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Background: Regression modeling methods are commonly used to estimate influenza-
associated mortality using covariates such as laboratory-confirmed influenza activity 
in the population as a proxy of influenza incidence.
Objective: We examined the choices of influenza proxies that can be used from influenza 
laboratory surveillance data and their impact on influenza-associated mortality estimates.
Method: Semiparametric generalized additive models with a smoothing spline were 
applied on national mortality data from South Africa and influenza surveillance data as 
covariates to obtain influenza-associated mortality estimates from respiratory causes 
from 2009 to 2013. Proxies examined included alternative ways of expressing influ-
enza laboratory surveillance data such as weekly or yearly proportion or rate of posi-
tive samples, using influenza subtypes, or total influenza data and expressing the data 
as influenza season-specific or across all seasons.
Result: Based on model fit, weekly proportion and influenza subtype-specific proxy 
formulation provided the best fit. The choice of proxies used gave large differences to 
mortality estimates, but the 95% confidence interval of these estimates overlaps.
Conclusion: Regardless of proxy chosen, mortality estimates produced may be broadly 
consistent and not statistically significant for public health practice.
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1  | INTRODUCTION

Estimation of the mortality burden of seasonal and pandemic influ-
enza is important in public health as it can be used to inform the 
impact of influenza control policies and programs; however, such esti-
mates are not easy to ascertain. Using influenza-coded deaths usually 
grossly underestimate the burden of influenza-associated deaths,1 as 
these deaths are more often complicated by secondary bacterial co-
infections or exacerbation of underlying chronic conditions2 or even 
cardiac complications.3 These deaths are usually recorded with an 

underlying cause of death other than influenza. In South Africa, the 
mortality risk is further compounded by high HIV prevalence, which 
puts HIV patients at a much higher risk of influenza-related mortality 
and other opportunistic infections.4 This adds another level of uncer-
tainty in the recorded underlying cause of death.

To overcome underestimation of influenza-related deaths, eco-
logical time-series modeling is used to estimate influenza’s associa-
tion with a broader range of coded causes of death. Many of these 
methods originate from the original Serfling regression approach,5 
with numerous adaptations.6,7 These approaches are based on the 
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long-recognized elevation in weekly or monthly time series of deaths 
that occurs when influenza is circulating in populations. The population 
rate of influenza-associated deaths is obtained by estimating excess 
mortality by subtracting a seasonally varying background rate of non-
influenza deaths from observed death rates.5 A more convincing mod-
eling approach includes independent covariates representing trends 
in incidence of influenza infection in the model. Influenza-associated 
excess mortality can then be estimated using the parameter estimates 
of the influenza variables of the model, which represent the relation-
ship between observed trends in influenza and the modeled mortality 
outcomes. Indicators or proxies for the incidence of influenza infec-
tion include time series of laboratory-confirmed influenza infections in 
influenza-like illness (ILI) surveillance from sentinel health facilities.8-10

Laboratory surveillance time series can be expressed in various 
ways. Firstly, proxies could be expressed as weekly or monthly counts 
of total influenza-positive samples or proportion positive of samples 
tested. Using proportions standardizes the data, automatically adjust-
ing for changes in testing frequency and laboratory procedures over 
time.11,12 On the other hand, the proportion may be influenced by 
factors other than influenza—the denominator may vary due to the 
incidence of non-influenza causes of acute respiratory infection.

Proxies can be further disaggregated by influenza virus types (A 
and B) and subtypes of influenza A, such as A(H3N2) and A(H1N1)
pdm09, if laboratory surveillance data are sufficiently refined. While 
several influenza types and subtypes (henceforth denoted as (sub)
types) cocirculate, relative timing and incidence can vary.8 In addi-
tion, virus virulence can vary from season to season, even within the 

same type or subtype.13 To account for varying virulence, a separate 
influenza-incidence proxy can be used for each season.14

It is unknown which proxy provides the best estimates in eco-
logical time-series studies. Several studies estimating influenza-
associated mortality in South Africa used monthly proportions of total 
influenza-positive viral samples, with the denominator being the total 
annual number of samples tested.15-17 The aim of this study is to look 
at how estimated influenza-associated mortality rates are affected by 
the choice of influenza proxies used.

2  | METHODS

2.1 | Study period and setting

The study period included 260 weeks (Monday–Sunday) from 5 
January 2009 to 29 December 2013 inclusive. The setting was the 
nation of South Africa with a population of about 53 million in 2013.

2.2 | Mortality data and population denominators

Non-identified data on underlying causes of death from 2009 to 
2013 for the South Africa population are publicly available.18 Causes 
of death are coded using the International Classification of Diseases, 
Tenth Revision (ICD-10). Weekly time series of mortality counts for 
respiratory death (ICD-10: J00-J99) were prepared for persons of all 
ages, aged <65 and ≥65 years. Records with missing age (0.27% of 
total deaths) were excluded.

TABLE  1 Definitions of influenza proxies compared in models to estimate influenza-associated respiratory deaths

Model

Definition of influenza-incidence proxy

All-seasona Season-specificb All-influenzac
Influenza (sub)
typesd

Weekly 
proportione Yearly proportionf Rateg

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓

9 ✓ ✓ ✓

10 ✓ ✓ ✓

11 ✓ ✓ ✓

12 ✓ ✓ ✓

aAll-season: influenza proxy for whole study period is analyzed as a whole.
bSeason-specific: influenza proxy for each season analyzed as individual covariates.
cAll-influenza: influenza proxy of weekly positive samples is not subtyped but considered as a whole.
dInfluenza (sub)types: proxy consisting of influenza types and subtypes analyzed as individuals covariates—A(H1N1)pdm09, A(H3N2), and B.
eWeekly proportion: proxy calculated as total weekly samples testing positive for influenza viruses divided by total weekly samples tested.
fYearly proportion: proxy calculated as total weekly samples testing positive for influenza viruses divided by total yearly samples tested.
gRate: proxy calculated as total weekly samples testing positive for influenza viruses divided by weekly population in South Africa.
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Population denominators for rates were obtained from mid-year 
population estimates from Statistics South Africa19 and were linearly 
interpolated to provide denominators for weekly death rates.

2.3 | Influenza surveillance data and proxies

Information on circulating influenza viruses was obtained from the 
South African Severe Acute Respiratory Illness (SARI) surveillance 
program, which is a prospective, hospital-based sentinel surveillance 
program that covers 4 of 9 provinces in South Africa.20 Respiratory 
samples were tested by real-time reverse-transcription polymerase 
chain reaction, and influenza viruses identified were typed as influ-
enza A or B. Influenza A viruses were subtyped into influenza A(H1N1)
pdm09 or influenza A(H3N2).

The 3 influenza-incidence proxy variables we evaluated are sum-
marized in Table 1. First, weekly population rates of influenza-positive 
specimens were used to account for changing population size. The 
other 2 methods were calculated as proportions of positive specimens. 
The “weekly proportion” was simply the weekly number of specimens 
testing positive for each influenza (sub)type by the total number of 
specimens tested for that week. The “annual proportion” was calcu-
lated by dividing the weekly number of specimens testing positive for 
each (sub)type by the total number of specimens tested in the year of 
analysis.

We also looked at allowing the relationship between viral prox-
ies and influenza-associated mortality to vary by year, to accommo-
date annual changes in virus virulence or changes in the surveillance 
program. Each influenza (sub)type in a particular season therefore is 
represented by an individual covariate, which is set to 0 in all other 
seasons.14 Proxy variables for these were termed “season-specific” as 
opposed to “all-season,” which considered a single viral proxy variable 
for each virus category across all seasons.

2.4 | Statistical analysis

Statistical analysis was conducted using the generalized additive model 
(GAM) procedure in SAS 9.3 (SAS Institute Inc., Cary, NC, USA). Weekly 
rates of influenza-associated deaths from respiratory causes were esti-
mated using a semiparametric GAM. Independent variables of influenza-
incidence proxies were parametrically and linearly related to respiratory 
mortality incidence. We used a natural cubic smoothing spline of weeks 
to account for the time trend in non-influenza-associated (background) 
mortality. In an Australian study, the GAM model formulation provided 
an improved model fit compared with the more conventional trigono-
metric (sinusoidal) background mortality estimation approach.21

The final model equations for each of the proxy definitions above 
are as follows:
1.	 Influenza (sub)type, all-season formulation: 

E(mortality rate) =β0 + β1t+β2(InfluenzaA(H1N1))

+β3(InfluenzaA(H3N2))+β4(InfluenzaB)+spline(t) 

2.	 All-influenza, all-season formulation: 

E(mortality rate)=β0+β1t+β2(all-influenza)+spline(t) 

3.	 Influenza (sub)type, season-specific formulation: 

E(mortality rate) =β0+β1t+
�

∑2013

(y=2009)
β2,y(InfluenzaA(H1N1))

�

+
�

∑2013

(y=2009)
β3,y(InfluenzaA(H3N2)

�

+
�

∑2013

(y=2009)
β4,y(InfluenzaB)

�

+spline(t)
 

4.	 All-influenza, all-season formulation: 

E(mortality rate)=β0+β1t+
�

∑2013

(y=2009)
β2,y(all-influenza)

�

+spline(t),
 

where E(mortality rate) was the expected respiratory mortality rate, t 
was the sequential week number of the weekly time series, Influenza 
A(H1N1) was the proxy for influenza A(H1N1)pdm09, Influenza 
A(H3N2) was the proxy for influenza A(H3N2), Influenza B was the 
proxy for influenza B, all-influenza was the aggregated proxy for all 3 
influenza viruses, and spline was the spline curve for t and was spec-
ified with 31 degrees of freedom which achieved a degree of control 
for autocorrelation (r < .2). One degree of freedom is allocated to the 
parametric linear time variable (β1t), and the remaining degrees of free-
dom are distributed at 6 per year for the spline.21

Estimated background mortality was calculated from the model by 
setting all the influenza variables to zero and introducing them into 
the fitted model formula. The estimated influenza-associated excess 
death rate in each week was determined by multiplying the influenza 
parameter estimate (β) by its respective influenza surveillance proxy 
value. Negative influenza parameter estimates led to negative mortal-
ity estimates, which are biologically meaningless,14 and were regarded 
as zero when aggregating estimates for (sub)type-specific influenza. 
The 95% confidence interval (CI) of the estimated mortality rate was 
obtained by multiplying the influenza surveillance proxy value using 
each of the upper and lower 95% CI as shown below: 

where SE is the standard error of the parameter estimate, β.
The standard error for the 95% CI for aggregate (sub)type-specific 

estimates was calculated as: 

where SE1…SEn are standard errors of aggregated proxies used.
An equivalent procedure was used to estimate the 95% CI for the 

annual mean influenza-attributable mortality estimates.
Model fit was assessed by the square root of the mean-squared 

error (RMSE) of the model over the entire time series. A lower value 
indicates improved fit.22

2.5 | Ethics

The study was approved by the Human Research Ethics Committee 
of the University of New South Wales, Australia. The SARI proto-
col was approved by the University of the Witwatersrand Human 
Research Ethics Committee (HREC) and the University of KwaZulu-
Natal Human Biomedical Research Ethics Committee (BREC) proto-
col numbers M081042 and BF157/08, respectively. This surveillance 
was deemed non-research by the US Centers for Disease Control and 
Prevention.

β± (1.96×SE),

SE=

√

SE
2

1
+⋯+SE

2

n
,
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3  | RESULTS

3.1 | Influenza surveillance

A mean of 4330 respiratory specimens were tested annually for in-
fluenza viruses. The mean annual number of specimens that tested 
positive for one or more influenza viruses was 332 (7.7%). Over the 
study period, different influenza (sub)types circulated at varying times 
throughout the year and their relative annual proportions are shown 
in Figure 1. Time series of influenza surveillance as weekly proportion, 
yearly proportion, and population rate is shown in Figure S1. In 2009, 
influenza virus activity occurred in 2 peaks; influenza A(H3N2) domi-
nated from May to July, and a second peak occurred from August to 
September with the introduction of influenza A(H1N1)pdm09.

3.2 | Observed mortality rate

During the study period, 302 112 respiratory deaths were recorded. 
The mean respiratory mortality weekly rate over the study period was 
2.29 per 100 000 population for all ages, 1.69 per 100 000 population 
for persons aged <65 years, and 13.49 per 100 000 population for 
persons aged ≥65 years. A marked downward trend in mortality rate 
can be seen in the all age and <65 years age groups (Figure S2).

3.3 | Goodness-of-fit model

The best model fit as assessed by the lowest RMSE value in both age 
groups and all ages combined was obtained by using weekly propor-
tion of influenza (sub)types as proxies (Table 2). Best fit was not con-
fined to all-season or season-specific proxies. In the all-age group, the 
use of season-specific proxy variables gave better fit than all-season 
proxy variables. In the 2 age-stratified groups, all-season proxy vari-
ables improved fit.

3.4 | Influenza-associated deaths

Models that use either yearly proportion or rate of season-specific in-
fluenza (sub)types and all-influenza proxies gave consistently similar es-
timates in all 3 age groups. The remaining model formulations, however, 
gave different mortality estimates. While point estimates were different 
across the models, the 95% confidence intervals overlapped (Tables 3-5).

In the all-age analysis, the annual mean mortality estimates ranged 
from 2.58 to 4.66 per 100 000 population. Confidence intervals of the 
annual mean mortality estimates overlapped with the lowest and high-
est limit at 1.21-7.30 per 100 000 population, respectively (Table 3). 
Our best-fit model gave the highest annual mean mortality estimate of 
4.66 per 100 000 population (95% CI: 2.03, 7.30).

In the 2 age-stratified groups, the range of annual mean estimates 
was wider, with the ≥65 years age group experiencing much higher 
mortality rates. Confidence intervals of annual mean mortality for 
these 2 age groups also overlapped and included 0. For the <65 years 
age group, annual mean mortality estimates ranged from 0.75 to 3.39 
per 100 000 population and the lowest and highest confidence lim-
its were −0.50 and 3.92, respectively (Table 4). For the ≥65 years age 
group, the annual mean mortality estimates ranged from 5.84 to 20.88 
per 100 000 population and the lowest and highest confidence limits 
were −5.29 and 25.78, respectively (Table 5). Our best-fit model gave 
the highest annual mean mortality estimate of 2.84 per 100 000 pop-
ulation (95% CI: 2.30, 3.37) and 17.03 per 100 000 population (95% 
CI: 11.96, 22.11) for the <65 and ≥65 years age groups, respectively.

Excess deaths by (sub)type are shown in Figure S2. A direct re-
lationship between dominant influenza (sub)type in circulation with 
excess mortality in the year was observed with the exception in 2012 
where excess deaths were observed to be due to influenza A(H3N2) 
even though dominant strain in circulation that year was influenza B.

When examining mortality estimates contributed by each influ-
enza (sub)type proxy across all models and age groups, point estimates 
differed across models, but their 95% confidence intervals generally 

FIGURE 1 Influenza surveillance time series of count of influenza-
positive samples tested in South Africa from 2009 to 2013. A, All-
influenza-positive samples and total samples tested; B, individual influenza 
type- or subtype-positive samples. Numbers above peaks in (B) represent 
percentage of dominant influenza type or subtype in circulation for that 
year. The x-axis depicts the week during the study period, indicated firstly 
by year followed by the week number, W1-W52, in that year

(A)

(B)
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overlapped. Influenza B gave more negative point estimates compared 
with influenza A subtypes (Tables S1-S6).

4  | DISCUSSION

Using South African SARI surveillance data, our study explored alterna-
tive influenza-incidence proxies and their effect on model fit and res-
piratory mortality estimates. We tested model formulations considering 

3 types of variation in proxy definition: weekly or yearly proportions 
and population rates; (sub)type-specific and all-influenza; and season-
specific or all-season definitions. Based on model fit, we found that 
weekly proportion of positive influenza results provided a better fit 
compared with yearly proportions or rates. Across all age-group cat-
egories, (sub)type-specific model formulations produced better model 
fit than all-influenza proxies. In terms of using season-specific or all-
season proxies, we got inconsistent results. Season-specific proxies pro-
vided the best model fit for the all-age model while all-season proxies 

Age group RMSEa

Model proxy characteristics

Proxy calculation
Subtype or 
all-influenza

Season-specific 
or all-season

All ages .1121 Weekly proportion Subtype Season-specific

.1143 Yearly proportion Subtype Season-specific

.1143 Rate Subtype Season-specific

.1166 Weekly proportion Subtype All-season

.1181 Weekly proportion All-influenza Season-specific

.1188 Yearly proportion Subtype All-season

.1189 Rate Subtype All-season

.1190 Weekly proportion All-influenza All-season

.1194 Yearly proportion All-influenza Season-specific

.1194 Rate All-influenza Season-specific

.1212 Yearly proportion All-influenza All-season

.1218 Rate All-influenza All-season

<65 years .0943 Weekly proportion Subtype All-season

.0962 Yearly proportion Subtype All-season

.0963 Rate Subtype All-season

.0966 Weekly proportion All-influenza All-season

.0986 Rate All-influenza All-season

.0991 Yearly proportion All-influenza All-season

.0999 Weekly proportion Subtype Season-specific

.1002 Yearly proportion Subtype Season-specific

.1002 Rate Subtype Season-specific

.1013 Weekly proportion All-influenza Season-specific

.1013 Yearly proportion All-influenza Season-specific

.1013 Rate All-influenza Season-specific

≥65 years .8891 Weekly proportion Subtype All-season

.8902 Rate Subtype All-season

.8906 Yearly proportion Subtype All-season

.8953 Weekly proportion All-influenza All-season

.8979 Yearly proportion All-influenza All-season

.8987 Rate All-influenza All-season

.9005 Weekly proportion Subtype Season-specific

.9015 Yearly proportion Subtype Season-specific

.9015 Rate Subtype Season-specific

.9055 Yearly proportion All-influenza Season-specific

.9055 Rate All-influenza Season-specific

.9057 Weekly proportion All-influenza Season-specific

aRMSE values are ordered from top to bottom in each age group, with smallest value (best fit) at the top.

TABLE  2 Assessing goodness-of-fit 
models by root of the mean-squared error 
(RMSE) values on choice of proxies used, 
age-stratified, in South Africa, 2009-2013
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provided the best model fit for the age-specific models. Among all the 
best-fitting model formulations, the weekly proportion proxy combined 
with (sub)type-specific and either season-specific and all-season prox-
ies produced reasonably higher model fit. This would suggest that the 
more important choice may be whether to use type or season-specific 
proxies rather than whether to use a proportion or a rate. Regardless of 
proxy formulation, none of the point estimates were statistically signifi-
cantly different from each other for a given age category.

We did not evaluate a proxy of absolute counts of influenza-
positive samples. Assuming testing practices were constant over 
time, counts should be a reasonable proxy. The population rates we 
used should be almost equivalent to counts except they adjusted for 
changes in total underlying population at risk. However, this did not 
account for changes in surveillance practice or geographic coverage, 
which were known to occur during the study period. Surprisingly, 
though, estimates from the population rate proxy did not differ sub-
stantially from the yearly proportion proxy. If the number of specimens 
tested was available, a preferred method may then be to use the pro-
portion positive as a weekly or yearly proportion, which inherently 
would adjust for the impact of testing and health-seeking behavior12 
and would be independent of population size. On the other hand, pro-
portions are sensitive to the size of the denominator which for influ-
enza tests may vary according to the incidence of other pathogens 
circulating that cause influenza-like illness. Small numbers of tests can 
also create problems. For example, sentinel surveillance systems with 
small numbers of participating sites could have smaller denominators. 
One positive specimen of 2 specimens tested at the start, or outside, 

of the influenza season produces a proportion of 50%, even though 
there is low influenza activity. In previous South African studies, lab-
oratory surveillance data were provided monthly and proxies were 
calculated as yearly proportions to adjust for possible bias such as dif-
ferent laboratory methods and different specimen sampling over time 
due to sampling behavior as well as varying changes in total annual 
number of samples tested.11,15,16 In our study, the surveillance data 
had adequate numbers and it was done on a weekly basis.

We tried season- and (sub)type-specific viral proxies to adjust for 
any potential year-to-year differences between the level of influenza 
activity and the resulting disease burden.14,23 Such differences could 
be due to variation in virulence arising from antigenic drift of influenza 
strains,24 but also differences in population susceptibility or vacci-
nation coverage and effectiveness over the years. Much wider con-
fidence intervals resulted from season-specific proxy compared with 
an all-season proxy. This could be attributable to reduced statistical 
power arising from 52 nonzero observations for each season-specific 
proxy compared with 260 observations for the all-season proxy.

It is difficult to compare our estimates with other studies in South 
Africa as they cover different years (mostly earlier years up to 2009), 
different modeling methods, different datasets, age groups, and mortal-
ity outcomes. Moreover, our study period examined the effects of the 
2009 pandemic A(H1N1) strain as the new seasonal H1 strain, which 
differs from pre-2009 years, and therefore, mortality effects can be 
different.25 However, in an individual-level cohort study that looked 
at influenza-associated respiratory deaths in the Soweto area in South 
Africa, their mean estimate of 4.7 (95% CI: 4.1, 5.3) and 8.2 (95% CI: 5.2, 

TABLE  6 Summary of advantages and disadvantages of different influenza proxies used in models

Proxy Advantages Disadvantages

Weekly proportion Adjusts for week-to-week changes in testing behavior 
or surveillance coverage.

Can be unstable if denominator is a small count.
Does not vary if infection incidence increases but proportion 

positive is the same.
Only possible if number of tests is available.

Yearly proportion Adjusts for year-to-year changes in surveillance 
practice or coverage.

Less subject to small denominator problems than 
weekly proportion.

Does not adjust for within-year changes in testing behavior.
Does not vary if infection incidence increases for all weeks but 

proportion positive is the same.
Requires whole years of surveillance data.
Only possible if number of tests is available.

Weekly rate Adjusts for population changes.
Reflects absolute incidence of infection, if testing 

behavior or surveillance coverage unchanged.

Does not adjust for testing behavior or surveillance coverage over 
time

Influenza (sub)
types

Higher resolution according to differing epidemiology 
and virulence of various (sub)types.

May provide information for assessing vaccine 
effectiveness by component strains.

Reduced model parsimony.
Reduced statistical power per (sub)type compared with combined 

influenza series.
Proportion of specimens typed or subtyped can vary over time.

All-influenza Summary impact of overall influenza.
Does not require (sub)type information.
Larger counts may lead to greater statistical power to 

detect an association with mortality.

Does not provide vaccine strain component information.

Season-specific Accounts for year-to-year changes in virus virulence, 
surveillance system coverage, and testing behavior.

Reduced statistical power compared with an all-season proxy.

All-season Higher statistical power to detect an association 
between influenza and mortality compared with 
season-specific variables.

Does not account for year-to-year changes in virus virulence, 
surveillance system coverage, and testing.
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12.5) per 100 000 population for all ages and ≥65 years, respectively,26 
compares well with our estimate of 4.66 (95% CI: 2.20, 7.12) and 10.09 
(95% CI: −2.58, 22.75) per 100 000 population from our model using 
weekly proportion of season-specific influenza subtype proxies, assum-
ing that estimates from this site are representative of the country.

So what proxies should be used in practice? We only evaluated 
proxies with 1 data source in 1 setting. Nevertheless, our findings can 
be used to provide guidance in other scenarios or to analyze other in-
fluenza disease burden outcomes such as hospitalization and intensive 
care admissions. In this case, our study could inform how influenza 
proxies should be formulated. We also stress that there is a need to 
understand how disease burden outcomes are identified and recorded 
by surveillance systems in order to appropriately adjust for any biases. 
We have summarized the advantages and disadvantages of using the 
various influenza proxy formulations in Table 6.

This study had several limitations. Our study period since the in-
troduction of the pandemic strain only consisted of 5 years, which was 
relatively short. A longer period would be more ideal to fully encapsu-
late and understand how influenza-associated mortality would change 
over the years. The data quality of the SARI surveillance data was fairly 
robust but 1 criticism of the program was its representativeness.20 The 
SARI surveillance program only covered 4 out of 9 provinces in the 
country in 6 sentinel sites, and therefore, it was questionable if the 
data could nationally represent the viral circulation activity in the pop-
ulation. Also, the number of surveillance sites and output from some 
of the sites changed over the study period. In addition, there may be a 
sampling bias toward critically ill patients who required hospitalization 
and it was not known what proportion of the population this group 
of patients constituted. Its representation of viral circulation in the 
population could be overestimated. Other proxies such as ILI for non-
severe cases in the population could be incorporated into the model to 
balance out the data bias for influenza viral activity. In addition, there 
have been other studies that explored the interaction of ILI and labo-
ratory surveillance data as a more representative proxy for influenza 
incidence in the population.10 Besides influenza, there was evidence 
that other viruses such as respiratory syncytial virus (RSV), parainflu-
enza, and noroviruses may cocirculate with influenza and contributed 
to excess winter mortality in the elderly,27 although previous studies 
had shown that RSV and influenza did not cocirculate in South Africa 
at the same time.15,16 Nevertheless, our influenza-associated mor-
tality estimates could have been influenced by other confounding 
pathogens.

In conclusion, our study provides guidance on choosing appropri-
ate influenza-incidence proxies for use in estimating the mortality bur-
den of influenza. Improved model fit through use of (sub)type-specific 
proxies suggests that the different mortality risk associated with each 
of influenza A(H1N1)pdm09, A(H3N2), and B appears to be an im-
portant factor in estimating mortality. However, varying mortality risk 
from season to season among influenza strains does not appear to be 
a clear factor from our study. Regardless of proxy chosen, estimates 
produced may be broadly consistent and not statistically significantly 
different. Thus, the large mortality health burden attributable to influ-
enza will still be evident.
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