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Abstract
Glioblastoma is the most common primary malignant brain tumor in adults
with an overall survival of only 14.6 months. Hypoxia is known to play a role
in tumor aggressiveness but the influence of hypoxia on the immune microen-
vironment is not fully understood. The aim of this study was to investigate the
expression of immune-related proteins in normoxic and hypoxic tumor areas
by digital spatial profiling. Tissue samples from 10 glioblastomas were stained
with a panel of 40 antibodies conjugated to photo-cleavable oligonucleotides.
The free oligo-tags from normoxic and hypoxic areas were hybridized to bar-
codes for digital counting. Differential expression patterns were validated by
Ivy Glioblastoma Atlas Project (GAP) data and an independent patient
cohort. We found that CD44, Beta-catenin and B7-H3 were upregulated in
hypoxia, whereas VISTA, CD56, KI-67, CD68 and CD11c were downregu-
lated. PD-L1 and PD-1 were not affected by hypoxia. Focusing on the check-
point-related markers CD44, B7-H3 and VISTA, our findings for CD44 and
VISTA could be confirmed with Ivy GAP RNA sequencing data. Immunohis-
tochemical staining and digital quantification of CD44, B7-H3 and VISTA in
an independent cohort confirmed our findings for all three markers. Addi-
tional stainings revealed fewer T cells and high but equal amounts of tumor-
associated microglia and macrophages in both hypoxic and normoxic regions.
In conclusion, we found that CD44 and B7-H3 were upregulated in areas with
hypoxia whereas VISTA was downregulated together with the presence of
fewer T cells. This heterogeneous expression should be taken into consider-
ation when developing novel therapeutic strategies.
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1 | INTRODUCTION

Glioblastoma (GBM) is the most frequent and malignant
primary brain tumor. The current treatment options
include surgery followed by radiotherapy and concomi-
tant chemotherapy with temozolomide. Despite this,

disease recurrence is inevitable and GBM patients have a
poor prognosis with a median survival range from 12 to
15 months [1]. Tumor cells secrete chemo-attractants that
recruit the immunosuppressive cells including tumor-
associated microglia and macrophages (TAMs), myeloid
derived suppressor cells and regulatory T cells, all helping
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to reduce the immune response [2, 3]. TAMs infiltrate the
tumor tissue comprising up to 30% of the total cell popu-
lation [4] and contribute to tumor progression by stimu-
lating angiogenesis, cancer cell proliferation and
extracellular matrix remodeling [5, 6]. Moreover, they
suppress the immune response by producing immunosup-
pressive cytokines and expressing programmed death-
ligand 1 (PD-L1) [7]. Targeting of immune checkpoint
molecules has improved survival in other cancers like
lung cancer and melanoma [8]. GBM tumor cells, but
also TAMs, are known to express PD-L1 and infiltrating
T cells express programmed cell death protein 1 (PD-1)
[9, 10]. These factors add to the potential benefit of
immune checkpoint therapy in GBMs [11].

Hypoxia is known to play a role in tumor aggressive-
ness by stimulating cell proliferation, tumor invasion, and
therapy resistance leading to tumor recurrence [2, 12].
The hypoxic niche has also been associated with increased
expression of GBM stem cell-like markers and production
of pro-angiogenic factors [13]. Hypoxia has by itself been
suggested to induce immunosuppression by impairing T
cell proliferation and effector function in vitro [14]. Of
importance, hypoxia has been suggested to increase
expression of immune checkpoint molecules such as PD-
L1 but also the amount of extracellular adenosine, a
potent immunosuppressive metabolite increasing PD-1 on
tumor-specific T cells in colon carcinoma in vitro [15] and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
levels on T cells in vitro [16]. Hypoxia also appears to sup-
port the recruitment and polarization towards a more
pro-tumorigenic phenotype of TAMs in GBM and breast
cancer models [17, 18], thereby contributing to the immu-
nosuppressive features in the microenvironment.

The influence of hypoxia on the immune system is not
fully understood and uncovering this area has potential
implications for novel therapeutic strategies. In this
study, the aim was to investigate and compare the
immune landscape in normoxic and hypoxic tumor areas.
We especially wanted to focus on checkpoint-related mol-
ecules that have gained increased attention in the treat-
ment of GBMs. Nanostrings Digital spatial profiling
(DSP) technology combines standard immunofluores-
cence with a digital barcoding technology, where anti-
bodies are coupled to photo-cleavable oligonucleotide
tags. This allows spatial simultaneous measurement of
multiple protein markers. Using this technology, we
investigated the expression of immune-related protein
markers covering immune checkpoints/immune activat-
ing molecules, immune cell markers and immune signal-
ing pathways. We validated our results using Ivy
Glioblastoma Atlas Project RNA sequencing data from
five laser microdissected GBM compartments that
include pseudopalisading cells (PC), central tumor (CT),
infiltrating tumor (IT), leading edge (LE) and microvas-
cular proliferation (MP). In addition, we used immuno-
histochemical staining and quantitative image analysis in
an independent cohort consisting of 19 GBMs. We have

previously shown that the use of quantitative image anal-
ysis is of great advantage by producing continuous mea-
surements and eliminating intra-observer variability
[19, 20].

2 | MATERIALS AND METHODS

2.1 | Patient material

All samples were obtained from the well characterized
Region of Southern Denmark glioma cohort [19, 20].
The cohort was immunohistochemically stained for hyp-
oxia-inducible factor 1α (Hif-1α). Tissue from 10 GBM
patients containing both positive and negative Hif-1α
regions was included in the study. All patients were diag-
nosed with a primary glioma between 2005 and 2009
(Table 1). Additionally, 19 IDH-wild-type GBMs with
the same characteristics as described above were included
for validation. All samples were evaluated by two pathol-
ogists and reclassified according to the 2016 World

TABLE 1 Patient characteristics

Variables No.

Patients (n) 10

Age

Median 64

Range 40–76

Gender

Female 4

Male 6

WHO 2016

GBM IDH-wildtype 9

GBM IDH-mutant 1

Performance status

0–1 5

2–4 5

Post-surgical treatment

No post-surgical treatment 2

Less than Stupp 2

Stupp 6

Survival (months)

Mean 17.4

Range 2–59.9

MGMT status

Methylated 4

Unmethylated 6

IDH1

WT 9

Mutated 1

Abbreviations: GBM, glioblastoma; IDH1, isocitrate dehydrogenase 1; MGMT,
O-6-methylguanine-DNA methyltransferase.
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Health Organization Classification of Tumors of the
Central Nervous System.

2.2 | Digital spatial profiling

DSP analysis of 40 immune-related protein markers
(Immuno-oncology panel, Nanostring) was performed on
5 micrometer formalin-fixed paraffin-embedded (FFPE)
sections from 10 GBM patients. The slides were stained
with a cocktail of primary oligo-conjugated antibodies
(Table 2). Regions of interest (ROI) were selected based
on a Hif-1α immunohistochemically stained and scanned
sections merged with scanned sections stained with glial
fibrillary acidic protein (GFAP) and ionized calcium-
binding adapter molecule 1 (Iba1) to ensure presence of
tumor cells and TAMs, respectively. The ROIs comprised
circles (diameter from 200 to 600 μm) and rectangles
(200 μm � 400 μm and 500 μm � 500 μm). Ultraviolet
exposure of ROIs released the oligonucleotides from
bound antibodies. The free tags were captured and
hybridized to NanoString optical barcodes for ex situ digi-
tal counting in the nCounter analysis system (NanoString
Technologies, Seattle). The obtained digital counts were
normalized using three positive controls correcting for
system variation and subsequently according to area using
three house-keeping controls (Histone H2, S6 and pS6).
Pan-cytokeratin was part of the panel but of minor bio-
logical importance and therefore not further investigated.

To obtain a total score of the level of visualization
markers, GFAP, Iba1 and Hif-1α was scored according
to the average percentage of positive cells from 0 to 4:
Score 0: 0% positive cells, 1: 1%–25%, 2: 25%–50%, 3:
50%–75%, 4: 75%–100%. A mean score was calculated
for hypoxic and normoxic ROIs in each tumor. The scor-
ing system and scoring procedure was made under super-
vision of a neuropathologist.

2.3 | Immunohistochemical staining

Fresh tissue was fixed in 4% neutral buffered formalde-
hyde and paraffin embedded and 3 μm sections were cut
on a microtome. Immunohistochemical staining was car-
ried out on an automated immunostainer (BenckMark.
Discovery). The sections were dewaxed in xylene and
rehydrated with ethanol. The standardized protocol
included epitope retrieval for 32–48 min at 100�C. Endo-
gen peroxidase activity was blocked by OptiView peroxi-
dase inhibitor. Afterwards, the sections were incubated
with primary antibody (Table 3). Amplification step
includes standard OptiView amplification from Ventana
(Ref: 760-099) with H2O2 + OptiView amplifier for
4 min and OptiView multimer for 4 min. The antigen–
antibody complex was visualized using Optiview-DAB
according to manufactures recommendations. The slides
were scanned on a Hamamatsu digital slide scanner. Spe-
cific staining reaction was ensured by using a tissue
microarray with more than 40 different normal and can-
cer tissues. Omission of primary antibody abolished all
staining reaction.

2.4 | Digital image analysis

Automated digital image analysis and quantitation were
performed using Visiopharm Image Analysis Software,
version 2018.4. ROIs were manually outlined containing
at least three hypoxic regions with high Hif-1α expression
and three normoxic regions with no Hif-1α expression
(circles with a diameter between 600-1000 μm). Sample
images of ROIs were collected using a 20� objective. The
expression was quantified by using a pixel-based algo-
rithm to detect positive staining. We used a threshold-
based classifier (VISTA, B7-H3, and Iba1) or a mem-
brane classification (CD44) using a DAB (HDAB-DAB)
feature. The threshold-based classifier measured the area
of positive immune staining. The threshold had been set
so only clearly positive staining was measured. For each
of the four marker, the area fraction (AF) (defined as the
positive area/total area of the ROI) was quantified. For
the T cell markers (CD4, CD8, and FOXP3), a cell-based
classification was used identifying all nuclei using the
RGB-R feature. Positive T cells were then manually dif-
ferentiated from the negative cells based on their mem-
brane expression of CD4, CD8, or FOXP3 and
morphology (for CD4). For each of the T cell markers,
the AF of positive cells (defined as the positive nuclei
area/total nuclei area) was quantified.

2.5 | Patient dataset analysis

From the Ivy Glioblastoma Atlas Project (IvyGAP),
RNA data from microlaser dissected areas in GBM tis-
sue (n = 122) was used to examine the mRNA levels of

TABLE 2 Immune oncology panel from Nanostring

Signaling pathways
and survival
molecules

Immune cell checkpoint and
immune activating molecules

Pan-immune
cell markers

AKT CD44 CD45

p-AKT GZMB CD45RO

PTEN B-2-microglobulin CD3

B-catenin B7-H3 CD4

STAT3 PD-1 CD8A

p-STAT3 PD-L1 CD14

BCL2 VISTA CD68

HER2 OX40L CD11C

Ki-67 IDO-1 CD56

ICOS CD163

B7-H4 CD66B

HLA-DR FOXP3
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CD44, B7-H3 and VISTA. The dataset was exported
directly from the GlioVIS database and expressed in
log2 transcripts (fragments per kilobase per mil-
lion [FPKM]).

2.6 | Statistics

The Student’s paired t-test was applied to calculate the
significance of the difference in protein expression
between hypoxic and normoxic regions. All p-values
<0.05 was considered statistically significant. The pro-
tein expression of the significant differentially expressed
proteins, was subsequently standardized to have a mean
count per area of 0 and a standard deviation of 1, and
used to generate heatmaps using the heatmap2 function
from the gplots R-package to visualize the associated
protein levels. Cluster analysis was performed by prin-
cipal component analysis, K-means clustering and hier-
archical clustering. Principal component analysis was
performed and visualized using the prcomp and biplot
functions from the stats R-package. K-means cluster
calculation was performed using the kmeans and clus-
plot from the stats and cluster R-packages, respectively.
The hierarchical clustering was performed using the
pvclust function embedded in the pvclust R-package
with correlation as distance measure and the average
agglomerative method as clustering. One thousand
bootstrap replications were used to assess the bootstrap
support for each bifurcation node in the resulting tree.
Multiple comparisons were analyzed with one-way
ANOVA and Bonferroni post-test using Graph Pad
Prism 5.0 (GraphPad software, San Diego, CA). Statis-
tical significance was defined as *p < 0.5, **p < 0.01,
***p < 0.001.

3 | RESULTS

3.1 | Digital spatial profiling

We investigated the expression of 40 immune-related pro-
tein markers in hypoxic and normoxic tumor areas using
DSP technology (Table 2). ROIs were selected based on
the presence of Hif-1α expression (hypoxia) (Figure 1A,C)
or absence (normoxia) (Figure 1A,B). The Hif-1α stained
slide was merged with a slide stained with double immu-
nofluorescence ensuring presence of TAMs (Iba1)
(Figures 1E–G and S1) and tumor cells (GFAP)
(Figures 1I–K and S1) in the outlined ROIs. The positive
staining in each ROI was scored. Hif-1α (Figure 1D) was
only expressed in hypoxic regions (mean score = 3.0) and
not in normoxic regions (mean score = 0). Iba1
(Figure 1H) and GFAP (Figure 1L) expression was high
in both normoxia (GFAP: mean score = 3.5, Iba1: mean
score = 2) and hypoxia (GFAP: Mean score = 3.5, Iba1:
mean score = 1.9).

In a hierarchal cluster analysis (Figure 2A), measure-
ments from ROIs within the same tumor tended to cluster
rather than regions with hypoxia or normoxia across
tumors. We included one patient with a known IDH1
mutation (Tumor 3) and found that the protein profiling
pattern suggested a low expression of most immune-related
molecules. In general, we found relatively high counts for
PD-L1, AKT, CD56, STAT3, CD44, Beta-catenin and
Beta-2 microglobulin in all ROIs, whereas CD11c, CD4,
CD68, PTEN, KI-67, VISTA had a medium range expres-
sion (Figures 2 and S2). When comparing the protein
expression between hypoxia and normoxia CD44
(p = 0.006, 33%), Beta-catenin (p = 0.04, 18%) and B7-H3
(p = 0.02, 27%) were all upregulated in hypoxia
(Figure 2B–G), whereas VISTA (p = 0.02, �41%),

TABLE 3 Antibodies included in the study

Antibody Clone/product code Concentration Species/type Epitope retrieval Detection/instrument

Hif-1α 54 BD biosciences 1:100 32 min at
36�C + amplification

Mice monoclonal HIER: CC1 for 48
min at 100�C

Optiview Bench Mark
Discovery

CD44 DF1485 Novus biologicals 1:200 32 min at 36�C Mice monoclonal HIER: CC1 for
32 min at 100�C

Optiview Benck Mark
Discovery

VISTA D1L2G Cell Signaling
Technology

1:100 32 min at 36�C Rabbit
monoclonal

HIER: CC1 for 48
min at 100�C

Optiview Benck Mark
Discovery

B7-H3 AF1027 R&D systems 1:800 32 min at 36�C Goat polycloncal CC1 for 32 min at
100�C HIER:

Optiview Benck Mark
Discovery

Iba1 019–19,741 Wako Pure
Chemical

1:2000 16 min at 36�C Rabbit
polyclonal

HIER: CC1 for
32 min at 100�C

Optiview Bench Mark
Discovery

CD4 SP35 Ventana Medical
Systems

Ready-to-use 24 min at 36�C Rabbit
monoclonal

HIER: CC1 for
32 min at 100�C

Optiview Bench Mark
Discovery

CD8 C8/144B 1:100 32 min at 36�C Mice monoclonal HIER: CC1 for
32 min at 100�C

Optiview Bench Mark
Discovery

FOXP3 236A/E7 1:40 16 min at
36�C + amplification

Mice monoclonal HIER: CC1 for
64 min at 100�C

Optiview Bench Mark
Discovery

Note: Cell conditioning solution (CC1 Tris-EDTA buffer, pH 7.8).
Abbreviation: HIER, heat-induced epitope retrival.
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CD56 (p = 0.01, �24%), KI-67 (p < 0.0001, �91%), CD68
(p = 0.01, �35%) and CD11c (p = 0.001, �39%) were all
downregulated in hypoxia (Figure 2H–Q). The observed
association between the deregulated markers and the

frequencies of T cells was not found for all tumors
(Figure S5). Interestingly, immune-related checkpoint mol-
ecules PD-L1 and PD-1 were not affected by hypoxia
(Figure S2).

F I GURE 1 Selection of Regions of interest (ROIs). (A) ROIs were outlined in areas with no or high Hif-1α expression and defined as (B)
normoxic and (C) hypoxic ROIs, respectively. Double immunofluorescence staining with Iba1 and GFAP ensured the presence of (E-G) tumor-
associated microglia and macrophages and (I-K) tumor cells, respectively. The expression of each marker was scored and (D) Hif-1α was significantly
higher expressed in hypoxic ROIs as compared to normoxic, whereas (H) Iba1 and (L) GFAP was expressed equally in normoxia and hypoxia.
Statistical significance was defined as *p < 0.5, **p < 0.01, ***p < 0.001. Abbreviations: Hypoxia-inducible factor 1α (Hif-1α), glial fibrillary acidic
protein (GFAP), ionized calciumbinding adapter molecule 1 (Iba1).
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F I GURE 2 Differences in protein expression between hypoxic and normoxic tumor regions acquired from Digital Spatial Profiling (DSP). (A)
Unsupervised cluster analysis of protein profiling results. (B, D, F, H, J, L, N, P) The average count for hypoxic and normoxic ROIs for each marker
in each individual tumor and (C, E, G, I, K, M, O, P) the mean count across all tumors are illustrated in the figure. (B-C) CD44, (D-E) B7-H3 and
(F-G) Beta-catenin were significantly upregulated in areas with hypoxia, whereas (H-I) VISTA, (J-K) CD56, (L-M) CD68, (N-O) CD11c, (P-Q) KI-
67 were downregulated. Statistical significance was defined as *p < 0.5, **p < 0.01 = **, ***p < 0.001. Abbreviations: Regions of interest (ROI).
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3.2 | IvyGAP validation

In the validation we focused on the checkpoint-related
markers CD44, B7-H3 and VISTA. Using the IvyGap
database RNA sequencing data from laser microdissected
tissue, we found that CD44 mRNA expression in areas with
PC was significantly higher compared to CT (p < 0.001,
20%), IT (p < 0.001, 19%), LE (p < 0.001, 64%) and MP
(p < 0.001, 23%) (Figure 3A,B). B7-H3 mRNA expression
was significantly higher in areas with MP (p < 0.001, 22%)
compared to PC (Figure 3A,C). VISTA mRNA expression
was significantly lower in areas with PC compared to CT
(p < 0.001, 255%), IT (p < 0.001, 480%), LE (p < 0.001,
565%) and MP (p < 0.001, 399%) (Figure 3A,D). Thus,
mRNA expression in PC correlated with protein hypoxia
data for CD44 and VISTA identified by DSP.

3.3 | Immunohistochemical validation of
CD44, B7-H3 and VISTA

Expression of the deregulated markers CD44, B7-H3
and VISTA were evaluated in the same normoxic and
hypoxic areas as outlined for immune cell quantitation.
In the immunohistochemical staining we found that
CD44 was expressed in the membrane of cells with
tumor cell morphology and the amount of CD44 posi-
tive cells was high in regions with necrosis and pseudo-
palisades (Figure 4B) as compared to normoxic areas

(Figure 4A). B7-H3 was expressed in the membrane of
tumor cells as well as TAMs (Figure 4E,F). B7-H3
expression was moderate in areas with normoxia
(Figure 4E) whereas expression increased in and around
pseudopalisades and areas with necrosis (Figure 4F).
VISTA was expressed in the membrane of cells with
TAM morphology and in ramifications of infiltrating
cells with characteristic microglia morphology
(Figure 4I,J). VISTA expression was reduced or absent
in areas with necrosis and pseudopalisades (Figure 4J).
Vessels exhibited high expression of all markers and
these were excluded from analysis. When applying the
software-based classifiers, the quantitative estimates of
AF CD44 (p = 0.052) (Figure 4C,D,M) and B7-H3
(p = 0.005) (Figure 4G,H,N) showed a significant
increase in hypoxia, whereas VISTA decreased in hyp-
oxia (p = 0.054) (Figure 4K,L,O).

3.4 | Hypoxia and immune cell composition

DSP analysis revealed relatively high counts of CD4 and
CD11c. CD11c was significant lower in hypoxic areas
(Figure 2) whereas CD4 tended to decrease in hypoxia
(Figure S3). To further explore the immune cell composi-
tion in hypoxic areas TAMs (Iba1), T-helper cells (CD4),
cytotoxic T cells (CD8) and regulatory T cells (FOXP3)
were investigated in an additional patient material con-
sisting of 19 GBMs (Figure 5). As expected TAMs were

F I GURE 3 IvyGAP database mRNA sequencing data for CD44 (A and B), B7-H3 (A and C) and VISTA (A and D). (A) Sample characteristics
from 122 RNA samples generated from laser-microdissected areas from 10 GBMs. CD44 was upregulated and VISTA downregulated in PC
compared to the other types of areas. B7-H3 was upregulated in MP areas as compared to PC areas. Statistical significance was defined as *p < 0.5,
**p < 0.01, ***p < 0.001. Abbreviations: Ivy Glioblastoma atlas project (IvyGAP), glioblastoma (GBM), pseudopalisading cells (PC), central tumor
(CT), infiltrating tumor (IT), leading edge (LE), microvascular proliferation (MP).
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the most frequently occurring immune cells, but with no
significant differences in AF Iba1 between hypoxic and
normoxic areas (p = 0.2) (Figure 5U). Iba1+ cells com-
prised of up to 0.33 (median = 0.14) of the total hypoxic
area (Figure 5I,M). In the normoxic areas Iba1 com-
prised up to 0.35 (median = 0.15) of the total tumor area
(Figure 5A,E). AF CD4 indicated no differences
(p = 0.2, 31%) between hypoxia (Figure 5J,N,V) and nor-
moxia (Figure 5B,F). Interestingly, AF CD8 was signifi-
cantly decreased in hypoxia (p = 0.04, �69%)
(Figure 5K,O,X) as compared to normoxia (Figure 5C,
G). AF FOXP3 was similar (Figure 5Y) (p = 0.8, 7%)
between hypoxic (Figure 5L,P) and normoxic areas
(Figure 5D,H).

4 | DISCUSSION

In this study we found differential expression of the
immune checkpoint-related markers CD44, B7-H3 and
VISTA in normoxic and hypoxic GBM regions. This was
found by DSP and validated with IvyGAP project data
and by immunohistochemistry.

We found that CD44 was upregulated in hypoxic
areas. CD44 is a cell surface glycoprotein receptor and
involved in the progression and metastasis of cancer cells
[21]. Using immunohistochemistry, we detected high
CD44 expression in GBM tumor cells, especially in pseu-
dopalisades and other areas around necrosis. The anti-
body used in the DSP approach recognizes residues

F I GURE 4 Immunohistochemical CD44, B7-H3 and VISTA staining patterns in glioblastoma (GBM). (A) CD44 was moderately expressed in
areas with normoxia whereas (B) hypoxic areas contained high CD44 expression especially in pseudopalisading tumor cells. (E) B7-H3 was expressed
by tumor- and microglia cells (F) and the expression increased around pseudopalisades and necrotic areas. (I) VISTA was expressed in the membrane
and ramifications of microglia but (J) the expression was absent or low in areas with necrosis and pseudopalisades. Three areas with hypoxia and
normoxia per tumor were manually outlined and quantitation of (C-D) CD44, (G-H) B7-H3 and (K-L) VISTA was carried out using a trained pixel-
based classifier to detect the area of membrane staining. Scalebar 100 μm. (M-N) The area fraction (AF) of CD44 and B7-H3 was significantly higher
in tumor regions with hypoxia whereas (O) AF VISTA decreased in areas with hypoxia. Statistical significance was defined as *p < 0.5, **p < 0.01,
***p < 0.001.
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F I GURE 5 Presence of immune cells in hypoxic and normoxic regions. (A) The amount of tumor-associated microglia and macrophages
(TAMs), (B) T-helper cells (C) Cytotoxic T cells and (D) regulatory T cells were evaluated in (I-P) hypoxic and (A-H) normoxic regions. (M, Q, N, R,
O, S, P, T). A pixel-based classifier was trained to detect expression of each marker. AF (U) Iba1, (V) CD4 and (Y) FOXP3 did not differ between
regions with hypoxia and normoxia. (X) AF CD8 was significantly decreased in areas with hypoxia as compared to normoxia. Scalebar: 100μm.
Statistical significance was defined as *p < 0.5, **p < 0.01, ***p < 0.001. Abbreviations: Area fraction (AF) and ionized calcium-binding adapter
molecule 1 (Iba1).
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around proline 210 and is therefore separate from the
splice site and not affected by splicing. Digital quantita-
tion of CD44 protein expression and RNA sequencing
data from IvyGAP confirmed CD44 upregulation in hyp-
oxic regions. CD44 and osteopontin (CD44 ligand
secreted from myeloid- and tumor cells) was proposed as
a promising immune checkpoint in human colon carci-
noma [22] and moreover implicated in the pathogenesis
of several cancer types including GBMs [23]. GBM cell-
derived osteopontin increased tumor invasion and radia-
tion resistance in vitro and in vivo [24, 25]. In microglia
and macrophages, osteopontin enhanced activation and
induced a pro-tumorigenic phenotype [26]. Interestingly,
the expression profile of human and murine GBM-associ-
ated microglia suggested osteopontin as one of the most
upregulated genes compared to resting microglia [27, 28].
CD44 was included in the DSP panel caused by its role
as immune checkpoint marker but was also associated
with stem-cell properties. The hypoxic/perinecrotic niche
is known for stem-like cell enrichment [29] and CD44
suggested as a stem cell marker [30], although its function
remains controversial [31]. The high expression of CD44
in hypoxic areas may be explained by a GBM in vitro
study showing hypoxia-induced binding of CD44 to Hif-
2α [32]. Similar results have been reported in breast- and
gastric cancer with CD44 binding to Hif-1α [33, 34].
However, cells in hypoxic areas will most likely be diffi-
cult to target caused by poor vascularization and
impaired drug delivery, consequently with high expres-
sion of immune checkpoints, including CD44, contribut-
ing to immune evasion.

We found that B7-H3 was upregulated in areas with
hypoxia. B7-H3 (CD276) is a co-stimulator that belongs
to the B7-CD28 family and it works as a ligand and has
an inhibitory function on T cell activation and prolifera-
tion [35]. B7-H3 is overexpressed in different cancer types
like acute leukemia and ovarian cancer and associated
with poor prognosis [36, 37], including GBMs [38]. Large-
scale analysis using The Cancer Genome Atlas (TCGA)
and Chinese Glioma Genome Atlas (CGGA) database
found that B7-H3 expression was associated with malig-
nancy grade and shorter survival in GBM [39]. This study
also proposed that B7-H3 was upregulated in microglia
and macrophages and may facilitate immune evasion.
The role of B7-H3 remains controversial and some studies
suggest that it works as an immune co-stimulator [40],
while other studies suggest it works as a co-inhibitor [41].
A previous study showed that B7-H3 regulate aerobic gly-
colysis in a Hif-1α dependent pathway in breast cancer
cells [42], whereas a colorectal cancer study found no
association [43]. Therapeutic targeting of B7-H3 with a
monoclonal antibody inhibited tumor growth in murine
renal and bladder xenografts [44]. This was extended to a
phase 1 clinical trial with monotherapy (NCT02982941)
or combined with anti PD-1 (NCT02475213) and anti
CTLA-4 therapy (NCT02381314) [45] in solid tumors and
with no published results yet. We found a high expression

of B7-H3 in GBM, which may suggest that therapeutic
targeting of B7-H3 in GBM is relevant. However, our
results at the same time showed increased expression of
B7-H3 in hypoxic GBM areas and the same goes for
CD44. The increased expression of checkpoint markers
suggests a potential mechanism for immune evasion in
these areas caused by decreased blood flow and limited
drug delivery.

This study suggested that VISTA was downregulated
in areas with hypoxia. We found intense VISTA staining
of microglia in GBM tissue. VISTA (V-domain immuno-
globulin suppressor of T cell activation) has dual activi-
ties and it works as a stimulatory ligand for antigen
presenting cells inducing immune activation and also as a
negative ligand suppressing T cell activation [46]. Previ-
ously VISTA has been found to be abundantly expressed
by microglia and differentially regulated in different cen-
tral nervous system pathologies [47]. VISTA acts as an
immune checkpoint, suppressing T cell proliferation and
enhancing the conversion of naive T cells into regulatory
T cells [48, 49]. In line with this VISTA depleted mice
were more resistant to glioma growth [50] and no tumors
developed in 20% of the VISTA depleted mice. In a fibro-
sarcoma model, VISTA overexpression reduced anti-
tumor immunity in mice [51]. In contrast to our results
other studies suggested that hypoxia in the tumor micro-
environment is associated with increased VISTA expres-
sion in tumor infiltrating inflammatory cells [52, 53].
Deng et al. showed that VISTA and Hif-1α activity corre-
lated in colon cancer patients and that myeloid derived
suppressor cells showed increased VISTA expression in
hypoxic tumor regions [54]. The divergence between our
study and the mentioned results may be explained by the
different type of cancers including their different micro-
environment. Importantly, a major determinant of the
immune biology in GBMs is TAMs, which infiltrate the
tumor tissue and comprise up to 30% of the total cell
population. Different amounts and expression levels of
TAMs in areas with and without hypoxia may therefore
influence the VISTA expression level together with differ-
ent influence of hypoxia on the polarization state of these
cells.

PD-1 and PD-L1 are immune checkpoint proteins.
PD-1 is a cell surface receptor and binding to the ligand
PD-L1 results in negative regulation of the T cell
response [10]. We found and validated that hypoxia did
not affect PD-L1 expression in GBM patient material.
The ROIs investigated in our study were selected based
on the expression of Hif-1α and the cell type markers
GFAP (astrocytes) and IBA1 (microglia and macro-
phages) and we ensured that the tissue was vital. How-
ever, since the ROIs in our study covered regions with
different cell types, the sensitivity in terms of changes
occurring e.g. exclusively in tumor cells is not optimal.
We will be able to obtain more precise measurements in
future studies measuring e.g. PD-L1 level exclusively in
tumor cells by using a tumor cell specific morphology
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marker. This may explain the different results obtained
in our study and the studies discussed below. Accord-
ingly, a recent study identified upregulation of PD-L1 in
glioma cell lines exposed to hypoxia but the lines were
commercial lines (U251 and U343) [55] and not low-pas-
sage patient-derived GBM lines. Another previous study
suggested that PD-L1 was enriched in perinecrotic and
pseudopalisading niches of GBMs, but this finding was
obtained using IvyGAP mRNA data [56] and did not
report on the protein level. In melanoma and lung can-
cer in vivo tumor models—having a different microenvi-
ronment compared to glioblastoma—Noman et al.
showed that PD-L1 expression in hypoxic tumor areas
was increased [57]. Although PD-L1 has a hypoxia
responsive element in its promotor region which directly
binds Hif-1α [58], this pathway might be affected by dif-
ferent regulators in vivo and in different cancers and
PD-L1 expression may be regulated independent of
CD44, B7-H3 and VISTA. This is in line with, another
study proposing that VISTA worked from a pathway
different from the PD-L1 providing a rationale to con-
currently target the proteins [59]. However, VISTA reg-
ulation of PD-L1 has been found in other cancer types
[60]. VISTA immune cell expression has thus been asso-
ciated with high PD-L1 in gastric tumor cells suggesting
a dual synergistic mechanism for tumor evasion [60].
Further multiplexing studies are needed to investigate
potential association of expression of checkpoint
markers.

In hierarchal cluster analysis we did not see two
major hypoxic or normoxic cluster but a more mixed pat-
tern. DSP data suggested no major differences in T cell
populations between normoxia and hypoxia, although
there was a trend towards decreased CD4 and CD8
counts in hypoxic regions. Using immunohistochemistry
we found a significant decrease in CD8+ T cells in hyp-
oxic regions and this has to our knowledge not been
shown in GBM before. We found no differences in regu-
latory T cells or CD4+ T cells, though CD4 tended to
decrease in hypoxia. This is in line with in vitro findings
suggesting that hypoxia induce immunosuppression by
impairing T cell proliferation and function [16, 61]
including impaired cytotoxic T cell induction [62].

Our immunohistochemical analysis showed high
levels of TAMs in GBMs but we were not able to demon-
strate a significant difference in the frequency of these
cells in normoxia and hypoxia. Macrophages are known
to promote cancer growth by being immunosuppressive
and secreting factors increasing angiogenesis and tumor
growth [6] and some studies indicate that macrophages
exposed to hypoxia increase production of inflammatory
mediators [63–65] while other suggest hypoxia as an
unfavorable growth condition leading to decreased
phagocytic abilities [65, 66]. Although we found a similar
frequency of TAMs in normoxic and hypoxic regions our
results with different expression of checkpoint markers in

these cells were in line with influence of hypoxia on the
cell phenotype.

The high expression of CD44 and B7-H3 might
explain the decreased number of T cells (CD8+ T cells) in
hypoxic regions. The combination of few T cells, high
amounts of TAMs and increased expression of check-
point-related molecules suggests that hypoxic areas will
be difficult to target with immune therapy. Furthermore,
hypoxia is associated with abnormal vascularization
resulting in reduced oxygen supply but also impaired
delivery of drugs. We found that VISTA expression was
low and even absent in some hypoxic areas hereby reduc-
ing the risk of VISTA-mediated escape from VISTA tar-
geted therapy in hypoxic areas with impaired delivery of
checkpoint-blockers. Hence, VISTA might be novel
promising target in GBMs.

Currently there are no FDA-approved immune thera-
pies for GBM patients. Despite this several new immuno-
therapies are currently being tested in clinical trials [67].
One trial with VISTA monotherapy (NCT02671955) is
ongoing, although the expression of VISTA in the tumor
microenvironment is unknown. GBM is a highly immu-
nosuppressive tumor containing only few infiltrating T
cells [68]. In addition, most GBM patients are treated
with steroids to control peri-tumoral edema and poten-
tially decreasing the efficacy of immunotherapies [69, 70].
Our study suggests that both normoxic and hypoxic
tumor regions contained high amounts of TAMs.
Increased knowledge about the microenvironment,
including the influence of hypoxia on the expression of
checkpoint markers could be the way forward.

In conclusion, we found that CD44 and B7-H3 were
upregulated in hypoxic GBM areas whereas VISTA was
downregulated together with the presence of fewer T
cells. This heterogeneous expression of checkpoint-
related markers should be taken into consideration when
developing new immune-related targeted therapies.
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