the immune response
triggered in the host is of vital importance. Intracellular bacteria such as Salmonella enterica
can infect non-phagocytic cells through the type 3 secretion system (T3SS). This mecha-
nism may promote the elimination of tumor cells infected by the bacteria by presenting
bacterial antigens on their cell surface capable of being recognized by Salmonella-specific
T lymphocytes [97,98].

Initial immunotherapeutic studies of Salmonella enterica were conducted by Kurashige
S. et al., using minicells (vesicles with no genomic DNA) in murine models (sarcoma [99]
and T-cell lymphoma [100]). The results showed that the administration of minicells
activated the innate immune response and promoted the eradication of transformed cells.

Several studies have shown that the antitumor activity of Salmonella enterica results
from the recruitment of immune response cells such as neutrophils (PMN), macrophages
(M®), natural killer cells (NK), dendritic cells (DC), and CD4+ and CD8+ T cells [19]; it
also results from increased expression of IL-13, TNF-« [41], and other proinflammatory
cytokines such as IFN-y [39] produced by CD11c+ cells and CD68+ macrophages, both
associated with tumor regression. In addition, bone marrow-derived macrophages were
able to produce inflammasome-related proteins, including NLRP, IPAF, and caspase 1 [42].

Many bacterial components, including pathogen-associated molecular pattern
molecules (PAMPs), as well as the CpG sequences, lipopolysaccharide (LPS), and flagellin,
have proven to harbor antitumor activity, once they are recognized by pattern recogni-
tion receptors (PRR), such as Toll-like receptors (TLRs), that allow the activation of the
signaling pathways involved in the innate and adaptive immune responses. In this context,
when LPS binds to CD14 and TLR4, it induces the expression of tumor necrosis factor
(TNF-«) [101-103]. The presence of this cytokine promotes tumor blood vessel hemor-
rhages, thus allowing the infiltration of mature immune cells of myeloid (PMN and M®
cells) [104] and lymphoid (T, B and NK cells) [105-107] lineages, with the purpose of elimi-
nating tumor cells. Another bacterial component recognized through the TLRs is flagellin,
a sub-unit of the protein of the bacterial flagella, that can directly suppress tumor cell
proliferation via TLR5, and induce an antitumor response mediated by perforin-dependent
NK cells [107,108]. Once flagellin has bound to TLR5, it signals and activates the NF-«B
signaling pathway [109]; this, in turn, has been shown to increase the levels of Fas or TNF-
a-mediated apoptosis in Jurkat cells [110]. The peri-tumoral administration of flagellin
significantly inhibits tumor growth by increasing the levels of IFN-y and IL-4 [111]. Others
studies have documented the major role played by flagellin in antitumor activity using
murine models of melanoma metastases [112], lymphoma, [107], and colon cancer [113].
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4.3. Salmonella enterica Activates the Antitumor Adaptive Immune Response

The changes promoted by Salmonella enterica in the tumor microenvironment induce
the transition from an immunosuppressed to an immunogenic phenotype [114]. This
process involves breaking immune tolerance by impairing the levels of T-regulatory lym-
phocytes (Treg) in the tumor microenvironment via LPS and the Braun lipoprotein (Lpp)
of Salmonella enterica [115]; and by decreasing the levels of the enzyme indoleamine 2,
3-dioxygenase-1 (IDO1) [90], an enzyme that acts on tryptophan metabolism and is associ-
ated with the development of immune tolerance in T lymphocytes [116,117], thus prevent-
ing the formation of kynurenine and promoting the proliferation of T lymphocytes capable
of recognizing and eliminating the tumor. Consequently, tumor cells infected by Salmonella
enterica can process and present bacterial antigens to T lymphocytes that in turn, induce the
elimination of the transformed cell in different types of solid tumors [19,21,118,119]. In the
tumor microenvironment, Salmonella enterica induces the activation of the cells involved
in the adaptive immune response such as B and T lymphocytes [120], and dendritic cells
(DC), thus allowing the cross-presentation of tumor antigens [103,121]. Salmonella infec-
tion induces the upregulation of connexin 43 (Cx43) [122,123], a protein involved in the
formation of the gap union between tumor cells, and DCs that allow the transfer of tumor
cell pre-processed peptides to the DC, hence inducing cross-presentation and subsequent
cross-priming of the specific tumor antigen [122,124]. Studies in a murine B-cell lymphoma
model have documented that the administration of Salmonella enterica elicited an adaptive
immune local and systemic antitumor response via CD8+ and CD4+ intratumor T cells,
pro-inflammatory cytokines (IFN-y and IL-12), and antitumor specific antibodies [19].

5. Salmonella enterica as a Delivery System of Heterologous Antitumor Molecules

As described, the reported mechanisms mediating the intrinsic oncolytic activity of
Salmonella enterica have been effective in preclinical models [4,5,7]. The tumor microenvi-
roment (TME) is characterized by a state of hypoxia, necrosis, acidity, and suppression of
the immune response; it facilitates migration and infection by Salmonella enterica, as well as
its permanence in the tumor microenvironment for sufficient time (weeks) to activate its
intrinsic oncolytic properties, revert immune tolerance, and induce tumor cell elimination.
This is unlike the state of Salmonella enterica established in target organs such as the spleen
or liver, where the bacterium begins to be eliminated within a week [125]. Also, to prevent
the elimination of Salmonella enterica by the induced immune reaction and promote its estab-
lishment in the TME, consecutive and progressively greater CFU doses have been proven
to be effective [126]. However, this intrinsic activity in initial clinical studies has not been
sufficient to destroy the tumor [29,46,127,128] and has led to the development of strategies
that potentiate Salmonella enterica’s oncolytic activity. Considering that once Salmonella
enterica reaches the tumor, it becomes a complete factory producing antitumor heterologous
molecules [10], its potential antitumor activity has been explored when used as a carrier of
antitumor heterologous molecules such as: tumor-associated or tumor-specific antigens
(TAA/TSA); cytotoxic molecules; immunomodulating molecules; inducers of apoptosis,
nucleic acids, and nanomolecules (Figure 2).

These loads were incorporated into the bacteria with recombinant DNA technology [129],
and displayed in different Salmonella enterica compartments [120-122]. Table 2 outlines
how live-attenuated Salmonella enterica strains act as a delivery system of biomolecules in
cancer therapy.

Table 2. Salmonella enterica as a carrier of antitumor heterologous molecules.

Heterologous Type of Generated
Species Mutation 8 Tumor in AntiTumor References
Molecule .
Murine Model Response

Tumor-associated antigens/Tumor-specific antigens

Salmonella aroA PSA Prostate cancer Cytotoxic

Typhimurium CD8+ T cells [150]
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. . Heterologous Type o.f Ger}erated
Species Mutation Molecule Tumor in AntiTumor References
Murine Model Response
Salmonella oA VEGFR-2 Melanom Cytotoxic [131]
Typhimurium clanoma CD8+ T cells )
Salmonella Lung Cytotoxic
Typhimurium aroA C-RaF adenocarcinoma CD8+ T cells (16l
Peptide
Sﬂliﬁm’l@l'l a aroA 217-225 of Fibrosarcoma Effector [33,132]
Typhimurium . CD8+ T cells
protein P60
Salmonella . Specific CD4+ and
Typhimurium phoP, phoQ NY-ESO1 Fibrosarcoma CD8+ T cells [133]
T ;gfm’frlfﬁm aroA E7 (HPV16E7) Cervical cancer INFy and TNFo [134]
Salmonella Thl and
Typhimurium aroA Melan-A Melanoma CTL response [135,136]
Salmonella Colon cancer Induction of
Typhimurium purD, htrA SVN and lymphoma CD8+ Treg cells [157]
Cytotoxic molecules
Salmonella waaN,
Typhimurium purl, aroA HIyE Breast cancer Increased LDH [138]
Salmonella Colon cancer and Decrease in
Typhimurium ppGpp ClyA hepat(?cellular tumor size [139,140]
carcinoma
TSalrfwnel.l a aroA, purl PNP Breast cancer Increase m [141]
yphimurium apoptosis
Salmonella Infiltration by
Typhimurium purl, msbB PNP Melanoma CD8+ cells [142]
Salmonella Sensitivity of
Typhimurium aroA HSV-TK Lymphoma tumor cells [143]
Cytotoxicity of
Salmonella pul, msbB CPG2 Breast and colon tumor cells and [144]
Typhimurium and asd cancer, melanoma inhibition of
tumor growth
Salmonella Colon and Delay in
Typhimurium PPGPP TGFo-PE38 breast cancer tumor growth [145]
Immunomodulating molecules and apoptosis inducers
Salmonel.l ; Pur, msb CCL21 Breast Carcinoma Inhibition of [62]
Typhimurium tumor growth
Suln'wnel.l a Cya-1, Crp-1 IL-2 Adenocarcinoma Decreases [44,146]
Typhimurium metastases
Salmonella Increases ;
Typhimurium aroA 1L-4,1L-18 Melanoma TFN-y levels [147]
Salr.nonel'l a Pur, msb IL-18 Colon Carcinoma Inhibits [148]
Typhimurium tumor growth
Salmonella 1L-24, . Inhibits
Typhimurium aroA Apoptina Gastric cancer tumor growth [149]
TSuln.wnel.l a aroA TRAIL, VP3 Gastric cancer Increases casp a.se-3 [150]
yphimurium and 9 expression
Salmonella Inhibition of
Typhimurium aroA, aroD IFN-y Melanoma fumor growth [151]
TS“WO”EZ.I” purl,msbB LIGHT Breast Carcinoma Inhibition of [152]
Dol A B oibiton of
almonella relA::cat, reast nhibition o )
Typhimurium spoT::kan TGFo-PE38 and colon cancer tumor growth [145]
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Heterologous Type of Generated
Species Mutation Molecfle Tumor in AntiTumor References
Murine Model Response
Colon
Salmonella relA::cat, L- Adenocarcinoma, Inhibition of [153]
Typhimurium spoT::kan asparaginasa pancreas, and tumor growth o
breast cancer
Salmonella Decrease in
Typhimurium Cya-1, Crp-1 1L-2 Osteosarcoma metastases [154]
Salr{mnel} a aroA, aroD TNF-o Melanoma Induction (?f [155]
Typhimurium de apoptosis
Saliﬁonel'l a msbB, purl Laz Glioblastoma Inductlon. [156]
Typhimurium of apoptosis
Saln.mnel'l a purl, msbB FasL Breast Carcinoma Inhibition of [157]
Typhimurium tumor growth
Salmonella b purl FADD Melanoma Induction [158]
Typhimurium of apoptosis
Nucleid acids (Bactofection)
Salr.nonel.l a aroA, aroD Flt3 Melanoma Inhibition of [159]
Typhimurium tumor growth
Salmonella . Decr'e %SEd
Tvohimurium PhoP/PhoQ Apoptina Larynx Cancer cytotoxicity and [160]
yp increased apoptosis
hisG46,
Salmonella DEL407 Tirosina Neuroblastoma Protection against [161]
Typhimurium aroA544: hidrolasa tumor challenges
Tn10 (Tc°)
hisG46,
Salmonella DEL407 .
Typhimurium aroA5dd:: IL-15 Neuroblastoma Tumor remission [162]
Tn10 (Tc°)
Salmonella Activation
Tvohimurium aroA Hsp70-TAA Melanoma of T cells, [163]
yp tumor elimination
Chemical
attenuation,
TSaflrﬁonel.la UDP- RBM5 A Lung Improvgs [164]
yphimurium enocarcinoma apoptosis
glucose-4
epimerase
Salmonella Increase in ROS
Typhimurium msbB, purl IDO ShRNA Melanoma and cell death [165]
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Typhimurium aroAb44:: MDRI siRNA cell carcinoma tumor proliferation [167]
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aroA,
Salmonella LT2 Trp Delays tumor
Tvohimurium Met Erpsl Bcl-2 shRNA Melanoma growth and [170]
yp flaA R- prolongs survival
M+
Salmonella hoP,phoQ  Stat-3shRNA  Larynx Cancer Suppression of [171]
Typhimurium prot,p Y tumor growth
Salmonella Inhibition of tumor
Tvohimurium PhoP, PhoQ Stat-3 SIRNA Prostate cancer growth, decrease [39]
yp in metastases
Nanomolecules
Liposomes Triple negative
Salr.nonel'l a purA:Tnl0 loaded with murine Induces tumor [172]
Typhimurium - cell death
doxorubicin breast cancer
Improves the
. therapeutic
Suln.wnel.l ¢ msbB, purl PLGA Murine efficiency of [173]
Typhimurium breast cancer
chemotherapy
drugs
Liposomes Improves the
Salr.nonel.la msbB loaded with Murine selectivity and [174]
Typhimurium .. colon cancer release
doxorubicin -
of Dorubicin
Nanoparticles
Salmonella loaded with . Inhibition of
. . asd . . Murine melanoma [175]
Typhimurium indocyanine tumor growth
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Salmonella nanoparticles Murine delivery of gold
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Typhi lucose-4 covered in colon cancer nanoparticles
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Combination of Salmonella enterica and conventional antitumor treatments
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yp gentamicin)
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Murine Model Response
Salmonella purl,msbB Chemotherapy Delays tumor
Tvphimurium and (paclitaxel and Melanoma growth and [182]
M PhoP/PhoQ doxorubicin) improves survival
Salmonella Adaptive . .
Typhimurium Leu,Arg T-cell therapy Fibrosarcoma Tumor regression [183]
Salmonella Caffeine and Pleomorphic rhab- Inhibition of )
Tvohi . Leu,Arg . . [184]
yphimurium valproic acid domyosarcoma tumor growth

Abbreviations: PSA: Prostate-Specific Antigen; VEGFR-2: Vascular endothelial growth factor receptor 2; C-Raf:
Serine-threonine kinases of the Raf family; NY-ESO1: New York Esophageal Squamous Cell Carcinoma-1; E7
(HPV16E7): Human papillomavirus protein E7; Melan-A: Melanoma Antigen; SVN: Survivin; HlyE: Haemolysin
E; ClyA: Cytolysin A; PNP: Purine nucleoside phosphorylase; HSV-TK: Herpes simplex virus thymidine ki-
nase; CPG2: carboxypeptidase G2; TGF«: Transforming growth factor alpha; PE38: Pseudomonas exotoxin A;
CCL21: Chemokine (C-C motif) ligand 21; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-18: Interleukin-18; IL-24:
Interleukin-24; TRAIL: Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand; VP3: apoptin; IFN-o: Inter-
feron alpha; LIGHT: a member of TNF cytokine family; TNF-«: Tumour Necrosis Factor alpha; Laz: Lipidated
azurin; FasL: Fas ligand; FADD: Fas-associated protein with death domain; F1t3: Flt3 Ligand; IL-15: Interleukin-15;
Hsp70: Heat shock protein 70; TAA: Tumor-associated antigens; RBM5: RNA-binding motif protein 5; RNA:
Ribonucleic acid; ShRNA: Short hairpin RNA; IDO: indoleamine 2,3-dioxygenase 1; Sox2: Sex determining
Region Y-box 2; siRNA: small interference RNA; MDR1: Multipledrug resistance protein 1 gene; GRIM-19: Gene
associated with retinoid-IFN-induced mortality 19; Bcl-2: B-cell lymphoma 2 gene; Stat-3: Signal transducer and
activators of Transcription 3 gene; PLGA: Poly(lactic-co-glycolic acid); CHOP: cyclophosphamide, doxorubicin,
vincristine and prednisone; 5-FU: 5-fluorouracil.

5.1. Delivery of Tumor-Associated Antigens/Tumor-Specific Antigens

Tumors possess the ability to use proteins to promote cell transformation and tu-
morigenesis in order to establish a malignant phenotype; these molecules are known as
Tumor-Associated Antigens (TAA) or Tumor-Specific Antigens (TSA), many of which
are immunogenic and can be recognized by lymphocytes [185]. Considering Salmonella
enteric a’s tropism for the tumor microenvironment and antigen-presenting cells (APC),
various TAA /TSA have been coupled with Salmonella enterica proteins for transportation
to the APC, and thus induce an antitumor immune response [7,10,186]. For instance, the
use of Salmonella Typhimurium for delivery of Prostate Specific Antigen (PSA) via the
Type 1 Secretion System (T1SS) has been reported, and it induced a decrease in tumor mass
and the presence of antigen-specific CD8+ T lymphocytes [130]. Another antigen trans-
ported by Salmonella enterica and secreted by T1SS is the C-Raf antigen that not only plays
a role in signal transduction but is also implicated in the developing malignant tumors.
Immunization with this recombinant Salmonella in a murine pulmonary adenoma model,
stimulated a CD8+ T cell response, induced specific anti-C-Raf antibodies, and decreased
tumor mass [16]. Examples in which the T3SS has been used to transport TAA /TSA include
studies in which Salmonella transports and secretes peptide 217-225 of Listeria monocyto-
genes protein 60 via the T3SS; its administration in a murine fibrosarcoma model induced
an effector CD8+ T cell response, it decreased tumor size, and protected against challenge
with an aggressively growing fibrosarcoma [33,132]. Immunization in an induced murine
fibrosarcoma model with Salmonella Typhimurium with the ability to release the NY-ESO1
antigen (a protein in germ cells that is overexpressed in cancer of the lung, melanoma,
esophagus, ovary, bladder and prostate) via T35S, induced specific CD8+ and CD4+ T cell
antigen-specific responses, and eliminated the tumor [133]. Salmonella enterica has also
been used to translocate, via the T3SS, some antigenic determinants of proteins involved in
angiogenesis [131] and oncogenic viruses [134]. Other secretion systems of gram negative
bacteria such as the type 5 secretion system (IT5SS) or autotransporters have also been
used to express TAA/TSA, as in the case of a Salmonella enterica that expresses murine
melanoma antigens through the AIDA-I autotransporter; the nasal administration of this
recombinant bacterium stimulated an antigen-specific response of CD4+ and CD8+ T lym-
phocytes, increased lymphocyte proliferation, and induced the production of Th1 cytokines,
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as well as a decrease in tumor growth and metastases development [135]. Aside from the
antigens expressed and secreted through the T1SS, T3SS, and T5SS systems in Salmonella
enterica, other antigens have also been transported by this bacterium to APC or to the tumor
microenvironment; these include survivin (a member of the inhibitor of apoptosis (IAP)
protein family that promotes cellular proliferation and inhibits apoptosis), and proteins
associated with tumor cell activation and migration [5,187]. The aforementioned studies
document that the transport and release of TAA/TSA by Salmonella enterica represent
a strategy to eliminate tumor cells and metastases.
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Figure 2. Salmonella enterica as a delivery system of heterologous molecules in cancer therapy.
Salmonella enterica’s tropism for the tumor microenvironment and antigen-presenting cells (APC), as
well as its ability to become a molecule factory within the tumor microenvironment, has allowed
its use as a delivery system of heterologous molecules with antitumor properties such as: tumor-
associated antigens or tumor-specific antigens, cytotoxic molecules, immunomodulating molecules,
inducers of apoptosis, nucleic acids, and nanomolecules.

5.2. Delivery of Cytotoxic Molecules

Various molecules with cytotoxic activity have been reported to harbor efficient anti-
tumor activity, but a lack of selectivity of the tumor microenvironment that may lead to
adverse effects remains an important challenge in cancer therapy. In this context, attenu-
ated Salmonella enterica strains have been used to transport and release antitumor cytotoxic
agents in situ, in an effectively and selectively manner [4,7,10]. Salmonella enterica can trans-
port and release cytolysins originating in other bacterial species, as described in studies
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with Salmonella Typhimurium that express Hemolysin E (Hly E) and Cytolysin A (ClyA); in
both cases, tumor invasion and tumor regression were documented in murine models of
breast cancer and colon carcinoma, repectively. [138-140,153,188]. Salmonella enterica has
also been used to transport enzymes that, once located in the tumor microenvironment,
activate cytotoxic compounds (pro-drugs) that eliminate tumor cells [10]. For example,
Salmonella enterica VNP20009 carrying the eukaryotic plasmid encoding purine nucleo-
side phosphorylase (sPNP) that convert the pro-drug 6-methylpurine-2’-desoxyriboside
(6MePdR) into the toxic substance 6-methylpurine (6MeP), showed antitumor activity
in tumor-bearing mice [141,142,189]. Other studies have described the antitumor effi-
cacy of a recombinant Salmonella displaying both, a nanobody against CD20 antigen and
the enzyme thymidine kinase, that activate an anticancer drug, using an in vivo model
of non-Hodgkin lymphoma; treatment increased antitumor activity and improved sur-
vival in immunodeficient mice [143]. In this scenario and in view of the great number of
molecules tested, it is imperative to improve the activity of pro-drug activating enzymes at
appropriate sites. This is reflected when using the Y6 modified YieF enzyme obtained from
E. coli, that significantly modified the activity of the pro-drugs Mitomycin C and 5-aziridinyl-
2,4-dinitrobenzamide (CB 1954), requiring a lower enzyme concentration and hence,
a decrease of HeLa cell viability in vitro [190]. Another pro-drug activating enzyme that
has been produced and transported by Salmonella, is cytosine deaminase that can convert
the pro-drug 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU), a cytotoxic metabolite used
as treatment of gastric, breast, and head and neck cancers [191]. Cunningham et al., used
Salmonella enterica VNP20009 TAPET-CD that expresses cytosine deaminase in clinical
trials and reported promising results [192]. Other studies have documented the use of the
Salmonella enterica VNP20009 strain to express and release the enzyme carboxypeptidase
G2 (CPG2) that possesses a potentiated oncolytic effect in mouse melanoma, human breast,
and colon carcinomas [144]. Another group of molecules that has also been expressed in
Salmonella enterica, are immunotoxins. This combination of toxin and antibody are charac-
terized by their binding to a receptor that is highly expressed in the tumor cell, allowing
the toxin to enter the cell and cause defects in its physiology that lead to its death. Reports
by Lim et al., reveal that a Salmonella enterica that expresses and releases the immunotoxic
chimeric protein TGF«-PE38 [a fusion of transforming growth factor-alpha (TGF-o) and
Pseudomona endotoxin A (PE38), decreased tumor size and increased survival in colon,
cervix, and breast cancer murine models while also increasing these animals’ survival [145].

5.3. Delivery of Immunomodulating Molecules and Apoptosis Inducers

Although the use of live-attenuated bacterial vectors in the treatment of cancer rep-
resents a form of antitumor therapy per se, its effect has been potentiated by using
Salmonella enterica as a transporter of immunomodulating molecules with antitumor ac-
tivity [45,62]. Some examples are reported in several studies that have demonstrated the
release of chemokines and cytokines such as CCL21 [62]; IL-2 [44,146]; IL-4 [147]; IL-18 [148];
IL-24 [149]; IEN-y [151]; and LIGHT, also known as a lymphotoxin [152] analogue, into the
tumor microenvironment. These approaches have demonstrated antitumor effects in the
original neoplasia and in metastases, and the tumor cells were eliminated by the presence
of DCs, macrophages, neutrophils, NK cells, and lymphocytes. Human clinical trials using
treatments with interferons (IFN) have increased survival in patients with melanoma, but
this modality is highly cytotoxic and leads to adverse effects. On the other hand, several
studies have demonstrated that attenuated Salmonella enterica does not cause systemic
toxicity [62] and represents an effective and safe strategy to carry immunomodulatory
molecules such as IFN-y and TNF-« into the tumor microenvironment [151,155].

Several studies have documented the use of tumor-targeting Salmonella to deliver
agents that induce apoptosis through a death receptor pathway, such as Fas Ligand [150,158],
TNF-o [5], and TRAIL (Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand) [150]
in the treatment of solid tumors. Results revealed a decrease in toxic side effects on normal
tissue cells, while high intratumor concentrations of these apoptosis inducers promoted
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antitumor activity. Mansour et al., reported a Salmonella enterica expressing anti-tumor
protein Lipidated azurin, Laz, that induces apoptosis through an interaction with the
tumor suppressor protein p53; this recombinant Salmonella induced apoptosis in vitro
models of glioblastoma and breast cancer [156]. Recently, Mateos Chavez et al., used
a Salmonella Typhimurium SL3261 to express and release, via the MisL autotransporter
(T5SS), a permeable peptide of the BH3 domain of the pro-apoptotic protein Bax; the
administration of this recombinant to a non-Hodgkin lymphoma xenotransplant murine
model (NHL) decreased the tumor mass, and increased the mice’s survival. In that study,
the elimination of the transformed cell was mediated by an increase in apoptosis and the
induction of the antitumor immune response [6]. In general, the described studies state that
the expression and secretion of immunomodulatory molecules and inducers of apoptosis
through Salmonella enterica is a promising approach in the battle against cancer.

5.4. Delivery of Nucleid Acids (Bactofection)

Another particularity of live-attenuated Salmonella enterica as antitumor therapy is
its proven ability to transfer nucleic acids into eukaryotic cells, in a process known as
Bactofection [193,194]. The principle by which this transfer occurs is not clear, but in the
case of attenuated Salmonella enterica, it implies invasion of the host and the bacterium’s
permanence in the phagocytic vesicle; it subsequently dies due to metabolic attenuation
and liberates the plasmid. Then, the plasmid crosses the vesicular membrane through
an unknown mechanism and reaches the cell’s nucleus [195]. This ability has been evaluated
in different cancer murine models, including melanoma, bladder cancer, and lung adeno-
carcinoma [4]. The plasmids used in bactofection contain sequences encoding TAA /TSA,
immunomodulatory molecules, and interference RNAs against some protein associated
with tumor development and progression. An example of bactofection of genes encod-
ing TAA/TSA was evaluated in recombinant Salmonella murine models that carry genes
such as HPV16 L1, which encodes the human papillomavirus type 16 capsid protein,
a gene encoding the MTDH/AEG1-1 protein, an oncogene associated with angiogenesis
that is overexpressed in 40% of patients with breast cancer; a gene encoding the 4-1IBBL
molecules, a member of the TNF family; and a CEACAM 6, a cell adhesion molecule; in all
cases, they led to a decrease in tumor mass and increased survival [4]. Another TAA/TSA
gene that has been transferred by bactofection is FIt3L (tyrosine kinase membrane receptor
type III). The use of Salmonella enterica with the FIt3L gene in a melanoma murine model
inhibited tumor growth and increased survival. Lode et al. reported a protective effect
against neuroblastoma after the inoculation of a Salmonella enterica that releases a plasmid-
encoding tyrosine hydrolase antigens [161]. Likewise, effective protection was observed
after a lethal challenge by tumor cells, and the tumor mass decreased after administering
the Salmonella enterica, conducting the bactofection of the plasmid expressing the Hsp70-
tumor-associated antigen complex (Hsp70-TAA) in mice with melanoma [163]. Following
the same strategy, Stegantseva et al., administered a Salmonella enterica with a plasmid
containing the PHOX2B gene, an antigen associated with neuroblastoma, to C57Bl/6 mice
with murine neuroblastoma. Their results revealed that bactofection mediated by Salmonella
enterica led to an exacerbated cytotoxic response in conjunction with IFN-y production [196].
Guan et al. also observed a decrease in tumor growth when using a Salmonella enterica to
release a plasmid expressing the protein apoptin in mice with cancer of the larynx. The pro-
tein apoptin has the ability to induce selective apoptosis in malignant cells without affecting
normal cells [160]. Likewise, Shao et al. demonstrated that using a Salmonella enterica that
releases the RBM5 gene, also known as RNA union motif-5, decreases Bcl-2 expression,
while the expression of Bax; TNF-«; escinded caspase —3, —8, and —9; and PARP proteins
increased, resulting in improved apoptosis in a murine lung adenocarcinoma model [164].
There are also studies in which the species Salmonella choleraesuis performs the bactofection
of a plasmid encoding thrombospondin-1 (TSP-1) [197] or endostatin [198], that inhibited
tumor growth and prolonged survival in murine melanoma and bladder tumor model.
Examples of the bactofection of genes encoding immunomodulatory genes are epitomized
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by the bactofection of plasmids with genes encoding interleukin-4 or interleukin-18, that
induce a systemic increase in IFN-y with proven efficiency in delaying tumor growth
and prolonging survival in a murine model of melanoma [4]. Another example is the
bactofection of the gene encoding interleukin-24 in a gastric cancer model; it led to tumor
regression mediated by proinflammatory cytokines, the activation of apoptosis, and angio-
genesis disruption [149]. Also, the administration of a Salmonella that releases the plasmid
encoding IL-15 decreased the number of metastases, and improved tumor remission in
a neuroblastoma murine model. In this same context, the ability of Salmonella enterica
was evaluated in terms of gene silencing by bactofection of Short hairpin RNA (shRNA)
or small interfering RNAs (siRNA) sequences directed against different genes such as
indolamine 2,3-dioxygenase 1 [165], Sox2 [166], MDR1 [167,168], surviving [169], Bcl-2 [170],
and Stat-3 [39,171]. The results obtained with this strategy were the induction of apoptosis
mechanisms [165,169], the suppression of metastases, inhibition of tumor growth [166,169],
and the suppression of proteins associated with the transport of therapeutic agents such as
vincristine, paclitaxel, and adriamycin out of the tumor cell [167,168].

5.5. Delivery of Nanomolecules

In the last decade, the rapid advances in the development of new nanomaterials
have permitted, among many things, to develop new diagnostic and therapeutic strategies
in cancer treatment. Nanoparticles such as polymers, micelles, liposomes, and metal
particles have been used as antitumor agent carriers (chemotherapies, antibodies, peptides,
DNA, etc.) due to their easy preparation and biological safety threshold [199,200]. However,
there are few nanomaterials capable of perfusing the tumor due to the high interstitial
pressure and the density of tumor stroma. Likewise, deep nanoparticle penetration in
the tumor is quite limited and precludes the distribution of drugs in the tumor’s hypoxic
nucleus [201]. Recent studies have begun to explore the concept of using bacteria as
nanoparticle carriers (nanobiohybrids), which could provide a new alternative in cancer
treatment [202]. To date, many studies have proven that using these vectors in conjunction
significantly improves the delivery of therapeutic agents in areas that are difficult to
penetrate with conventional treatments, and their effect is reflected in improved antitumor
response. Further, this combination can potentially decrease the limitations of each therapy
administered on its own. A variety of strategies have also been used to combat tumors
with these hybrid vectors (carriers of chemotherapeutic agents, photothermal therapy,
nanocatalytic therapy, vaccination, and radiosensitization) [202]. In the last years, numerous
strategies have been developed to load Salmonella enterica with nanoparticles in order to
actively carry them to tumors and trigger an antitumor response. The bioconjugation of
streptavidin-biotin is one of the most frequently used since the strong non-covalent link
between these two molecules allows the adherence of streptavidin-covered nanoparticles
to the biotinylated surface of Salmonella. With this strategy, Suh et al. loaded Salmonella
Typhimurium VNP20009 with nanoparticles of poly (lactic-co-glycolic acid) (PLGA). These
researchers demonstrated that the conjugation of nanoparticles with this strategy did not
hinder the performance of the intratumor transport of Salmonella, and that this hybrid
system (bacteria-nanoparticle) improved the distribution of nanoparticles in the tumor
area 100-fold in an in-vivo 4T1 murine breast cancer model [173]. Another commonly used
strategy to load Salmonella enterica with nanoparticles is incubation and electroporation.
With this strategy, Zoaby et al. were able to load Salmonella Typhimurium LT2 with
liposomes loaded, in turn, with doxorubicin. They also demonstrated that their system
could cross various media, invade cancer cells, and release doxorubicin, thus eliminating
tumor cells (chemotherapy effect) and through Salmonella per se (antibiotic effect) [172].
Further, aside from these two strategies to load Salmonella with nanoparticles, there are
others based on electrostatic interactions, covalent links, and adherence mediated by
folic acid. The antitumor reaction of nanoparticle-loaded Salmonella may have different
approaches depending on the composition and nanoparticle load. Mainly, nanoparticles
are usually loaded with antitumor drugs (doxorubicin, docetaxel, and paclitaxel) [174,203].
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For instance, Ektate et al. loaded Salmonella Typhimurium YS1646 with low temperature-
sensitive liposomes (LTSL) loaded with doxorubicin with a streptavidin-biotin system
to strictly release doxorubicin in the tumor by heating it with high-intensity focused
ultrasound (HIFU). This strategy significantly improved the polarization of macrophages
with the M1 phenotype, and the therapeutic efficacy in an in vivo murine colon cancer
model [174]. These hybrid vectors may also be used for vaccination purposes. To develop
an efficient oral DNA vaccine against cancer, Hu et al. loaded the external membrane
of Salmonella with cationic nanoparticles via electrostatic interactions, carrying plasmid
DNA that encoded VEGFR2. This vaccination strategy led to a remarkable activation
of T lymphocytes and cytokine release. It also successfully inhibited tumor growth by
suppressing angiogenesis and fostering tumor necrosis in an in vivo murine melanoma
model [204]. These nanobiohybrids can also be used as photothermal therapy against
cancer. Chen et al. loaded Salmonella YB1 with nanophotosensitizers (nanoparticles loaded
with indocyanine green) via amide bonds, in order to develop a photothermal therapeutic
modality. This new focus proved to be quite efficient and precise in eradicating tumors in
an in-vivo murine melanoma model [175]. Finally, metallic nanoparticles with no charge
can also be used by Salmonella enterica to radiosensitize tumors. For example, Kefayat et al.
covered the Salmonella Typhi Ty21a vaccine strain with gold nanoparticles covered with
folic acid for anchoring. This model provided superior delivery of the gold nanoparticles
compared to the control (gold nanoparticles covered with folic acid), and better focalization
into the central zones versus the periphery in an in-vivo murine colon cancer model [176].
These findings establish that coupling Salmonella enterica with nanoparticles represents
a novel alternative with great potential in the antitumor therapy realm.

6. Combination of Salmonella enterica and Conventional Antitumor Treatments

The combination of Salmonella enterica with conventional antitumor treatments is
a strategy aimed to potentiate tumor elimination; also, failure of conventional treatments
justifies the generation and evaluation of alternative therapies that could potentially sen-
sitize tumor cells. Hence, the intrinsic oncolytic activity capacity of Salmonella enterica
was studied when combined with conventional therapies: for example, Salmonella Ty-
phimurium was administered directly into the tumor in combination with the treatment for
non-Hodgkin lymphoma (NHL): CHOP (Cyclophosphamide, Doxorubicin, Vincristine, and
Prednisone) in a NHL murine model, and it revealed that Salmonella enterica induced innate
and adaptive immune responses, and increased pro-inflammatory chemokine and cytokine
expression [178]. Similar results were also observed in a pancreatic cancer xenotransplant
murine model after intra-peritoneal administration of Salmonella enterica in combination
with drugs with different sensitivity profiles (5-fluorouracil, gentamicin, and cisplatin) [180].
The administration of cisplatin in combination with Salmonella Typhimurium A1-R was
evaluated in a melanoma xenotransplant murine model. The results showed that, at low
cisplatin doses, a significant suppression of melanoma growth ensued [82]. Igarashi et al.
used Salmonella Typhimurium A1-R in combination with cisplatin and a recombinant me-
thioninase (rMETase) in an osteosarcoma xenotransplant murine model, and observed
a cellular decrease in the tumor associated with tumor necrosis [72]. Yang et al. detected
that the intraperitoneal administration of Salmonella choleraesuis in a breast cancer and
melanoma murine model decreased the expression of glycoprotein 1, which is known to be
a resistance protein to multiple drugs (MDR1). The same study reported that treatment
with 5-fluorouracil significantly increased cell death in cells infected with Salmonella enterica,
and increased apoptosis biomarkers [205]. Hiroshima et al. reported that the combina-
tion of Salmonella Typhimurium and trastuzumab, a humanized monoclonal antibody, in
a cervical cancer murine model, led to a decrease in tumor mass, because approximately 70%
of cancer cells were destroyed in the group of mice treated with Salmonella Typhimurium
and trastuzumab [179]. Other studies have proven that the intravenous administration of
Salmonella enterica combined with the transfer of T cells acts synergistically to eradicate the
tumor in a fibrosarcoma murine model [183]. Aside from the aforementioned strategies, the
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use of Salmonella enterica in conjunction with other molecules such as caffeine (CAF) and
valproic acid (VPA) has been studied in a pleomorphic rhabdomyosarcoma xenotransplant
murine model. The results of the intravenous administration of Salmonella and CAF + VAP
showed a decrease in cellularity, whereby the greatest effect was observed in the group
treated with Salmonella in combination with CAF and VAP [184]. The recombinant strains
of Salmonella enterica that express or carry antitumor heterologous molecules have also
been evaluated in combination with other treatments. That is the case of Salmonella enterica,
which releases siRNAs against the hypoxia-inducible factor o (HIF-1w), with the aim of
improving the effect of cisplatin in a prostate cancer murine model. The results showed that
eliminating HIF-1a improved the response of tumor cells to cisplatin since aerobic glycoly-
sis was redirected to mitochondrial oxidative phosphorylation due to the overexpression
of reactive oxygen species (ROS) [181]. Zhang et al. reported that the intraperitoneal
administration of a Salmonella enterica that releases siRNA directed against ATP-binding
cassette sub-family B member 5 (ABCB5), which confers drug resistance, in combination
with paclitaxel or doxorubicin, decreased the expression of ABCB5 in the tumor, con-
trolled tumor growth, and increased the mice’s survival [182]. Our group reported that in
an in-vitro model of prostate cancer cells, bactofection induced by Salmonella enterica of
a plasmid encoding a peptide in the BH3 region of the pro-apoptotic protein Bax, sensitizes
prostate cancer cells to treatment with cisplatin [206]. Finally, Liu et al. reported that
the intravenous administration of Salmonella Typhimurium, which produces cytotoxic
protein A (ClyA) in the presence of radiotherapy, suppressed the tumor in a colon cancer
murine model [177]. As documented, the combination of Salmonella enterica with conven-
tional treatments leads to a synergistic antitumor effect that in most cases is associated with
a decrease in the necessary concentration of the administered conventional therapy
and suggests the possibility of hindering the secondary effects resulting from
conventional treatments.

7. Clinical Trials Using Salmonella enterica as Cancer Treatment

Although preclinical studies have yielded promising results, cancer treatments me-
diated by Salmonella enterica have only been implemented in a small number of human
clinical trials. However, based on preclinical successes, Salmonella Typhimurium VNP20009
with mutations in the msbB genes (affecting the formation of lipid A, and decreasing the
toxicity associated to the lipopolysaccharide), and purl genes (turning it dependent on
an external adenine source), entered phase I human clinical trials in 1999, and were ad-
ministered intravenously to 24 patients with metastatic melanoma and 1 patient with
metastatic renal cell carcinoma. The results showed that VNP20009 could be safely used in
cancer patients and established that the maximally tolerated dose was 3 x 108 CFU/m?Z.
There was limiting dose toxicity in patients who received 1 x 10° CFU/m?, including
thrombocytopenia, anemia, persistent bacteremia, hyperbilirubinemia, diarrhea, vomiting,
and nausea, among others. VNP20009 induced a dose-related increase in the concentration
of circulatory pro-inflammatory cytokines, such as interleukin IL -13, tumor necrosis factor
alfa, IL-6, and IL-12. There were no antitumor effects and further studies were suggested to
decrease this dose-related toxicity [29]. Subsequent studies modified the VNP20009 strain
by inserting a gene encoding cytosine deaminase (CD) from E. coli to generate a strain
named TAPET-CD [207]; this new strain was used in a pilot test in three patients with
refractory cancer to investigate the viability and effectiveness of an intratumor injection
of TAPET-CD [208]. However, results were not significant and adverse effects continued.
Two patients had bacterial colonization in the tumor tissue that persisted for at least 15 days
after the initial injection. In these patients, the conversion of 5-FC to 5-FU was demonstrated
with a 5-FU tumor: plasma ratio of 3:1, with substantially higher 5-FU levels in the site
colonized by the TAPET-CD strain [192]. Since most tumors are methionine-dependent,
the VNP20009 strain has also been used to express L-methioninase (SGN1). SGN1 was
designed as a tumor therapeutic bacterium that can replicate and preferentially accumu-
late in tumors and deprive them of essential amino acids after the administration of the
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oncolytic enzyme L-methioninase. A phase 1 study will be conducted in patients with ad-
vanced and/or metastatic solid tumors that have been histologically confirmed, refractory
to standard curative therapy, and for which there is no other conventional therapy avail-
able [209,210]. The Salmonella Typhi Ty21a strain has also been used to carry, via a plasmid,
the sequence encoding the vascular endothelial growth factor receptor 2 (VEGFR-2) and
induce an immune response against this antigen. The modified Ty21a strain was used to
immunize 45 patients with stage IV pancreatic cancer in an attempt to decrease the tumors’
neovascularization [126]. The vaccine named VXMO01 was administered at a dose of 10° to
10'° CFU and in the first stage of the study, the researchers observed that its administration
is safe in pancreatic cancer patients. Later, in a second study with 26 patients, 16 were
immunized with VXMO01 and 8 with placebo; those that were immunized with VXMO01 had
a decrease in peripheral lymphocytes, an increase in neutrophils, and developed adverse
effects of moderate to medium severity. However, at least 8 of the patients immunized
with VXMO1 developed specific T lymphocytes against VEGFR-2, which could lead to the
patients increased lifespan [211]. These early clinical trials revealed data on the safety of
administering Salmonella enterica to cancer patients. Their results indicated that a dose of
10 Salmonella CFU can be excreted. In cases in which a patient is positive for bacterial
excretion, antibiotic decontamination of the gastrointestinal tract is indicated; the patient’s
feces must also be collected and incinerated to protect the environment and the study
personnel [126,211]. Another phase II clinical trial, currently in the recruitment stage, will
use a Salmonella Typhimurium x4550 strain that contains the gene for human IL-2, a potent
anticancer immune stimulant. This Salmonella enterica, named Saltikva, will be administered
orally in addition to the standard treatment protocol, in patients above the age of 18 with
metastatic stage IV pancreatic cancer [212]. In the previous phase I study, the researchers
observed that the administration of this strain in a single escalating dose to patients with
solid liver metastatic tumors did not cause adverse or toxic effects at a dose of 10! CFU
in the 22 treated patients; although survival did not increase, an increased circulating NK
cell response was observed, suggesting an immune effect of treatment with Saltikva [213].
Table 3 summarizes the clinical trials using Salmonella enterica as cancer therapy.

Table 3. Clinical trials using Salmonella enterica as cancer treatment.

. . Heterologous . Dose and
Species Mutation Molecule Treated Malignancy Administration References
Salmonella Phaiﬁg{al\rfs:sztam Intravenous 1 x 10°,
L Purl, msbB None o 1 x 10° CFU, single [29]
Typhimurium metastatic ) .
. escalating dosing
renal carcinoma
. Oral, escalating dosing
I Saﬁgﬁiﬁm Purl, msbB L2 P}ﬁisei Ical\if;fﬁ;m with 1 x 105, 1 x 1010 [214]
M CFU per dose
Phase I; Head Intratumor6al 1n]ect170n
Salmonella Cytosine and neck carci- of 3 x 107, 1 x 10%,
rone Purl, msbB yEos 3 x 107 CFU/m? at [208]
Typhimurium deaminase noma/esophageal . .
. escalating dosing,
adenocarcinoma .
for various cycles
Salmonella Phase I; superficial Intratumoral injection
Typhimurium Purl, msbB None solid tumors of 3 escalating doses [215]
) Intravenously with
Salr.nonel.lu Purl, msbB None Pha.se b escalating doses [216]
Typhimurium metastatic cancers
every 35 days
s Intravenously with
Salr.nonel.lu Purl, msbB None Phase I.’ non-specific escalating dosing [217]
Typhimurium solid tumors

every 35 days
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Table 3. Cont.

. . Heterologous . Dose and
Species Mutation Molecule Treated Malignancy Administration References
. . : 10° to 10'° CFU
Salmonella Typhi galE, rpoS, ilvD VEGEFR-2 Pancreatic cancer Single dose [126]
Salmonella Typhi alE, rpoS, ilvD None Phase I: non-muscular [218]
yp AL, TpOS, bladder carcinoma
Neu.roblastor'na- Pilot study 10'° CFU orally, at
Salmonella associated antigen . . .
. . — . Recruitment period 1-week intervals, [219]
Typhimurium and protein of the
. Neuroblastoma for 3-4 weeks
potato virus X
. 2 escalating doses
Salmonella Typhi — Survivin MulIt)ill(l); Slf\ucel%]oma every 2 weeks [220]
plemy 2.5 x 106-2.5 x 107
6
Salmonella Asd, cAMPy Metastatic 2.5 x 10° CFY
Typhimurium receptor IL-2 pancreatic cancer every week for [212]
yp de cAMP 6 weeks, orally
_ 9
Salmonel.la Purl, msbB L-methioninase R(.efractory 0'9. 2.0 > 10" CFU, [209]
Typhimurium solid tumors intravenously
2.5 x 10° CFU in mice.
. 10 .
Salr‘rzonel_la Purl, msbB Cytqs mne Metastatic cancer .1 x 1077 CFU in [192]
Typhimurium deaminase primates. Intravenous
or intratumoral
Salmonella . Head and neck 0.9-2.0 x 10¢ CFU
. . Purl, msbB L-methioninase advanced squamous [210]
Typhimurium . Intratumoral
cell carcinoma
Salmonella Typhi ~ galE, rpoS, ilvD VEGF Pancreatic cancer 10 or 107 CFU, orally [211]
Salmonella Asd, cAMP and L2 Liver metastatic 1010 CFU, [213]
Typhimurium cAMP receptor solid tumor Orally ;

Abbreviations: IL-2: Interleukin-2; VEGFR-2: Vascular endothelial growth factor receptor 2; CFU: Colony-
forming unit.

8. Limitations

We have broadly documented the antitumor activity of Salmonella enterica in pre-

clinical and clinical models; however, this strategy has inherent limitations such as
the following:

(a)

(b)

(©

Biosafety. The attenuation of Salmonella enterica virulence factors was widely used
to counteract its infectivity; but attenuation per se has been occasionally associated
with a decrease in antitumor therapeutic efficacy [35,221]. It is imperative to establish
a balance between decreased virulence and clinical efficacy. Several bacterial strains
that initially yielded discouraging results have been improved in recent years, and
have been shown to be much safer, as they maintain their tumor specificity, their
antitumor efficacy has increased, and their toxicity in normal tissue has been mini-
mized; this has optimized our ability to deliver antitumor therapeutic agents such as
cytokines, cytotoxic drugs, tumor-associated antigens, and pro-drug enzymes [222].
Routes of administration. The route of administration of Salmonella enterica is pivotal
to this vector’s safety and antitumor activity since the systemic administration of
bacteria may be highly toxic and lead to serious adverse effects. Oral administration
is considered the safest route, but at the expense of increased toxicity, possible adverse
effects resulting from infection, and jeopardizing therapeutic efficacy.

Dose optimization. Since live bacteria proliferate in target tissues, an effective dose
does not necessarily reflect the administered dose. An effective dose hinges on many
factors such as the route of administration, the target tissues” accessibility, the degree of
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(d)

(e)

(®)

(8)

(h)

vascularization, tumor immunogenicity, and the presence of infiltrating inflammatory
cells in the tumor [222]. The administration of progressively escalating CFU doses
appears to promote antitumor efficacy [126].

Genetic instability. Genetically modified live bacteria that carry antibiotic-resistance
genes or mobile genetic elements are entirely inadequate for clinical use since these
recombinant elements may be transferred horizontally from the plasmids in the
treatment bacteria, thus carrying the antibiotic-resistant genes to other genes in the
host or environment. Further, the plasmids may become lost or mutate upon reaching
the tumor tissue and trigger an exaggerated infectious response or treatment failure.
This drawback may be overcome by integrating a gene expression cassette with
no antibiotic-resistance genes into the bacterial chromosome to guarantee genetic
stability [223,224].

Control of bacterial growth in vivo. The uncontrolled growth and propagation of
bacteria in the patient is of major concern, so alternatives that have been suggested
include the incorporation of additional features to the modified strains, such as genetic
“switches” that can guarantee bacterial containment [225-227]. Another approach
consists in building lethal systems within the recombinant bacteria, the so-called
“suicide genes”, that may specifically destroy the host bacterium without interfering
with normal flora or therapeutic efficacy. Some attenuated Salmonella enterica strains
are guaranteed to limit bacteria-derived infections, and should this fail, antibiotics
can be used to eliminate persistent bacteria [41,228].

Patient selection. In clinical trials, patients that do not respond to conventional
treatment or that are refractory to current standard therapies tend to be the subjects of
interest for Salmonella enterica treatment; but patient selection for the administration of
this treatment must be very thorough. Immunocompromised patients with underlying
conditions or therapies must be excluded to prevent uncontrollable and overwhelming
bacterial infection and its migration beyond the tumor site. Some patients appear
to be predisposed to infections beyond the treatment’s aim. For example, certain
bacteria preferentially proliferate in necrotic tissue, as is the case after radiation or
due to associated comorbidities. The administered bacteria could also potentially
colonize injuries or implanted medical devices such as artificial joints or valves, among
others [229]. This could be prevented by correctly determining the administered dose,
the route of administration, the administration intervals, and the timely elimination of
bacteria post-administration. Thus, the clinician must scrupulously evaluate potential
treatment candidates.

Pre-exposure and antibacterial immunity. One of the inconveniences of using bacteria
as antitumor agents is the host’s immune response triggered when bacterial concentra-
tions increase, and in the best case scenario, leads to the elimination of the introduced
bacteria [229], leading to treatment failure. A possible solution would be the gener-
ation of optimized Salmonella strains with a greater immunostimulatory capacity
and capable of overcoming the immunity resulting from bacterial pre-exposure [230].
Other proposed strategies suggest the encapsulation of Salmonella enterica with com-
pounds that can prevent the binding of specific antibodies to the bacterium, and
that do not hinder the bacteria’s ability to focus on the tumor [231]. The administra-
tion of escalating CFU doses appears to counteract antibacterial pre-immunity, thus
permitting antitumor activity [126].

Production of biological agents. The manufacturing of live bacteria is significantly
more complex than that of small molecule antitumor drugs. Unlike small molecules
or other non-viable clinical agents, live therapeutic bacteria cannot be sterilized by
filtration or heating, and that is the main challenge when producing biologicals fol-
lowing good manufacturing practices. Currently, the manufacture of bacteria-based
cellular therapies, as in the case of Salmonella enterica, is a regulated process centered
on product safety, consistency, and stability. The FDA recently published detailed
industry guidelines on the information that should be provided when developing
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bacteria- or virus-based biological products. Included is a list of every component
used in the manufacturing process; the generation of a seed stock; the expansion and
characterization of the microbial mother/stem cell bank; the absence of any lysogenic
prophage; information on the genome sequence; and all, if any, chromosomal mod-
ifications, phenotypic confirmation of attenuation, microbial purity (clonality), cell
viability and stability, among others [224,232].

9. Conclusions

A century after the systematic use of bacteria in antitumor therapy was documented,
this modality underwent a resurgence after several decades of neglect. This therapeutic
alternative has been renewed as a result of advances in tumor immunology and genetic
engineering. In this context, live-attenuated Salmonella enterica, a facultative anaerobic
bacterium, has been more broadly studied in antitumor therapy due to its proven tropism
for the tumor microenvironment and antigen-presenting cells; the tumor microenviron-
ment, characterized by hypoxia, necrosis, acidity, and suppression of the immune response,
facilitates migration and infection by Salmonella enterica, and its permanence in the tu-
mor microenvironment, where it activates its intrinsic oncolytic properties and induces
an immune response that eliminates the tumor cell. However, although the described
clinical trials in this review reveal efficient antitumor activity, the initial clinical trials have
documented modest antitumor responses, but the use of Salmonella enterica as a delivery
system of heterologous molecules that maximize antitumor activity is promising. Once
Salmonella enterica reaches the tumor microenvironment, it has been described as a veritable
factory of antitumor heterologous molecules. In the review, we detailed the usefulness of
Salmonella enterica as a delivery system of tumor-associated antigens or tumor-specific anti-
gens (TAA/TSA) of cytotoxic molecules, immunomodulating molecules, apoptosis-inducer
molecules, nucleic acids, and nanomolecules, with very promising preclinical outcomes.
We also described the ability of Salmonella enterica to sensitize tumor cells to chemotherapy,
radiotherapy, and immunotherapy. The presented phase I or II clinical trials document the
use of biosafe strains such as Salmonella Typhimurium strain VNP20009 and strain x4550,
as well as Salmonella Typhi strain Ty21a, that have proven to be safe, cause few adverse
events in humans, and activate antitumor immune responses; however, their minor effects
on the tumor mass and on survival require further research in the clinical trials in course.

Finally, based on the documented preclinical and clinical studies in this review, we
may conclude that live-attenuated Salmonella enterica is an excellent delivery system of
heterologous molecules with antitumor properties and represents a promising therapeutic
alternative in the fight against cancer.
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