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Abstract: Multisource information fusion has received much attention in the past few decades,
especially for the smart Internet of Things (IoT). Because of the impacts of devices, the external
environment, and communication problems, the collected information may be uncertain, imprecise,
or even conflicting. How to handle such kinds of uncertainty is still an open issue. Complex evidence
theory (CET) is effective at disposing of uncertainty problems in the multisource information fusion
of the IoT. In CET, however, how to measure the distance among complex basis belief assignments
(CBBAs) to manage conflict is still an open issue, which is a benefit for improving the performance in
the fusion process of the IoT. In this paper, therefore, a complex Pignistic transformation function is
first proposed to transform the complex mass function; then, a generalized betting commitment-based
distance (BCD) is proposed to measure the difference among CBBAs in CET. The proposed BCD is a
generalized model to offer more capacity for measuring the difference among CBBAs. Additionally,
other properties of the BCD are analyzed, including the non-negativeness, nondegeneracy, symmetry,
and triangle inequality. Besides, a basis algorithm and its weighted extension for multi-attribute
decision-making are designed based on the newly defined BCD. Finally, these decision-making
algorithms are applied to cope with the medical diagnosis problem under the smart IoT environment
to reveal their effectiveness.

Keywords: complex evidence theory; Dempster–Shafer evidence theory; distance measure; complex
mass function; complex pignistic transformation; betting commitment; multisource information
fusion; multi-attribute decision-making; medical diagnosis; Internet of Things (IoT)

1. Introduction

The Internet of Things (IoT) refers to a very large network, which connects various
devices for intelligent identification, locating, tracking, monitoring, and management [1,2].
Thanks to the development of information and communication technologies, the IoT is
becoming ubiquitous in all kinds of applications. On the other hand, it is well known that
clinical medical service is complex, in which the collection, preservation, analysis, and
fusion of patient information takes much time and labor many materials [3,4]. Furthermore,
traditional medical systems cannot diagnose patients with a high level decision-making
due to a single information source, and this affects the quality of clinical medical service.
Therefore, the emergence of the IoT becomes a milestone in the field of the digital medical
domain. Medical diagnosis under the smart IoT environment can send physiological
information and medical signals through communication networks to monitoring systems
for analyzing and diagnosing with the aid of artificial intelligence techniques [5–7]. Conse-
quently, it is beneficial for improving clinical medical services and lowering management
costs, so that it can help to make better lifestyle and disease prevention plans and per-
sonalized medical services for patients [8,9]. In particular, in the data processing of the
medical IoT, data fusion technology under uncertain environment plays a very important
role, which is effective for processing mass data from multiple sources to better support
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medical decision-making. Hence, in this paper, we focus on improving the performance of
the fusion process under an uncertain medical IoT.

As is well known, Dempster–Shafer evidence theory (DSET) [10,11] has several desir-
able characteristics to deal with the uncertainty problem. To be specific, the mass function
(MF), also called basis belief assignment (BBA), in DSET can express uncertainty quan-
titatively [12]. Additionally, the Dempster rule of combination (DRC) in DSET can fuse
multisource information to reduce uncertainty in the fusion process for supporting decision-
making well [13–15]. Meanwhile, the DRC meets commutative and associative laws [16,17].
Hence, DSET has been extensively researched, including the aspects of D numbers [18,19],
evidential reasoning [20], heuristic representation learning [21], entropy [22,23], genera-
tion [24,25], dependency [26], the negation [27] of BBAs, etc. [12]. In particular, DSET was
recently well exploited by Xiao [28,29] for the complex plane for handling more complex
uncertainty problems, called complex evidence theory (CET).

In CET [28,29], the classical MF is extended to the complex mass function, also called
complex basis belief assignment (CBBA), to express uncertainty quantitatively, in which the
complex mass function is expressed by complex numbers, not just positive real numbers.
In addition, the classical DRC is generalized to fuse CBBAs to better support decision-
making, which also satisfies commutative and associative laws. Therefore, since CET is
complex-value modeled with the aid of the two dimensions of amplitude and phase, it
is more capable of representing and handling uncertainty in the fusion process [30]. In
particular, when CBBAs reduce to classical BBAs, CET degrades into DSET in the condition
that the conflict coefficient is less than one. Consequently, CET affords a more generalized
framework compared with the classical DSET.

In the classical DSET, distance plays an important role to measure the differences
among BBAs, which is a benefit for conflict management. Many researchers dedicated much
effort to address this problem in the past few decades [31,32], especially for the familiar
distance of Jousselme et al. [33]. Subsequently, Jousselme and Maupin [34] provided a
comprehensive survey on evidential distances. Later on, Bouchard et al. [35] proved a strict
distance metric of Jousselme et al.’s distance. On the other hand, some scholars studied the
difference measure from other perspectives, such as the correlation coefficient, and other
hybrid models. For example, Jiang [36], Xiao [37], and Pan and Deng [38] researched the
correlation coefficients among BBAs. Liu [39] analyzed the conflict degree by means of
the conflict coefficient and distance among the betting commitments of BBAs. Even if the
existing methods can well manage conflict problems in the classical DSET, very few of them
have the ability to measure the difference among CBBAs in the complex plane framework of
CET, except for the conflict coefficient [28,29] and complex evidential distance [40] of CET.

In this paper, inspired by Liu’s distance among the betting commitments of BBAs [39],
a generalized betting commitment-based distance (BCD) is proposed to measure the dif-
ference among CBBAs in CET. To be specific, a complex Pignistic transformation is first
proposed for not only singletons, but also subsets of CBBAs. Next, a betting commitment
function is designed for all subsets of CBBAs on the basis of complex Pignistic transfor-
mation. Based on that, the distance among the betting commitments of CBBAs is devised
to measure the difference among CBBAs. In particular, when CBBAs reduce to the clas-
sical BBAs, the BCD degenerates into Liu’s distance. Therefore, the proposed BCD is a
generalized model to offer more capacity for measuring the difference among CBBAs.
Additionally, other properties of the BCD are analyzed, including the non-negativeness,
nondegeneracy, symmetry, and triangle inequality. It is then proven that the BCD is a
strict distance metric because it satisfies distance axioms. Furthermore, BCD is compared
with other related well-known methods to show its superiority. Besides, a basis algorithm
and its weighted extension for multi-attribute decision-making are designed based on the
newly defined BCD. Finally, these decision-making algorithms are applied to cope with the
medical diagnosis problem under the smart IoT environment to reveal its effectiveness.

The contributions are summarized as follows:
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• This is the first work to propose the complex pignistic transformation-based evidential
betting commitment distance (BCD) for the multisource information fusion of medical
diagnosis in the IoT.

• The BCD is a strict distance metric that satisfies the axioms of the nonnegativity,
nondegeneracy, symmetry, and triangle inequality, which is a generalization of the
classical evidential distance of Liu.

• A basis algorithm and its weighted extension for decision-making are designed on
the basis of the BCD, which are applied to the medical IoT to demonstrate their effec-
tiveness.

This paper is organized as follows. The preliminaries are introduced in Section 2. A
new conflict measure model is proposed in Section 3. Section 4 provides several examples
for the comparison and analysis of the proposed distance with other well-known meth-
ods. In Section 5, a basis multi-attribute decision-making algorithm and its extension are
designed; then, they are applied to address the problem of medical diagnosis. Finally,
Section 6 gives the conclusion.

2. Preliminaries
2.1. Medical IoT

A variety of publications have been presented to handle the problems of the medical
IoT. The medical IoT technologies are mainly classified into two ares: remote monitoring
and big data analysis [41].

For remote monitoring in the medical IoT, remote health checking and real-time lo-
cation service are the key mechanisms. The sensor-based devices continuously record
physiological signals with regard to the patient and then transfer the collected data to
a monitoring server. Distant health care checking can be implemented via applications
that get physiological data from patients. The collected data will be analyzed and pro-
cessed according to smart algorithms to better support decision-making. Researchers have
studied remote monitoring in the medical IoT from different perspectives. For example,
Hossain and Muhammad [42] presented a health IoT-enabled monitoring framework,
in which medical data are gathered through mobile devices and sensors and then securely
transmitted to the cloud for seamless access by medical professionals. Gómez et al. [43]
developed an architecture on the basis of an ontology to monitor health and workout
routine recommendations to patients. Abawajy and Hassan [44] presented a pervasive
patient health monitoring system infrastructure on the basis of integrated cloud computing
and IoT technologies.

For big data analysis in the medical IoT, its purpose is to investigate and offer effective
service. Due to accessing patient data both in routine clinical visits and at home, how to
manage big data must be considered in accordance with data collection, data computing,
analysis, and safety. Many researchers put forward various methods in this area. For
instance, He and Zeadally [45] discussed the security requirements of RFID authentication
schemes and presented a review of ECC-based RFID authentication schemes in terms of
performance and security. Dimitrov [46] studied the medical IoT and big data in healthcare.
Lomotey et al. [47] exploited an enhanced Petri nets service model to help for tracing
medical data generation, tracking, and detecting data compromises. Zhang [48] devised a
medical data fusion algorithm on the basis of the IoT. Dautov et al. [49] studied hierarchical
data fusion for smart healthcare.

Through a careful analysis of existing publications, it is found that there is no research
studying the data fusion problem of the medical IoT in the framework of complex evidence
theory. Therefore, this work provides an alternative promising way to model and fuse
medical data by means of complex evidence theory.

2.2. Uncertainty Modeling and Information Fusion

Multisource information fusion has received much attention in the past few years [50–52].
Because of the impacts of devices, the external environment, and communication problems,
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the collected information may be uncertain, imprecise, or even conflicting. How to handle
such kinds of uncertainty is still an open issue [53,54]. So far, various theories and their
corresponding methods have been exploited, such as the extended fuzzy probability [55],
soft sets [56–58], interval numbers [59], evidence theory [60], Z numbers [61,62], complex
distributions [63,64], complex intuitionistic fuzzy sets [65], quantum-based [66,67], and
others [68,69], as well as the consensus measure [70]. These methods were applied in
various fields, like medical diagnosis [71] and decision-making [72].

Among them, evidence theory provides a belief function to model uncertainty and
Dempster’s rule of combination for the fusion of multisource information, so that it is
effective in dealing with uncertain problems in information and has been applied in many
areas [73], including classification [74,75], decision-making [76], and evaluation [77–79].
Specifically, CET inherits the merits of DSET and has a greater ability to represent and
handle uncertainty in the fusion process, which will be introduced in the next section.

2.3. Complex Evidence Theory

The essential concepts of CET are introduced below [28,29].

Definition 1. (Frame of discernment)
Let Φ be a frame of discernment (FOD), which is composed of:

Φ = {φ1, . . . , φj, . . . , φn}, (1)

where the elements in Φ are exclusive and collective, but not empty. The power set of Φ is
expressed by:

2Φ = {∅, {φ1}, {φ2}, . . . , {φn}, {φ1, φ2}, . . . , {φ1, φ2, . . . , φi}, . . . , φ}, (2)

in which ∅ is the empty set.
If Ai ∈ 2Φ, Ai is defined as a hypothesis, also called a proposition.

Definition 2. (Complex mass function)
A complex mass function (CMF), also called a CBBA, denoted as M in Φ, is defined as a

mapping from 2Φ to C:
M : 2Φ → C (3)

satisfying:
M(∅) = 0,

M(Ai) = m(Ai)eiθ(Ai), Ai ⊆ Φ,

∑
Ai∈2Φ

M(Ai) = 1,
(4)

in which i =
√
−1, m(Ai) ∈ [0, 1] represents the magnitude of M(Ai) and θ(Ai) ∈ [−π, π]

represents a phase term.
In Equation (4),M(Ai) can also be expressed as:

M(Ai) = x + yi, Ai ⊆ Φ (5)

and:
|M(Ai)| = m(Ai) =

√
x2 + y2, (6)

in which
√

x2 + y2 ∈ [0, 1].

Note that the value of |M(Ai)| or m(Ai) represents the degree to which the evidence
supports Ai.

Definition 3. (Focal element)
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If |M(Ai)| or m(Ai) > 0, Ai is defined as a focal element.

Definition 4. (Complex Dempster’s rule of combination)
LetMh andMk be two independent CBBAs in Φ. The complex Dempster’s rule of combination

(CDRC) is defined asM =Mu ⊕Mv:

M(Ak) =


1

1−K ∑
Ai∩Ah=Ak

Mu(Ai)Mv(Ah), Ak 6= ∅,

0, Ak = ∅,
(7)

with:
K = ∑

Ai∩Ah=∅
Mu(Ai)Mv(Ah), (8)

in which Ai,Ah,Ak ∈ 2Φ; K is the conflict coefficient between Mu and Mv; |K| is used for the
conflict measure betweenMu andMv.

2.4. |K| Versus Conflict

In this section, several numerical examples are provided to study the performance of
|K| in CET for measuring the conflict. Specifically, in Examples 1 and 2, explicit explana-
tions are given about how |K| expresses the conflict.

Example 1. Consider two CBBAsM1 andM2 in FOD Φ = {φ1, φ2, φ3, φ4}:

M1 : M1({φ1, φ2}) = 0.9055ei arctan(0.1111),

M1({φ3}) = 0.1414ei arctan(−1.0000),

M1({φ4}) = 0;

M2 : M2({φ1, φ2}) = 0,

M2({φ3}) = 0.1414ei arctan(−1.0000),

M2({φ4}) = 0.9055ei arctan(0.1111).

By using Equation (8), the following is generated:

|K| = 1.0002.

From the given CBBAsM1 andM2 in Example 1, it is noticed thatM1 andM2 have
stronger support degrees of 0.9055 to hypotheses {φ1, φ2} and {φ4}, respectively. Since
the two hypotheses {φ1, φ2} and {φ4} are incompatible, meaning that high conflict exists
between M1 and M2. Hence, the value 1.0002 of |K| can effectively reflect the conflict
betweenM1 andM2 in this example.

Example 2. Consider two CBBAsM1 andM2 in FOD Φ = {φ1, φ2, φ3}:

M1 : M1({φ1}) = 0.4123ei arctan(0.2500),

M1({φ1, φ2}) = 0.4123ei arctan(−0.2500),

M1({φ1, φ2, φ3}) = 0.2;

M2 : M2({φ1}) = 0.4123ei arctan(0.2500),

M2({φ1, φ2}) = 0.4123ei arctan(−0.2500),

M2({φ1, φ2, φ3}) = 0.2.

By using Equation (8), the following is generated:

|K| = 0.
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From the given CBBAsM1 andM2 in Example 2, it is noticed thatM1 andM2 have
support degrees of 0.4123, 0.4123, and 0.2 to hypotheses {φ1}, {φ1, φ2}, and {φ1, φ2, φ3},
respectively. Therefore, the result of |K| with the value of zero reflects nicely thatM1 and
M2 have completely the same beliefs.

Although |K| reflects the conflict between CBBAs very well in the above-discussed
examples, it may not work in some certain situations. Example 3 illustrates such a case.

Example 3. Consider two CBBAsM1 andM2 in FOD Φ = {φ1, φ2, φ3, φ4}:

M1 : M1({φ1}) =
1
4

,M1({φ2}) =
1
4

,M1({φ3}) =
1
4

,M1({φ4}) =
1
4

;

M2 : M2({φ1}) =
1
4

,M2({φ2}) =
1
4

,M2({φ3}) =
1
4

,M2({φ4}) =
1
4

.

By using Equation (8), the following is generated:

|K| = 0.75.

From the given CBBAsM1 andM2 in Example 3, it can be seen thatM1 andM2 have
the same support degrees of 1

4 to hypotheses {φ1}, {φ2}, {φ3}, and {φ4}, respectively. This
means thatM1 andM2 are completely the same as each other, so that the expected value of
|K| should be zero. Therefore, the result of |K| with the value of 0.75 is counter-intuitive.

Consequently, this motivates designing a new conflict measure model for CBBAs
in CET.

3. A New Conflict Measure Model

In this section, a complex Pignistic transformation is first defined. Based on the
complex Pignistic transformation, a betting commitment function is proposed for all
subsets of CBBAs. Then, a new distance model is designed by taking advantage of the
betting commitment function. Furthermore, several corresponding examples are illustrated
in terms of betting the commitment function.

3.1. Complex Pignistic Transformation

As discussed in Section 2.3, a complex mass function in CET is introduced. It is
founded that making a decision is difficult on the basis of the complex belief function.
Hence, a complex Pignistic transformation function [80] is proposed to transform the
complex mass function to address this problem.

Definition 5. (Complex Pignistic transformation for φj)
Let M be a complex mass function on FOD Φ and Ai be a hypothesis with Ai ⊆ Φ. The

complex Pignistic transformation function for φj on Φ is defined by:

CPT(φj) = ∑
Ai⊆Φ,φj∈Ai

M(Ai)

|Ai|
, ∀φj ∈ Φ, (9)

where |Ai| denotes the number of elements in Ai.

In accordance with Definition 5, a complex Pignistic transformation function for Ai
on 2Φ is defined below.

Definition 6. (Complex Pignistic transformation for Ai)
A complex Pignistic transformation function for Ai on 2Φ is defined as:

CPT(Ai) = ∑
φj∈Ai

CPT(φj). (10)
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Corollary 1. IfM is a probability distribution P, then CPT is equal to P.

Then, Equations (9) and (10) can be integrated as in Definition 7.

Definition 7. (Complex Pignistic transformation)
Let MΦ be a complex mass function on FOD Φ. The complex Pignistic transformation

function is defined by:

CPT(Ah) = ∑
Ai ,Ah⊆Φ

M(Ai)
|Ai ∩Ah|
|Ah|

, (11)

where |Ai ∩Ah| represents the number of elements in the intersection Ai ∩Ah; |Ah| denotes the
number of elements in Ah.

Based on Definition 7, a betting commitment function is defined to Ah (Ah ⊆ Φ).

Definition 8. (Betting commitment)
The betting commitment to Ah on FOD Φ is defined by:

BetC(Ah) = |CPT(Ah)|, ∀Ah ⊆ Φ, (12)

where | · | denotes the absolute value function.

3.2. Betting Commitment-Based Distance Versus Conflict

In the following Examples 4–6, explicit explanations are given about how the betting
commitment to express the conflict.

Example 4. Consider two CBBAsM1 andM2 defined in Example 1.

By using Equation (12), the following is generated:

BetCM1({φ1, φ2}) = 0.9055,

BetCM1({φ3}) = 0.1414,

BetCM1({φ4}) = 0.0000;

and

BetCM2({φ1, φ2}) = 0.0000,

BetCM2({φ3}) = 0.1414,

BetCM2({φ4}) = 0.9055.

Through calculating the absolute value of the difference between BetCM1 and BetCM2

in Example 4, we get:

|BetCM1({φ1, φ2})− BetCM2({φ1, φ2})| = 0.9055,

|BetCM1({φ3})− BetCM2({φ3})| = 0.0000,

|BetCM1({φ4})− BetCM2({φ4})| = 0.9055.

On the other hand, by using Equation (8), the following is generated:

|K| = 1.0002,

which indicates the significant discrepancy between CBBAsM1 andM2 that satisfies the
intuitive result.
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In this context, |BetCM1({φ1, φ2}) − BetCM2({φ1, φ2})| and
|BetCM1({φ4})− BetCM2({φ4})| have the maximal value of 0.9055, which also reflects
the discrepancy between CBBAsM1 andM2 significantly.

Example 5. Consider two CBBAsM1 andM2 defined in Example 2.

By using Equation (12), the following is generated:

BetCM1({φ1, φ2}) = 0.6685,

BetCM1({φ3}) = 0.9333,

BetCM1({φ4}) = 1.0000;

and

BetCM2({φ1, φ2}) = 0.6685,

BetCM2({φ3}) = 0.9333,

BetCM2({φ4}) = 1.0000.

Through calculating the absolute value of the difference between BetCM1 and BetCM2

in Example 4, we get:

|BetCM1({φ1, φ2})− BetCM2({φ1, φ2})| = 0,

|BetCM1({φ3})− BetCM2({φ3})| = 0,

|BetCM1({φ4})− BetCM2({φ4})| = 0.

On the other hand, by using Equation (8), the following is generated:

|K| = 0,

which indicates that CBBAsM1 andM2 have completely the same beliefs satisfying the
intuitive result.

In this context, |BetCM1({φ1, φ2})− BetCM2({φ1, φ2})|, |BetCM1({φ3})− BetCM2({φ3})|,
and |BetCM1({φ4})− BetCM2({φ4})| have the minimal value of zero, which also reflects
well that CBBAsM1 andM2 have completely the same beliefs.

Example 6. Consider two CBBAsM1 andM2 defined in Example 3.

By using Equation (12), the following is generated:

BetCM1({φ1}) = 0.25,

BetCM1({φ2}) = 0.25,

BetCM1({φ3}) = 0.25,

BetCM1({φ4}) = 0.25;

and:

BetCM2({φ1}) = 0.25,

BetCM2({φ2}) = 0.25,

BetCM2({φ3}) = 0.25,

BetCM2({φ4}) = 0.25.
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Through calculating the absolute value of the difference between BetCM1 and BetCM2

in Example 6, we get:

|BetCM1({φ1, φ2})− BetCM2({φ1, φ2})| = 0,

|BetCM1({φ3})− BetCM2({φ3})| = 0,

|BetCM1({φ4})− BetCM2({φ4})| = 0.

On the other hand, by using Equation (8), the following is generated:

|K| = 0.75,

which indicates the significant discrepancy between CBBAsM1 andM2.
However, as discussed in Section 2.4, this result of |K| in Example 6 is count-intuitive,

since all the belief values of the focal elements ofM1 andM2 are exactly the same.
Nevertheless, the values of |BetCM1({φ1, φ2}) − BetCM2({φ1, φ2})|, |BetCM1({φ3})

−BetCM2({φ3})|, and |BetCM1({φ4}) − BetCM2({φ4})| are equal to zero, which reflects
that there is no discrepancy between CBBAsM1 andM2. Therefore, this distance measure
among the betting commitments of CBBAs satisfies our expectation.

Consequently, from Examples 4–6, it is learned that the distance model based on the
betting commitment has a better performance for measuring conflict comparing with the
classical |K| in CET. Taking this into consideration, a new distance measure is designed on
the basis of the betting commitment function, which is defined below.

Definition 9. (Betting commitment-based distance of CBBAs)
LetMu andMv be two CBBAs on FOD Φ and Ai be a hypothesis with Ai ⊆ Φ. The distance

between betting commitments of CBBAs, called BCD, is defined by:

dBCD(Mu,Mv) = max
Ai⊆Φ

{|BetCMu(Ai)− BetCMv(Ai)|}, (13)

where | · | denotes the absolute value function.

In Equation (13), the maximal differences among the betting commitments of CBBAs
for all subsets are taken into account. The reason is that considering the conflict measure in
Example 4, min or mean functions are not adequate to distinguish the difference among
CBBAs compared with the max function.

In particular, when CBBAs Mu and Mv reduce to the classical BBAs mu and mv,
Mu = mu andMv = mv. Since:

dBCD(Mu,Mv) = max
Ai⊆Φ

{|BetCMu(Ai)− BetCMv(Ai)|}

= max
Ai⊆Φ

{||CPTMu(Ai)| − |CPTMv(Ai)||}

= max
Ai⊆Φ

{∣∣∣∣∣
∣∣∣∣∣ ∑
Ai ,Ah⊆Φ

M(Ai)
|Ai ∩Ah|
|Ah|

∣∣∣∣∣−
∣∣∣∣∣ ∑
Ai ,Ah⊆Φ

M(Ai)
|Ai ∩Ah|
|Ah|

∣∣∣∣∣
∣∣∣∣∣
}

,

we have:

dBCD(Mu,Mv) = max
Ai⊆Φ

{∣∣∣∣∣
∣∣∣∣∣ ∑
Ai ,Ah⊆Φ

m(Ai)
|Ai ∩Ah|
|Ah|

∣∣∣∣∣−
∣∣∣∣∣ ∑
Ai ,Ah⊆Φ

m(Ai)
|Ai ∩Ah|
|Ah|

∣∣∣∣∣
∣∣∣∣∣
}

= max
Ai⊆Φ

{∣∣∣∣∣ ∑
Ai ,Ah⊆Φ

m(Ai)
|Ai ∩Ah|
|Ah|

− ∑
Ai ,Ah⊆Φ

m(Ai)
|Ai ∩Ah|
|Ah|

∣∣∣∣∣
}

.

(14)



Sensors 2021, 21, 840 10 of 21

In this case thatMu = mu andMv = mv, Equation (14) can be expressed as:

dBCD(Mu,Mv) = max
Ai⊆Φ

{|BetCmu(Ai)− BetCmv(Ai)|}, (15)

which is obviously the same as Liu’s distance measure di f BetP [39]. This means that when
the CBBAs become the classical BBAs, the proposed BCD dBCD degenerates into Liu’s
distance measure di f BetP.

Theorem 1. The BCD dBCD is a generalized model of the traditional distance measure of Liu’s
di f BetP [39].

Theorem 2. The BCD dBCD is a strict distance metric.

Property 1. Consider three arbitrary CBBAs: Mu, Mv, and Mw. BCD dBCD holds the follow-
ing properties:

P1.1 Nonnegativity: dBCD(Mu,Mv) ≥ 0.
P1.2 Nondegeneracy: dBCD(Mu,Mv) = 0 if and only ifMu =Mv.
P1.3 Symmetry: dBCD(Mu,Mv) = dBCD(Mv,Mu).
P1.4 Triangle inequality: dBCD(Mu,Mw) ≤ dBCD(Mu,Mv) + dBCD(Mv,Mw).

Proof. (1) Consider two arbitrary CBBAs: Mu and Mv. According to Equation (13), it is
obvious that dBCD(Mu,Mv) ≥ 0, because of having the absolute value function.

(2) Consider two arbitrary CBBAs: Mu =Mv; we get:

dBCD(Mu,Mv) = max
Ai⊆Φ

{|BetCMu(Ai)− BetCMu(Ai)|} = 0.

Next, consider dBCD(Mu,Mv) = 0, then:

max
Ai⊆Φ

{|BetCMu(Ai)− BetCMu(Ai)|} = 0.

Thus, for ∀Ai ⊆ Φ, we obtain:

Mu(Ai) =Mv(Ai).

Hence, it is proven that dBCD(Mu,Mv) = 0⇐⇒Mu =Mv.
(3) Consider two arbitrary CBBAsMu andMv; we have dBCD(Mv,Mu):

dBCD(Mu,Mv) = max
Ai⊆Φ

{|BetCMu(Ai)− BetCMu(Ai)|}

Consider dBCD(Mv,Mu); we have:

dBCD(Mv,Mu) = max
Ai⊆Φ

{|BetCMv(Ai)− BetCMu(Ai)|}

Thus, we obtain that:

dBCD(Mu,Mv) = dBCD(Mv,Mu),

which proves the property of symmetry.
(4) Consider three arbitrary CBBAs: Mu,Mv, andMw.
From the triangle inequality for real numbers, we have:

|BetCMu (Ai)− BetCMw (Ai)| ≤ |BetCMu (Ai)− BetCMv (Ai)|+ |BetCMv (Ai)− BetCMw (Ai)|,
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Through the nature of the max operation, we obtained that:

|BetCMu(Ai)− BetCMv(Ai)| ≤ max
Ai⊆Φ

{|BetCMu(Ai)− BetCMv(Ai)|},

and:

|BetCMv(Ai)− BetCMw(Ai)| ≤ max
Ai⊆Φ

{|BetCMv(Ai)− BetCMw(Ai)|}.

Thus,

|BetCMu(Ai)− BetCMv(Ai)|+ |BetCMv(Ai)− BetCMw(Ai)| ≤
max
Ai⊆Φ

{|BetCMu(Ai)− BetCMv(Ai)|}+ max
Ai⊆Φ

{|BetCMv(Ai)− BetCMw(Ai)|}.

Therefore,

dBCD(Mu,Mw) ≤ dBCD(Mu,Mv) + dBCD(Mv,Mw).

4. Comparisons and Analysis

In this section, the proposed conflict measure BCD is compared with other well-known
methods of |K| [28,29], dCBBA [40], and di f BetP [39]. In addition, several examples are
provided to illustrate their performance in terms of the conflict measure.

Example 7. Consider two CBBAs: M1 andM2, in Φ = {φ1, φ2, φ3, . . . , φ20}:

M1 : M1({φ2, φ3, φ4}) =
√

0.52 + α2ei arctan( α
0.5 ),M1({φ7}) = 0.05,

M1(Φ) = 0.1,M1(Ai) =
√

0.82 + α2ei arctan(− α
0.8 );

M2 : M2({φ1, φ2, φ3, φ4, φ5}) = 1.

In Example 7, hypothesisAi ofM1 changes from {φ1} to Φ as in Table 1. To be specific,
M1 has four focal elements: M1({φ2, φ3, φ4}),M1({φ7}),M1(Φ), andM1(Ai). According
to Equation (6) in Definition 2,

√
0.82 + α2 must be less than or equal to one. Therefore, α is

set as 0, 0.1, 0.3, to 0.5 here, and the values ofM1({φ2, φ3, φ4}) andM1(Ai) change with α.
M2 has one focal element: M2({A, B, C, D, E}) = 1. Through utilizing |K|, dCBBA, di f BetP,
and the proposed dBCD, their corresponding conflict measures between CBBAsM1 andM2
are depicted in Figure 1.
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Table 1. The variation in Ai.

i Ai

1 {φ1}
2 {φ1, φ2}
3 {φ1, φ2, φ3}
4 {φ1, φ2, φ3, φ4}
5 {φ1, φ2, φ3, φ4, φ5}
6 {φ1, φ2, φ3, φ4, φ5, φ6}
7 {φ1, φ2, φ3, φ4, φ5, φ6, φ7}
8 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8}
9 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9}
10 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10}
11 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11}
12 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12}
13 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13}
14 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14}
15 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15}
16 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16}
17 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16, φ17}
18 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16, φ17, φ18}
19 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16, φ17, φ18, φ19}
20 {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11, φ12, φ13, φ14, φ15, φ16, φ17, φ18, φ19, φ20}

When α = 0, this means that CBBA M1 reduces to a classical BBA. From Figure 1a,
it is clear that dBCD has exactly the same measure as di f BetP; both of them have the
same measure trends as dCBBA. In particular, as the hypothesis Ai of M1 increases from
{φ1} to {φ1, φ2, φ3, φ4, φ5}, the measure values of dCBBA, di f BetP, and dBCD go down.
When Ai = {φ1, φ2, φ3, φ4, φ5}, the conflict measures of dCBBA, di f BetP, and dBCD achieve
their minimal value. Subsequently, as hypothesis Ai adds from {φ1, φ2, φ3, φ4, φ5} to
Φ, the conflict measures of dCBBA, di f BetP and dBCD get larger and larger. However,
the conflict measure of |K| remains the same regardless of the change of hypothesis Ai.

On the other hand, Figure 1b–d depicts how the conflict measures of different methods
change with the variations of α = 0.1, α = 0.3, and α = 0.5, respectively. It is obvious that
no matter whether α = 0.1, α = 0.3, or α = 0.5, dCBBA and dBCD can effectively measure
the conflict between CBBAs M1 and M2. Note that the conflict value of dCBBA is always
larger than that of dBCD. The reason is that dBCD selects the maximal value of the difference
between betting commitments to all subsets, but dCBBA is a kind of accumulating distance
measure. Nevertheless, di f BetP cannot measure the conflict among CBBAs, while the
conflict measure of |K| also remains the same despite the change of Ai.

It can then be concluded that the methods of dCBBA and dBCD have better performance
to measure the conflict among CBBAs than the di f BetP and |K|methods.
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(a) α = 0.
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(b) α = 0.1.
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(c) α = 0.3.
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(d) α = 0.5.

Figure 1. The conflict measures in Example 7.

Example 8. Consider two CBBAsM1 andM2 in FOD Φ = {φ1, φ2, φ3, φ4, φ5}:

Case 1: M
C1
1 : M

C1
1 ({φ1, φ2}) = 0.8062ei arctan(0.1250),

M
C1
1 ({φ3}) = 0.1414ei arctan(−1.0000),

M
C1
1 ({φ4}) = 0.1;

M
C1
2 : M

C1
2 ({φ1, φ2}) = 0.1,

M
C1
2 ({φ3}) = 0.1414ei arctan(−1.0000),

M
C1
2 ({φ4}) = 0.8062ei arctan(0.1250).

Case 2: M
C2
1 : M

C2
1 ({φ1, φ2, φ4}) = 0.8062ei arctan(0.1250),

M
C2
1 ({φ3}) = 0.1414ei arctan(−1.0000),

M
C2
1 ({φ4}) = 0.1;

M
C2
2 : M

C2
2 ({φ1, φ2}) = 0.1,

M
C2
2 ({φ3}) = 0.1414ei arctan(−1.0000),

M
C2
2 ({φ4}) = 0.8062ei arctan(0.1250).

Case 3: M
C3
1 : M

C3
1 ({φ1}) = 0.8062ei arctan(0.1250),

M
C3
1 ({φ2, φ3, φ4, φ5}) = 0.2236ei arctan(−0.5000);

M
C3
2 : M

C3
2 (Φ) = 1.
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In Example 8, comparing the CBBAs of Case 1 with the CBBAs of Case 2 and Case 3, it
is noticed thatMC1

1 andMC1
2 are more conflicting with regard to their corresponding belief

values thanMC2
1 andMC1

2 , orMC3
1 andMC3

2 . This is becauseMC1
1 has a stronger belief value

of 0.8062 to support {φ1, φ2}, butMC1
2 has a stronger belief value of 0.8062 to support {φ4}.

Since {φ1, φ2} and {φ4} are incompatible, in accordance with our expectation, the conflict
measure betweenMC1

1 andMC1
2 is supposed to be larger than that ofMC2

1 andMC2
2 , orMC3

1
andMC3

2 .
By utilizing |K|, dCBBA, and dBCD, the three cases corresponding to the conflict mea-

sures among CBBAs: MC1
1 and MC1

2 , MC2
1 and MC2

2 , and MC3
1 and MC3

2 are measured as
described in Table 2, respectively. Through careful analysis, the following interesting results
are found:

Table 2. Comparison of |K|, dCBBA, and dBCD in terms of the three cases of the complex basis belief
assignments (CBBAs) in Example 8.

Methods Conflict Measures

Case 1: (MC1
1 ,MC1

2 ) Case 2: (MC2
1 ,MC2

2 ) Case 3: (MC3
1 ,MC3

2 )

|K| 0.8400 0.2640 0.0000
dCBBA 0.7071 0.5802 0.7242
dBCD 0.7062 0.4380 0.6062

R 1: For |K|, it can be seen that it can measure well the conflict between CBBAs in
Case 1 and Case 2 with values of 0.84 and 0.264, respectively. However, |K| cannot
distinguish the difference among the CBBAs in Case 3 with a measure value of zero.

R 2: For dCBBA, it is obvious that dCBBA can measure the conflicts among the CBBAs in
Case 1, Case 2, and Case 3 with values of 0.7071, 0.5802, and 0.7242, respectively.
Comparing the conflict value of 0.7071 betweenMC1

1 andMC1
2 and 0.7242 between

M
C3
1 andMC3

2 , it is noticed that the result of dCBBA(M
C3
1 ,MC3

2 ) > dCBBA(M
C1
1 ,MC1

2 )
is not up to our expectations.

R 3: For dBCD, it is easy to see that dBCD can well measure the conflicts among the CBBAs
in all three cases with values of 0.7062, 0.4380, and 0.6062, respectively. Comparing
the conflict value of 0.7062 of dBCD(M

C1
1 ,MC1

2 ) with 0.6062 of dBCD(M
C3
1 ,MC3

2 ), it is
obtained that dBCD(M

C3
1 ,MC3

2 ) < dBCD(M
C1
1 ,MC1

2 ). This result satisfies
our expectation.

R 4: It is concluded that the BCD dBCD is a better conflict measure compared with the
methods of |K| and dCBBA to judge the contradiction among CBBAs.

5. Algorithm and Application

Multi-attribute decision-making has received much attention [81–83]. Because of the
complexity of various applications, it is still an open issue to handle uncertainty in this
field. In this section, a basis algorithm for multi-attribute decision-making is first designed
based on the newly defined BCD. After that, the proposed basis algorithm is applied to deal
with a medical diagnosis decision-making problem to show its feasibility. Furthermore,
this basis algorithm is extended to a weighted scheme to better fit real applications by
taking into consideration different weights with regard to multiple attributes. Finally, both
the basis and weighted algorithms are compared with well-known related methods to
demonstrate their effectiveness.

5.1. Algorithm for Decision-Making

Problem statement: Let X be a set of attributes: {a1, ..., aκ , ..., aη} and P be a set of pat-
terns: {p1, ..., pj, ..., pg} modeled by CBBA pj = {〈aκ ,Maκ

pj ({y}),
M

aκ
pj ({n}),M

aκ
pj ({y, n})〉|aκ ∈ X}. Consider a set of samples: S = {s1, ..., sh, ..., sl} mod-
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eled by CBBA sh = {〈aκ ,Maκ
sh ({y}),M

aκ
sh ({n}),M

aκ
sh ({y, n})〉|aκ ∈ X}. This algorithm for

multi-attribute decision-making sorts the samples according to the given patterns.

Step 1: The BCD dBCD is used to calculate the distance between sh and pj:

dBCD(Msh ,Mpj ) =
1
η

η

∑
κ=1

dBCD(M
aκ
sh

,Maκ
pj
)

=
1
η

η

∑
κ=1

max
Ai⊆Φ

{∣∣∣∣BetCMaκ
sh
(Ai)− BetCMaκ

pj
(Ai)

∣∣∣∣}.

(16)

Step 2: The minimal distance betweenMsh andMpj is elected:

dBCD(Msh ,Mpθ
) = min

1≤j≤g
dBCD(Msh ,Mpj). (17)

Step 3: sh is sorted into pattern pθ by:

θ = arg min
1≤j≤m

{dBCD(Msh ,Mpj)},

sh ← pθ .
(18)

The corresponding pseudo-code of multi-attribute decision-making is described in
Algorithm 1.

Algorithm 1: Multi-attribute decision-making.

Input: P = {p1, ..., pj, ..., pg}; S = {s1, ..., sh, ..., sl};
Output: Classification of S;

1 for h = 1; h ≤ l do
2 /* Step 1 */
3 for j = 1; j ≤ g do
4 Calculate dBCD(Msh ,Mpj) via Equation (16);
5 end
6 /* Step 2 */
7 Acquire the minimal dBCD(MSk ,MPθ

) via Equation (17);
8 /* Step 3 */
9 θ = arg min1≤j≤m{dBCD(Msh ,Mpj)};

10 Sort sh into pθ by Equation (18);
11 end

5.2. Application in Medical Diagnosis Under the Smart IoT Environment

Background: Consider a medical diagnosis decision-making problem under the smart
IoT environment with three disease types, each of which has three attributes. Specifically,
the given disease types P = {p1, p2, p3} and to be determined s1 in S in terms of three
attributes {x1, x2, x3} are modeled by the CBBAs from the sensor data under the smart IoT
environment, shown in Tables 3 and 4, respectively. Then, we need to figure out which
disease s1 is most likely to suffer from {p1, p2, p3}.
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Table 3. The given patterns with multiple attributes modeled as CBBAs in the application.

P X CBBAs
M({y}) M({n}) M({y, n})

p1

a1 0.9901ei arctan(0.0101) 0 0.0141ei arctan(−1.0000)

a2 0.8062ei arctan(0.1250) 0 0.2236ei arctan(−0.5000)

a3 0.7071ei arctan(0.1429) 0.1118ei arctan(−0.5000) 0.2062ei arctan(−0.2500)

p2

a1 0.9055ei arctan(0.1111) 0.1414ei arctan(−1.0000) 0
a2 0.9901ei arctan(0.0101) 0 0.0141ei arctan(−1.0000)

a3 0.9055ei arctan(0.1111) 0 0.1414ei arctan(−1.0000)

p3

a1 0.6083ei arctan(0.1667) 0.2062ei arctan(−0.2500) 0.2062ei arctan(−0.2500)

a2 0.8062ei arctan(0.1250) 0 0.2236ei arctan(−0.5000)

a3 0.9901ei arctan(0.0101) 0 0.0141ei arctan(−1.0000)

Table 4. To be determined sample with multiple attributes modeled as CBBAs in the application.

S X CBBAs
M({y}) M({n}) M({y, n})

s1

a1 0.5099ei arctan(0.2000) 0.3041ei arctan(−0.1667) 0.2062ei arctan(−0.2500)

a2 0.6083ei arctan(0.1667) 0.2062ei arctan(−0.2500) 0.2062ei arctan(−0.2500)

a3 0.8062ei arctan(0.1250) 0.1118ei arctan(−0.5000) 0.1118ei arctan(−0.5000)

The implementation of Algorithm 1 is illustrated as follows:

Step 1: The BCDs between s1 and p1, s1 and p2, and s1 and p3 are calculated:

dBCD(Ms1 ,Mp1) = 0.2157,

dBCD(Ms1 ,Mp2) = 0.2337,

dBCD(Ms1 ,Mp3) = 0.1525.

Step 2: The minimal BCD is dBCD(Ms1 ,Mp3):

dBCD(Ms1 ,Mp3) = 0.1525.

Step 3: s1 is determined to be the most likely to suffer from the disease type of p3:

θ = 3;

s1 ← p3.

The distance measure through the proposed method is shown in Table 5 and
Figure 2, which has the ranking: dBCD(Ms1 ,Mp3) < dBCD(Ms1 ,Mp1) < dBCD(Ms1 ,Mp2).
Hence, sample s1 is sorted into pattern p3, which indicates that s1 is most likely to suffer
from the disease type of p3.
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Figure 2. Comparison of different methods in the application.

Table 5. The measures generated by different methods in the application.

Methods
Measures

(Ms1 ,Mp1) (Ms1 ,Mp2) (Ms1 ,Mp3)

dBCD 0.2157 0.2337 0.1525
dw

BCD 0.2065 0.2303 0.1551
dCBBA 0.2256 0.2436 0.1526
dw

CBBA 0.2165 0.2400 0.1553
K̂1 0.0907 0.0539 0.0249
K̂2 0.2458 0.2941 0.1838
K̂3 0.0869 0.0531 0.0255
K̂4 0.2317 0.2906 0.1872

5.3. Extension and Comparison

In Section 5.2, a medical diagnosis decision-making algorithm on the basis of the
uniform scheme of the BCD is studied. In this section, taking into account that various
attributes may have different weights in accordance with specific applications, the basis
algorithm is extended, denoted as dw

BCD:

dw
BCD(MSk ,MPj ) =

n

∑
i=1

widBCD(M
aκ
sh

,Maκ
pj
)

=
n

∑
i=1

wi max
Ai⊆Φ

{∣∣∣∣BetCMaκ
sh
(Ai)− BetCMaκ

pj
(Ai)

∣∣∣∣},
(19)

where ∑n
i=1 wi = 1.

It is worth noting that in Equation (19), wi can be determined according to specific ap-
plications, such as subjective weights provided by experts and objective weights calculated
based on data-driven methods.

In order to validate the effectiveness of the proposed methods dBCD and dw
BCD, both

of them are compared with dCBBA and dw
CBBA of Xiao’s method [28,29] and K̂1 = 1− K1,

K̂2 = 1− K2, K̂3 = 1− K3, and K̂4 = 1− K4 of Garg and Rani’s method [30]. In this
application, the weight wi is set as [0.3, 0.35, 0.35, 0.35] according to [30]. By implementing
dBCD, dw

BCD, dCBBA, dw
CBBA, K̂1, K̂2, K̂3, and K̂4, the results are described in Tables 5 and 6

and Figure 2.
To be specific, for dw

BCD, Tables 5 and 6 show that dw
BCD(MS,MP1) = 0.2065,

dw
BCD(MS,MP2) = 0.2303, and dw

BCD(MS,MP3) = 0.1551, such that
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dw
BCD(MS,MP3) < dw

BCD(MS,MP1) < dw
BCD(MS,MP2). This result also means that s1 is

sorted into pattern p3, and it is most likely to suffer from the disease type of p3.
On the other hand, for dCBBA and dw

CBBA, it can be seen that
dCBBA(MS,MP3) = 0.1526 < dCBBA(MS,MP1) = 0.2256 < dCBBA(MS,MP2) = 0.2436;
dw

CBBA(MS,MP3) = 0.1553 < dw
CBBA(MS,MP1) = 0.2165 < dw

CBBA(MS,MP2) = 0.2400.
Hence, it is learned that both of the methods dCBBA and dw

CBBA sort s1 as pattern p3. Besides,
for K̂1, K̂2, K̂3, and K̂4, it is obvious that
K̂1(MS,MP3) = 0.0249 < K̂1(MS,MP2) = 0.0539 < K̂1(MS,MP1) = 0.0907;
K̂2(MS,MP3) = 0.1838 < K̂2(MS,MP1) = 0.2458 < K̂2(MS,MP2) = 0.2941;
K̂3(MS,MP3) = 0.0255 < K̂3(MS,MP2) = 0.0531 < K̂3(MS,MP1) = 0.0869;
K̂4(MS,MP3) = 0.1872 < K̂4(MS,MP1) = 0.2317 < K̂4(MS,MP2) = 0.2906. Although
K̂2 has a different ranking in terms of (MS,MP1), (MS,MP2), and (MS,MP3) with other
methods, its minimal measure is also regarded as K̂2(MS,MP3). Therefore, the methods of
K̂1, K̂2, K̂3, and K̂4 also sort s1 as pattern p3.

Table 6. The ranking and sorting obtained through different methods in the application.

Methods Rankings Sort

dBCD dBCD(Ms1 ,Mp3) < dBCD(Ms1 ,Mp1) < dBCD(Ms1 ,Mp2) p3

dw
BCD dw

BCD(Ms1 ,Mp3) < dw
BCD(Ms1 ,Mp1) < dw

BCD(Ms1 ,Mp2) p3

dCBBA dCBBA(Ms1 ,Mp3) < dCBBA(Ms1 ,Mp1) < dCBBA(Ms1 ,Mp2) p3

dw
CBBA dw

CBBA(Ms1 ,Mp3) < dw
CBBA(Ms1 ,Mp1) < dw

CBBA(Ms1 ,Mp2) p3

K̂1 K̂1(Ms1 ,Mp3) < K̂1(Ms1 ,Mp2) < K̂1(Ms1 ,Mp1) p3

K̂2 K̂2(Ms1 ,Mp3) < K̂2(Ms1 ,Mp1) < K̂2(Ms1 ,Mp2) p3

K̂3 K̂3(Ms1 ,Mp3) < K̂3(Ms1 ,Mp2) < K̂3(Ms1 ,Mp1) p3

K̂4 K̂4(Ms1 ,Mp3) < K̂4(Ms1 ,Mp1) < K̂4(Ms1 ,Mp2) p3

In summary, the proposed dBCD- and dw
BCD-based medical diagnosis decision-making

algorithms are as effective as Xiao’s [28,29] and Garg and Rani’s methods [30] to address
the medical diagnosis decision-making problem.

On the other hand, in this section, it simply adopts the weight from [30]. As discussed
before, the weight can be generated with regard to specific applications: experts’ subjective
weights and objective weights calculated based on collected data. For instance, for a kind
of disease, it may have multiple attributes, each of which may have different weights. In
this scenario, this weighted scheme provides a better applicability.

6. Conclusions

In this paper, a generalized betting commitment-based distance (BCD) is proposed
to measure the difference among CBBAs in the complex plane framework of CET. Ad-
ditionally, the defined BCD is analyzed, which has the properties of the nonnegativity,
nondegeneracy, symmetry, and triangle inequality. We then prove that the BCD meets
the distance axioms to be a strict distance metric. After that, the superiority of BCD is
demonstrated through a comparison with other well-known methods. Besides, a basis
and its extensional BCD-based multi-attribute decision-making algorithms are designed
and then adopted to address a medical diagnosis problem under the smart IoT environment
to reveal their effectiveness.

In summary, this is the first work to study a betting commitment-based distance
between CBBAs in CET. Furthermore, the BCD is a generalized model of the traditional
distance among the betting commitments of BBAs. In particular, when CBBAs reduce to the
classical BBAs, the BCD degenerates into Liu’s distance among the betting commitments of
BBAs. Therefore, the BCD offers a promising way to measure differences among CBBAs in
CET, as well as handling medical diagnosis problems under the smart IoT environment.
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