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Abstract

Background: Spatial modelling studies of schistosomiasis (SCH) are now commonplace. Covariate values are
commonly extracted at survey locations, where infection does not always take place, resulting in an unknown
positional exposure mismatch. The present research aims to: (i) describe the nature of the positional exposure
mismatch in modelling SCH helminth infections; (ii) delineate exposure areas to correct for such positional
mismatch; and (iii) validate exposure areas using human positive cases.

Methods: To delineate exposure areas to Schistosoma japonicum, a spatial Bayesian network (sBN) was constructed. It
uses data on exposure risk factors such as: potential sites for snails’ accessibility, geographical distribution of
snail infection rate, and cost of the community to access nearby water bodies. Prior and conditional probabilities were
obtained from the literature and inserted as weights based on their relative contribution to exposure; these probabilities
were then used to calculate joint probabilities of exposure within the sBN.

Results: High values of probability of S. japonicum exposure correspond to polygons where snails could potentially be
present, for instance in wet soils and areas with low slopes, but also where people can easily access water bodies. Low
correlation (R2 = 0.3) was found between the percentage of human cases and the delineated probabilities of exposure
when validation buffers are generated over the human cases.

Conclusions: The utility of a probabilistic method for the identification of exposure areas for S. japonicum, with wider
application for other water-borne infections, was demonstrated. From a public health perspective, the schistosomiasis
exposure sBN developed in this study could be used to guide local schistosomiasis control teams to specific potential
areas of exposure, and improve efficiency of mass drug administration campaigns in places where people are likely to
be exposed to the infection.
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Background
Schistosomiasis (SCH) is a water-borne neglected trop-
ical disease of global public health significance [1, 2]. It
affects more than 252 million people worldwide [3], es-
pecially human populations living in places where clean
water and sanitation are limited [4]. Schistosomiasis is
known to lead to anaemia, stunted growth and other
organ pathologies in school-aged children [5, 6]. Three

schistosome species cause the infection: Schistosoma
mansoni, S. japonicum and S. haematobium. Schistosoma
japonicum is presently endemic in China, Indonesia and
the Philippines, and is hard to control due to its zoo-
notic life-cycle [7]. The life-cycle of S. japonicum in-
cludes infection of an amphibious snail belonging to
several subspecies of Oncomelania hupensis as the inter-
mediate host, and humans and other mammalians as de-
finitive hosts [8, 9].
Traditionally, schistosomiasis risk mapping has en-

abled the identification of at risk populations for target-
ing mass drug administration campaigns, thus increasing

* Correspondence: a.l.araujonavas@utwente.nl
1Faculty of Geo-information Science and Earth Observation (ITC), University
of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Araujo Navas et al. Parasites & Vectors  (2018) 11:465 
https://doi.org/10.1186/s13071-018-3039-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-018-3039-6&domain=pdf
mailto:a.l.araujonavas@utwente.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


the efficiency of schistosomiasis disease control [10].
Schistosomiasis mapping has been supported by the use
of spatial information techniques, such as geographical
information systems (GIS), remote sensing and global
positioning systems (GPS). Spatial information tech-
niques allow the manipulation of spatially referenced in-
fection data and data on the physical and biological
environmental variables [11–14]. Modelling those data
in combination allows studying the distribution of com-
munities most at risk schistosomiasis and the role of the
geographical variation of environmental exposure factors
on schistosomiasis risk [15].
There are a number of errors inherent to spatial infor-

mation used in geographical epidemiological studies [4].
Most of these errors involve positional measurement er-
rors, where observation and prediction locations are af-
fected by various factors such as GPS inaccuracies, the
presence of multiple addresses, geocoding errors, out-
come or covariate aggregations, and misalignment be-
tween covariates of exposure and disease outcome
estimates [15]. The last one is of our current interest
and may occur when covariates of exposure are ex-
tracted from locations where exposure has not occurred.
Statistical modelling of the spatial distribution of schis-

tosome infections estimates empirical relationships be-
tween morbidity indicators (e.g. prevalence or intensity
of infection) and risk factors. Risk factors for schisto-
some exposure include various environmental and
socio-economic covariates that help to interpolate the
level of infection at unsampled locations [14, 16–18].
Covariates and morbidity indicators are commonly ex-
tracted from survey locations such as health centres,
hospitals and schools. In most cases, exposure to infec-
tion did not occur at survey data locations but at loca-
tions where environmental and geographical conditions,
together with the level of accessibility to contaminated
sites, are optimally exposed. Such exposure locations are
usually unknown, resulting in positional mismatch of the
surveyed disease values, and the covariates in the model.
To date, methods to account for this type of positional

misalignment are scarce. Several studies have used remote
sensing data to determine biophysical features of habitats in
relation to snail prevalence [19–24], acknowledging that S.
japonicum transmission is closely related to the distribution
of its intermediate host in the environment [9]. Only one
study [2] has used these habitats to correct for the pos-
itional mismatch when modelling disease infection risk in
human populations. Walz et al. [2] used high-resolution re-
mote sensing data, environmental field measurements, and
ecological data, to model environmental suitability for
schistosomiasis-related parasites and snail species. They
represented environmental suitability as potential transmis-
sion areas that could guide public health interventions to
places where people could potentially be infected. Although

potential transmission areas were delineated, interactions
between humans, hosts, and suitable environments were
not taken into account.
These studies suggest that ignoring positional mis-

match and its impact on spatial prediction remains
largely unquantified in schistosomiasis modelling. Fur-
thermore, the extraction of covariate values in the pres-
ence of positional mismatch is a significant source of
uncertainty that may influence the efficacy of schisto-
somiasis control strategies [4]. Therefore, methods to
correct for this positional mismatch need to be further
investigated [1, 4].
The objective of this study is to develop a schistosom-

iasis exposure sBN model that maps potential areas of
exposure to S. japonicum, taking into account human in-
teractions with main sources of infection (i.e. water bod-
ies). To accomplish this objective, we aimed to (i)
describe the positional mismatch problem in modelling
S. japonicum infection; (ii) delineate exposure areas that
take into consideration the accessibility cost of people to
main sources of infection, and that could be used to cor-
rect for this positional mismatch; and to (iii) validate the
delineated exposure areas.

Methods
Data on human and snail S. japonicum infection
In the Philippines S. japonicum is endemic in 28 of its
81 provinces [25], with approximately 1.8 million esti-
mated infected people [26]. The disease affects children,
adolescents and individuals with high-risk occupations,
such as farmers and fishermen [26, 27]. In the
Philippines, the smallest administrative division is the
barangay, numbering about 22–50 in a municipality.
We used data on human schistosomiasis and snail

prevalence of infection, collected in six barangays from
Alangalang municipality in Leyte Province in 2015 and
2016. Data were collected by researchers from the Col-
lege of Public Health and College of Science from the
University of the Philippines. Surveyors selected Alanga-
lang municipality because it has the highest prevalence
of schistosomiasis (7.5%) from all the 43 municipalities
of Leyte Province; within this municipality, they visited
the barangays with the highest prevalence of infection
from the 54 barangays in Alangalang municipality.
Human positive cases (12 records) were georeferenced

at household locations and snails surveys (8 records)
were taken from water bodies in close proximity to sur-
veyed households. The recording of all the human case
locations (also including negative cases) was not possible
due to a lack of manpower and material resources, such
as the availability of only one GPS device in the field.
Diagnosis of schistosomiasis in humans was performed

using stool examination. Single stool sample was re-
quested per participant with informed consent, coded
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and prepared following the Kato-Katz method. Each
slide prepared was read in the field using a microscope
and the presence of S. japonicum eggs indicated active
infection.
Infection among O. h. quadrasi snails was determined

by manually crushing the snails in aliquots on a glass
slide. Each snail was placed in an aliquot droplet of dis-
tilled water, usually three aliquots per glass slide. Snails
were gently crushed in between slides and were exam-
ined under a conventional stereomicroscope (40×) using
forceps for separating snail tissues to detect the presence
of sporocysts or furcocercous cercariae characteristic of
S. japonicum.

Study area
For the purpose of this study, it was decided to work at
a local spatial scale in the Province of Leyte, due to the
localized nature of the surveys and the high endemicity
of the disease [28]. For the analysis, we identified a small
area surrounding surveyed points (Fig. 1). This was done
in order to select only surveyed barangays and to include
information of all risk factors, avoiding areas without
survey information (Fig. 1).

Environmental and geographical data
Exposure risk factors of SCH transmission are associated
with the environment (i.e. moisture, temperature, rainfall
and water characteristics), the topography (i.e. elevation,
slope) of the area [2, 10, 20, 21, 29] and snail infection sta-
tus [23, 24, 30, 31]. In the endemic provinces of the
Philippines, exposure to snails is mostly driven by the
local topography, land use and the physical and chemical
components of the water and soil [32]. We included eleva-
tion, slope, land use, nearest distance to water bodies and
snail infection rates as exposure risk factors. Elevation was
obtained as a raster file from Aster GDEM version 2 from
USGS [33]. Vector layers for land use, river and road net-
work were obtained from the OpenStreetMap (OSM) pro-
ject [34]. OSM land use and land cover products use
information from GlobeLand30 (GL30), which is a new
generation of 30 m land cover maps [35–37]. The OSM
road and river networks are incomplete and contain errors
in their connectivity. To account for this, we edited roads
and rivers, and digitalized footpaths using Google Earth
images. The vector layer for snail infection rate was ob-
tained from the recorded surveys (Table 1). Slope was de-
rived from elevation by using the Terrain Analysis tool
from Quantum GIS version 2.6 [38].
Distance to water bodies was calculated using the clos-

est facility network analysis tool from ArcGIS version 10
[39]. Firstly, we corrected for topology errors such as
duplicate lines, presence of dangles and multipart geom-
etries in the river and road network. Secondly, commu-
nities were loaded as incidents (261 points), and contact

river points as facilities (42 points). Thirdly, we used the
closest facility tool to find the nearest river from an
urban area following a road. Finally, we interpolated the
distance to the nearest water source using ordinary kri-
ging from the gstat package in R [40] and saved the map
as a raster file.

Snail infection rate map
We constructed a trend surface that represents snail in-
fection rate for the whole study area, thus using data of
all the points to predict at unknown locations (i.e. global
interpolation). It fits a mathematically defined surface
through the data points (i.e. deterministic interpolation)
to discover smoother (i.e. inexact interpolation)
regional and local trends. It is similar to a three di-
mensional regression surface obtained with linear re-
gression, where coordinates si = (xi, yi) are used as
predictors. The interpolated value z(Si) for a first and
second order polynomial is represented in equations
1 and 2, respectively. z(Si) represents infection rate
values (number of positive cases/number of sampled
snails) at location i.

z� sið Þ ¼ β0 þ β1xi þ β2yi ð1Þ

z� sið Þ ¼ β0 þ β1xi þ β2yi þ β3x
2
i þ β4y

2
i þ β5xiyi ð2Þ

Figure 2a, b shows the resulting surfaces for the first
and second order polynomials, respectively. Figure 2a
shows low risk probability values (Table 1), from -0.003
to 0.008. These values do not match the original sur-
veyed values. Figure 2b shows low and medium risk
probability values from -0.01 to 0.035. These values
show a better fit to the original surveyed values showed
in red.
To remove the occurring negative values, we fitted a

multiple linear regression by applying a generalized lin-
ear regression model using equation 2. In this case z(Si)
was the infection status for each location i, 1 indicates
an infected case and 0 a non-infected case. The resulting
prediction from Fig. 3 shows only positive predicted
values but very large standard errors (28.7 to 3e+13). Be-
sides, none of the predictions approximate the original
surveyed values. Finally, the second order trend surface
(Fig. 2b) map was used for the analysis since it better fit-
ted the original surveyed values.

Spatial Bayesian network of Schistosoma japonicum
exposure
We have conceptually designed a model that represents
the positional mismatch between survey locations and
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exposure sites (Fig. 4). Locations s1and s2represent the
schools, households, or other survey locations from
which morbidity indicators are extracted, while exmnre-
presents the various exposure points where infections
could have taken place, m is the corresponding number
of exposure points and n is the corresponding survey lo-
cations related to the exposure.
Exposure areas were delineated by using spatial Bayes-

ian networks (sBN) [41]. A Bayesian network (BN) is a
probabilistic graphical model that captures the various
conditional dependencies of a set of random variables
(discrete or continuous) [42, 43], into a joint probability
distribution by means of a directed acyclic graph (DAG)
[44, 45]. A BN for a set of random variables X is defined

by the pair (D, P). Here, D is the DAG and P is the set of
probability distributions for all variables in the network.
Each variable x with parents pa(x) has a conditional
probability p(x| pa(x)). For a BN with a set of discrete (I)
variables, the joint probability distribution factorizes into
equation 3 [42]. This is the joint probability distribution
as the product of all conditional probabilities specified
in a BN:

p Xð Þ ¼
YI

i¼1
p xijpa xið Þð Þ ð3Þ

The schistosomiasis exposure sBN defines exposure
areas in a probabilistic way, by allowing the combination

Fig. 1 Selected study area
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of various probability distributions from a set of random
spatial variables [44]. We have constructed a DAG for
exposure areas (Fig. 5), where each random variable is
represented as a node. Nodes are connected by directed
links or edges that express probabilistic relationships be-
tween the variables [43]. Three types of random vari-
ables can be found including (i) an observable discrete
variable [land use (LU)]; (ii) observable continuous vari-
ables [elevation (E), slope (SLP), distance to water bodies
(DWB) and snail infection rates (SI)]; and (iii) latent

discrete variables [potential accessible sites for snails
(PAS), community cost (CC) and exposure (EX)]. The
direction given in the link between variables, for in-
stance from LU to PAS, encodes a direct causal depend-
ence of PAS on LU; the node LU is known then as the
parent of PAS [45].
All continuous variables (E, SLP, DWB and SI) were

discretized into different categories, given that high or
low levels of exposure could occur at various ranges
of risk factor values. We established hypothetical rela-
tionships between the risk factors and the disease,
and categorized the risk factors based on literature
(Table 1).
Exposure is a discrete child node, which has three

discrete parent nodes: PAS, CC and SI; its conditional
probability is expressed as p(EX| PAS, CC, SI). PAS and
CC are at the same time child nodes conditional on
discrete parents. Their conditional probabilities are de-
rived by p(PAS| LU, E, SLP) and p(CC|DWB), respect-
ively. The joint probability distribution for our Bayesian
network is given as:

p Xð Þ ¼ p EXjPAS;CC; SIð Þ: p PASjLU ; E; SLPð Þ:
p LUð Þ: p Eð Þ: p SLPð Þ:p CCjDWBð Þ: p DWBð Þ: p SIð Þ

ð4Þ

Equation 4 encodes assumptions of this research
about direct dependencies between variables and indi-
cates which node probability tables (NPT) need to be
defined [45].

Fig. 2 First order (a) and second order (b) polynomial trend surface. Red crosses represent the original surveyed snail infection locations

Fig. 3 Predicted probability of snail infection values using
generalized linear regression model. Colour scale represent
probability values from 0 to 1. Snail survey locations are represented
by white crosses
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Construction of node probability tables
After defining the structure of our sBN, a main chal-
lenge is to construct the node probability tables
(NPT). NPT are probability tables associated to each
child node v given every possible state of the set of
parents of v. NPT are intended to capture the
strength of the relationship between the node and its
parents [45]. The practicality of doing this depends
on the number of states of the parent and child
nodes. In our sBN eight NPTs were constructed, five
NPTs as prior marginal probabilities (π) were
inserted for the set of parent nodes (LU, E, SLP,
DWB and SI) and three NPTs as conditional prob-
abilities linking parent and child nodes (PAS, CC
and EX).

We inserted prior marginal probabilities for the set of
discrete parent nodes as weights. Weights were calcu-
lated using the eigen vector derived from a pairwise
comparison matrix using Saaty’s comparison table [46].
Saaty [46] uses a scale of numbers (i.e. scale of judge-
ment) to indicate how many times a factor is more dom-
inant than another with respect to a criterion used for
their comparison. In this case, the criterion is the risk of
infection assigned to each parent node category given by
literature (Table 1). Consistency indexes and ratios were
calculated in order to measure the consistency of the
judgements. Consistency ratios lower than 10%, indicate
that our judgements are acceptable, while consistency
ratios higher than 10% indicate untrustworthy judge-
ments or random decisions. Saaty’s pairwise matrices as

Fig. 4 Positional mismatch in SCH modelling

Fig. 5 Spatial Bayesian network for SCH exposure. Yellow and orange nodes are observable and latent risk factors, respectively
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well as consistency indexes and ratios are included as
Additional file 1: Tables S1-S7. Prior marginal probabil-
ities for the parent nodes are shown in Table 1.
Latent variables PAS, CC and EX were divided into three

probability categories: high, medium and low risk. Condi-
tional probabilities for these child nodes are associated
with the edges that link them to the parent nodes, and
were also assigned using a pairwise comparison matrix.
The criterion used to assign the scale of judgement is the
strength of the hypothetical link between the risk factors
and exposure. The strength of the hypothetical link was
evaluated based upon three studies that evaluated the risk
factors associated with schistosomiasis infection [47–49].
Hu et al. [47] ranked the potential importance of

the schistosomiasis risk factors by means of a power
detector. According to this detector, distance to
water bodies is the most significant factor for disease
risk, and elevation the least significant. Zhang et al.
[48] used environmental, topographical and human
behavioural factors to locate schistosomiasis active
transmission sites. Their predictor capacity was compared
by means of deviance analysis, used to determine the im-
portant variables to be included in a generalized additive
model. As in the previous study, distance to water bodies
was the most significant factor because of the smallest de-
viance, and elevation the least significant. Finally, Ajakaye
et al. [49] evaluated physical and environmental risk fac-
tors to identify areas with suitable conditions for schisto-
somiasis transmission. They used Saaty’s comparison
matrix to assign weights to each risk factor. Distance to
water bodies and land use were the most significant
factors, followed by elevation and slope as the least
significant.
Weights obtained for each risk factor are shown in Table 1

and the conditional probabilities linking parent and child
nodes are shown in Additional file 2: Tables S8-S10.

Deriving joint probabilities
To compute the probabilities for each category of the
child nodes, PAS, CC and EX, conditional and mar-
ginal probabilities were used by applying equations 5,
6 and 7, respectively. Joint probability values of ex-
posure were calculated for each polygon of analysis.
In order to update the prior marginal probabilities,
evidence is inserted for each spatial polygon into the
observable variables (SI, LU, E, SLP,DWB). Bold facing
indicates the insertion of evidence. Variables notation
can be found in Additional file 3: Table S11.

p PAS;LU ;E; SLPð Þ ¼
X

LU ;E;SLP
p LUð Þ � p Eð Þ � p SLPð Þ � p PASjLU ;E;SLPð Þ

ð5Þ

p CC;DWBð Þ ¼
X

DWB
p DWBð Þ � p CCjDWBð Þ

ð6Þ

p EX; PAS;CC; SIð Þ ¼
�X

PAS;CC;SI
p EXjPAS;CC; SIð Þ

�p SIð Þ
�X

LU ;E;SLP
p LUð Þ � p Eð Þ � p SLPð Þ

�p PASjLU ;E;SLPð Þ Þ
X

DWB
p DWBð Þ � p CCjDWBð Þ

� � �

ð7Þ
For the implementation, polygons of analysis were con-

structed based on the overlaying of each risk factor (i.e.
parent node). To overlay all risk factors, they were first
transformed into vectors and then corrected for topology
errors. Topology errors included duplicated polygons,
multipart geometries and overlapping polygons.
Sensitivity analysis was used to see the relative influ-

ence of the risk factors on PAS and CC, and the relative
influence of PAS, CC and SI on exposure. We used the
sensitivity function, calculated as the degree of entropy
reduction. Degree of entropy reduction I is the degree of
change or expected difference in information bits H be-
tween a query variable Q (exposure) with q states and
findings variable F (risk factors) with f states [50] (equa-
tion 8). A degree of entropy reduction of 0 means a
query variable is independent of the varying variable.

fI ¼ H Qð Þ−H Fð Þ ¼
X

q

X
f

P q; fð Þ log2 P q; fð Þ½ �
P qð ÞP fð Þ

ð8Þ

Software
To work within the spatial domain we used the software
NeticaTM 6.03 [41], which works with Bayesian net-
works, decision nets and influence diagrams. Evidence is
inserted as cases for each polygon of analysis, and prior
and conditional probabilities are inserted as tables.

Validation
Validation was first performed by counting all surveyed
positive SCH human cases falling inside the various cat-
egories of exposure in the map. However, this introduces
a positional mismatch as the surveyed positive cases
were not necessarily acquired at those specific exposure
points.
As a second approach for validation, we defined po-

tential validation areas by constructing buffers around
each of the positive cases. We extracted the distance to
the nearest water body for each surveyed point using the
distance map previously generated. Extracted distance
values were used as distance buffers generated around
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positive cases. Buffers completely containing other
buffers were grouped. We counted the number of
positive cases falling inside each group and calculated
the mean probability of exposure within the grouped
buffers.

Results
Exposure network
High (> 50%), medium (35–50%), low (20–35%) and very
low (< 20%) probabilities of exposure were derived from
the proposed exposure network. This is exemplified in
Fig. 6 for only one polygon. For this particular polygon,
the probability is predominantly high (50.8%) for a
high-risk elevation (< 900 m), DWB (< 1 km), and LU

(agriculture land and grass), a medium risk slope (11–
30°), and a low risk SI (< 0.5%).
Very low probability values of exposure (< 20%) were

found in built-up areas, medium risk DWB (1–5 km),
slopes < 30° and low and medium (0.5–3.6%) risk of
snail infection, but also in agriculture and grass land
with DWB > 5 km and slopes > 30° (Fig. 7). Low prob-
abilities of exposure (20–35%) were found in built-up
areas with slopes < 30°, low risk of snail infection, and
within DWB < 1 km, but also in agriculture and grass
land in DWB > 5 km. Medium probability values (35–
50%) were found in agriculture and grass land and forest
areas, in slopes > 11°, low risk of snail infection, and
DWB < 1 km, but also in slopes < 30°, medium risk of
snail infection and DWB from 1 to 5 km. High

Fig. 6 Probabilities of exposure in the Bayesian network
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probability of exposure values (> 50%) were found in
wet soils with slopes < 30°, with DWB from 1 to 5 km
and medium risk of snail infection, but also in agricul-
ture and grass land with DWB < 1 km and low risk of
snail infection.
Based on the degree of entropy reduction, our sensitiv-

ity results show that the risk factor with the highest de-
gree of change is PAS followed by SI and CC. Within
PAS, land use has the highest degree of change and ele-
vation has the lowest, showing that the most influential
risk factors on exposure are land use, snail infection rate
and distance to water bodies in that order, and the least
influential factors are slope and elevation (Table 2).

Fig. 7 a Probability of exposure map. b-f Risk factors of exposure: land use (b); slope (c); distance to water bodies (d); elevation (e); snail infection
rates (f)

Table 2 Sensitivity of exposure to risk factors using entropy
reduction (variables are listed in order of influence on exposure)

Node Degree of entropy reduction % of influence to the network

PAS 0.07149 28.0

SI 0.06524 25.3

CC 0.04708 18.3

LU 0.04138 16.0

DWB 0.02868 11.1

SLP 0.00291 1.1

E 0.00066 0.2
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Our findings show that approximately 63% of the
study area has high probability of exposure values (>
50%). This is mainly explained by the predominance of
agricultural fields in the area (Fig. 7b) and the distance
to water bodies results, which indicate that approxi-
mately 80% of the urban areas can access water bodies
following routes < 500 m. Lowest and highest distance
values between urban areas and water bodies are 7.6 m
and 5.7 km, respectively, with a mean of 1.4 km (Fig. 8).

Validation
For the first validation, the results show an increase in
the probability of exposure as the proportion of human
cases also increases, except for 17% of human cases
where a reduction in the probability of exposure of
35.8% can be observed (Table 3). For the second valid-
ation, four groups of buffers were observed: Group A
with one positive case, Group B with two positive cases
and Groups C and D with four and five positive cases,
respectively (Fig. 9). A low correlation was found be-
tween probability of exposure and percentage of human
cases within the groups (linear correlation, R2 = 0.3). For
the first three groups (A, B and C) the probability of ex-
posure increases while the percentage of human cases
also increases. For Group D, the group with more posi-
tive cases, a minor decrease in the probability of expos-
ure can be observed (Fig. 10). This could be explained
by the distance to water bodies that has a negative cor-
relation (Group C: -0.3, Group D: -0.02) with the

probability of exposure values (0.47–0.55) calculated
from our sBN for groups C (R2 = 0.98) and D (R2 =
0.96) (Fig. 11). For instance, for Groups A and B with
one and two positive cases respectively, the distance to
water bodies is higher for Group A (~980 m) than for
Group B (~177 m), with an average exposure value of
approximately 0.47 and 0.48, respectively (Fig. 10). Like-
wise, for Groups C and D, the distance to water bodies
is higher for Group D (~1100 m) than for Group C
(~490 m), with an average probability of exposure values
equal to 0.55 and 0.49, respectively (Fig. 10).

Discussion
Several studies have modelled snail distribution as input
information for risk prediction of schistosomiasis [2, 20,
22, 47, 48, 51], in order to guide prevention (sanitary
and hygiene conditions of the population) and control
(mass drug administration campaigns in the community)
strategies for schistosomiasis infection. These ap-
proaches are inadequate spatial decision support tools
since they have not accounted for snails’ infection status
or people’s exposure to infection (i.e. contact of people
with snails’ sites). In this study we demonstrate a novel
approach to delineate spatial areas of exposure to S.
japonicum infection by accounting for the distribution
of infected and non-infected snails, and considering the
human interaction with active transmission sites. This
was done by accounting for the cost of the community

Fig. 8 Nearest route calculation from urban points to water bodies and DWB ordinary kriging interpolation
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to access water bodies and potential sites where snails
may be present.
Our results suggest that the predominance of high

probabilities of exposure values (> 50%) in the study area
are explained by the presence of wet soils and agricul-
ture land in the zone, but also by the distance from
urban areas to nearby water bodies (< 5 km). This was
expected given that land use is a highly influencing risk
factor on exposure after potential accessible sites
(Table 2), and also because of the initial high weights
given to LU and DWB (Table 1).
Our results demonstrate that for short distances to

water bodies, the probability of a community to be ex-
posed to S. japonicum is high (Fig. 8). This was ex-
plained by the probability of exposure map and the
relative influence of DWB on exposure. Although DWB
is the fifth influencing factor on exposure (Table 2), it is
the only influencing factor on community cost, which is
the third most important variable of the network
(Table 2). Based on our results we propose that future

studies utilise the nearest distance to water bodies fol-
lowing a road instead of the commonly used Euclidean
distance [51–53], since the former provides a more ac-
curate representation of community access to water bod-
ies, as it accounts for the nearest path from human
dwellings to potential infection foci.
We postulated that the proportion of human S. japoni-

cum cases was higher in areas predicted to have a higher
probability of exposure. Our validation procedure using
overlaying proportions in the four groups of buffers sur-
rounding nearby S. japonicum cases, demonstrated a posi-
tive correlation for three groups. Although the number of
validation points is somewhat low for a total validation,
overlying proportions of exposure to schistosomiasis in-
fection suggest a correlation between potential areas of ex-
posure and the disease in the presence of limited survey
data.

Utility of modelling the geographical probability of S.
japonicum exposure
Modelled schistosomiasis exposure areas account for the
transmission processes occurring between the environ-
ment containing infective stages of S. japonicum or inter-
mediary hosts (snails), and the susceptible hosts (humans
and livestock). From a public health perspective, the
provision of maps that define the geographical limits of
probability of exposure to S. japonicum infected areas
could help target local schistosomiasis control strategies
to communities more likely to contact contaminated

Fig. 9 Buffers around surveyed human cases points. Letters show the grouped buffers based on points location

Table 3 Percentage of human cases falling within probabilities
of high exposure values

No. of human cases % of human cases Probability of exposure

1 8.3 41.2

2 16.7 35.8

3 25.0 50.8

6 50.0 55.6
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environments and thereby improve the efficiency of mass
drug administration campaigns. From a spatial modelling
perspective, the availability of a predictive exposure map
could serve as an important base map to obtain covariate
values. By relating them to indicators of disease, we could
possibly account for the positional mismatch between epi-
demiological survey data and environmental covariates,
and improve the statistical modelling of S. japonicum
infection.

Limitations of the study
A number of limitations should be accounted for in the
interpretation of our results. Firstly, estimates of the

probability of exposure are highly influenced by the
availability of snail infection estimates (Table 2). Due
to the localized nature of the study, it was difficult
to generate an adequate surface map that could
properly explain snail infection distribution, con-
straining this map into a binary output with low and
medium risk values (Fig. 7f ). This might have an im-
pact on the results and could be further improved
by an increase of the study extent, and the number
of survey points. In addition, whenever these data or
new knowledge becomes available, the sBN devel-
oped in this study will enable a “rapid delineation”
of potential exposure areas of S. japonicum by facili-
tating a flexible integration of exposure data as risk
factors, and prior information derived from literature
or expert knowledge [54].
Secondly, model validation procedures could be im-

proved by including positive and negative human cases.
Collecting data on livestock infection [23, 24, 30, 31]
could also serve for validation as livestock infection, par-
ticularly carabao, has been suggested to play an import-
ant role in the transmission of S. japonicum in the
Philippines [55].

Conclusions
In conclusion, the present study describes the nature of
the positional exposure mismatch in the modelling of S.
japonicum infection. Results of the present study suggest
that the best way to address this mismatch should include
the extraction of covariate values from potential exposure
areas. A probabilistic method to delineate exposure areas
in the absence of sufficient empirical survey data is pro-
posed. Unlike other studies, the present sBN is adequate
to delineate exposure areas based upon the contact of
communities to water bodies and other potential sites of
infection. We conclude that even with limited disease

Fig. 11 Distance to water bodies versus probability of exposure. Plotted
values for a Group C and b Group D

Fig. 10 Probability of exposure vs percentage of human cases. Labels correspond to the grouped buffers visualized in Fig. 9
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survey data, it is possible to define potential exposure
areas for schistosomiasis. Modelled exposure areas might
be used to correct for positional mismatches and signifi-
cantly improve disease predictions to better guide control
programs to prevent and control schistosomiasis and
other water-borne infections.
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