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Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas.
Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear.
However, inflammation has been considered as a central player in the development of
AAA. In the past few decades, studies demonstrated a host of inflammatory cells,
including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc.
infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell
contacts and cytokine or protease secretions, special structures like inflammasomes and
neutrophil extracellular traps have been investigated to explore their functions in aneurysm
formation. The above-mentioned inflammatory cells and associated structures may initiate
and promote AAA expansion. Understanding their impacts and interaction networks
formation is meaningful to develop new strategies of screening and pharmacological
interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these
inflammatory cells in AAA pathogenesis.

Keywords: abdominal aortic aneurysm, inflammation, T cells, macrophages, inflammasome, neutrophil
extracellular traps
INTRODUCTION

Abdominal aortic aneurysm (AAA) is one of the most common types of true aneurysms in the
world. AAA is defined when the maximal abdominal aortic diameter reaches 30 mm or 1.5 times of
the normal ones. The estimated AAA prevalence in men aged over 60 years is about 4–8%, and the
prevalence in women gets 0.5–1.5% or so (1). The major risk factors of AAA include cigarette
smoking, aging, male gender and corresponding family history (2, 3). The most common cause of
death for AAA patients is aneurysm rupture, which accounts for an approximately 60% of
mortality (4).

In the past decades, AAA has been regarded as a result of long-term atherosclerotic lesions,
which shares the same pathogenesis with other cardiovascular diseases (CVD), due to similar risk
factors such as male sex, tobacco consumption, family history, hyperlipidemia and elder population
(5, 6). However, diabetes mellitus (DM), a common comorbidity of atherosclerotic disease, is
conversely related to AAA development. Patients with DM have a reduction of morbidity by nearly
30 percent (7). Besides, in contrary to the infrarenal segment of aorta, which is the most commonly
involved part of AAA, the external iliac artery is often aneurysm-resistant, but it is strongly
org February 2021 | Volume 11 | Article 6091611
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vulnerable to atherosclerotic occlusive disease (8). Another
phenomenon is that the lipid profiles of patients with AAA are
not always abnormal like other CVD patients. These findings
indicate that the atherosclerotic lesion may be independent of
AAA formation.

Recent studies suggest the pathophysiology of AAA is a
multifactorial process consisting of inflammation responses,
matrix metalloproteinase (MMP) activation, oxidative stress,
intraluminal thrombus, smooth muscle apoptosis and
extracellular matrix (ECM) degeneration (9–11). The proteases
secreted by inflammatory cells can induce degradation of ECM. In
the meanwhile, due to destruction of ECM structure and loss of
resistance of tunica media, soluble blood components like
inflammatory cells are transferred and accumulated in tunica
media through the highly vascularized adventitia, resulting in
infiltration of inflammatory cells into the vascular media. These
processes together with platelet accumulation and coagulation
system activation promote intraluminal thrombosis, and
subsequently causes aortic dilation and increased vulnerability to
AAA rupture (12). Intraluminal thrombosis is capable to create an
inflammatory microenvironment containing neutrophils,
cytokines, proteases, and reactive oxygen species, and thereby
decrease aortic wall strength. These phenomena indicate that
inflammatory cells are in the central position of the whole
process. This review is an update of recent advances of
inflammatory cell-related mechanisms during AAA development.
INFLAMMATORY MICROENVIRONMENT

The aortic wall can be generally divided into three layers: tunica
adventitia, tunica media and tunica intima, of which tunica
adventitia is fully vascularized and permit leukocyte diapedesis.
The aortic wall inflammation is characterized as a multicellular-
participating process including mononuclear cell infiltration,
immunoglobulin (Ig) secretion and cytokine production,
suggesting that both innate and adaptive immune responses
are involved (13). The histological specimen of human aortic
aneurysm tissue reveals that there were a variety of inflammatory
cells gathering in the aortic wall. Recent studies showed that
perivascular adipose tissue (PVAT) played an essential role in the
process of in leukocyte infiltration. When the vascular damage
initiates, PVAT increases its volume and then upregulates the
expression of inflammatory factors such as resistin, leptin,
cytokines and chemokines (14), which induce infiltration of
inflammatory cells, including neutrophils, macrophages,
natural killer cells (NK cells), dendritic cells (DCs), T and B
lymphocytes and mast cells. All these inflammatory cells are
implicated in the formation of AAA (13), and the interactions
among them formed the inflammatory microenvironment of
aortic walls. For example, cytokines secreted by T cells are
essential for macrophage activation, while DCs and
macrophages can present antigens to T cells to stimulating
primary T cell responses (15). Decreasing the activity of
inflammatory cells may be a therapeutic strategy to treat non-
ruptured AAAs. Daphnetin was recently proved to be eligible to
Frontiers in Immunology | www.frontiersin.org 2
suppress AAA generated with elastase by reducing the
infiltration and accumulation of inflammatory cells such as
macrophages, T cells and B cells (16). In addition, suppressing
the infiltration of CD11b+ macrophage and CD4+ T cell with
antagonism of toll-like receptor 2 significantly ameliorated
CaCl2-induced aneurysms (17). The fact that animals can
benefit from inhibitors of inflammatory cells independent of
models proved the central role of these cells in pathogenesis
of AAA.
INNATE IMMUNE CELLS

Macrophages
There are generally two origins of macrophages involved in the
pathogenesis of AAA: tissue-resident macrophages arising
from embryonic precursors, and monocyte-differentiated
macrophages from peripheral blood (18). Single-cell RNA
sequencing has revealed markedly expansion and activation of
aortic resident macrophages, blood-derived monocytes and
inflammatory macrophages in the samples of elastase-induced
AAAmodels (19). Tissue-resident macrophages are self-renewed
independently of bone marrow activity and can continuously
migrate to peripheral tissues. However, the circulating
monocytes are the major origin of macrophages gathering in
aortic walls (20).

Circulating monocytes originating from the bone marrow
play a critical role in encoding antimicrobial and phagocytosis-
related proteins (21). When the local environment undergoes
inflammatory changes, blood monocytes can be recruited to the
tissue and differentiated into macrophages. In response to
different inflammatory stimuli, blood monocytes migrate to the
tissue and differentiate into distinct macrophages subgroups,
including classically activated macrophages (M1 macrophages)
and alternatively activated macrophages (M2 macrophages) (22).
This process is termed as macrophage polarization. Interestingly,
these two subgroups of macrophages serve almost opposite roles
in the pathogenesis of AAA.

M1 macrophages are preferentially located in the tunica
adventitia of the aortic wall (20). They can be activated by the
stimuli like lipopolysaccharide (LPS) and IFN-g (23). By
upregulating massive inflammatory cytokines including TNF-
a, IL6, IL12, IL1b, chemokine (C-C motif) ligand 2, and nitric
oxide (NO) (24), M1 macrophages aggravate local inflammation
and promote the aortic dilation as well as vascular remodeling.
On the other hand, M2 macrophage polarization is typically
induced by Th2 cytokines like IL-4 and IL-13 (23, 25). By
mobilizing together with mast cells and NK cells, M2
macrophages can regulate angiogenesis, cell recruitment, and
collagen deposition (26). With the progression of AAA, the
aortic walls undergo a switch from M1 macrophage dominance
to M2 macrophage dominance, which reflects a compensatory
mechanism of the anti-inflammatory and tissue-repair effect of
M2 macrophages (20). The counteracting effects of M1 and M2
macrophages in AAA make them eligible for therapeutic
applications to control inflammation and destruction of aortic
February 2021 | Volume 11 | Article 609161
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walls. Cheng et al. introduced Notch receptor inhibitors which
upregulated M2 macrophages and downregulated M1
macrophages to Apoe-/- mice with AAA, and identified this
intervention remarkably ameliorated progression of AAA (27).

Neutrophils
Neutrophils are a kind of polymorphonuclear leukocytes, which
are consistently generated in the bone marrow from myeloid
precursors (28) Neutrophils are one of the most abundant
immune effector cells of the human immune system, whose
main functions include phagocytosis, degranulation, and
formation of neutrophil extracellular traps (NETs) (29, 30).
Some studies suggest circulating neutrophils may be an
important contributor to AAA formation in the early phase.
Eliason et al. found AAA of wild-type animals (WTs) grew faster
than mice with neutropenia 4 days after elastase perfusion to
induce AAA, although there was not a significant difference in
the 7th day (31). A cohort study showed that there were strong
associations between elevated neutrophil counts and AAA (32).
Li et al. that identified FAM3D, a novel chemokine, was
strikingly upregulated in human AAA tissues, and Fam3d−/−

mice had decreased levels of neutrophil infiltration than WTs.
Besides, administration of FAM3D neutralizing antibody
markedly suppressed AAA expansion (33).

The effective integrant of neutrophils is composed with
granules and secretory vesicles consisting of various enzymes
(28). There are three kinds of granules within neutrophils in
total. The azurophilic granules contain myeloperoxidase (MPO),
Frontiers in Immunology | www.frontiersin.org 3
an enzyme essential for the oxidative burst, and other
components including defensins, lysozyme and some proteases
such as neutrophil elastase and proteinase 3 (34). The specific
(secondary) granules are peroxidase-negative and storage
lactoferrin, hCAP18, NGAL, lysozyme, and NRAMP-1 (35).
The last type is called gelatinase (tertiary) granules. Although
there are very few antimicrobials in gelatinase granules, they
contain a host of MMPs (34).

NETs are net-like structures protruding from cell membranes
of neutrophils or released from ruptured neutrophils (36). When
neutrophils are activated, a process named NETosis (Figure 1)
initiates. The first way of NETosis starts with nuclear
delobulation and decondense of chromatin, followed by
cellular depolarization and membrane rupture to release NETs.
Another kind of NETosis, which is termed as non-lytic form of
NETosis, proceeds with expulsion of chromatin and
degranulation (37). NETs may have several impacts on aortic
wall. To begin with, the proteases hanging on NETs like MMPs
can cause direct damage to aortic walls after chromatin are
cleaved by DNases (38). Besides, NETs can increase the
transcription of IL-6 and pro-IL-1b in macrophages, induce
Th17 cell differentiation and recruit more inflammatory cells
(30). Another possible effect of NETs on AAA pathogenesis is
promoting vascular occlusion. The net-like structure of NETs
can render blood cell gathering within the aorta and finally cause
thrombosis (36). NETs also help establish the bridge between
neutrophils and other immune cells. Cathelicidin-related
antimicrobial peptide exposed by NETs can bind to self-DNA
FIGURE 1 | The mechanism of NET formation and acting on aortic walls. There are two ways for neutrophil extracellular traps (NET) come into being. The first one is
called NETosis in which nuclei of neutrophils undergo delobulation, chromatin decondensation and nuclear membrane lysis. After that neutrophil granules adhering to
released chromatin enter extracellular spaces through ruptured cell membranes. The other way, which is a non-lytic form of NETosis, occurs after partial
depolarization of nuclei and render granules hanging on chromatin out of plasma without cell deaths. The proteases within granules can thereby directly degrade the
vascular structure and cause aortic dilation. Figures were produced using Servier Medical Art (www.servier.com).
February 2021 | Volume 11 | Article 609161
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and subsequently recruit plasmacytoid DCs (pDCs) that induce
type I interferon synthesis (39).

Dendritic Cells
Dendritic cells (DCs) are a kind of antigen presenting cells (APC)
which are able to process and expose antigen components to T
lymphocytes, play a key role in the induction of innate immune
responses and are implicated in the immune tolerance to self-
antigens (40, 41). Krishna et al. indicated that depletion of
CD11c+ cells can significantly decrease the maximum diameter
of AAAs 28 days after angiotensin II infusion (40), which
suggests that DCs may also have important impact on the
development of AAA.

DCs generally express CD11c and major histocompatibility
(MHC) class II molecules. The four subsets of DCs are
conventional DCs (cDCs), Langerhans cells, monocyte-derived
DCs and pDCs (42). In that the main resident site of Langerhans
cells are the epidermis and mucosa, the effective types of DCs
on AAAs are cDCs, monocyte derived DCs and pDCs. All kinds
of DCs derive from macrophage and DC precursors (MDP),
which give rise to monocytes and the common DC precursors
(CDP) (43). CDP could further differentiate into pDCs and
pre-cDCs. pDCs are a special DC subset which can promote
antiviral responses and are also involved in pathophysiology
of autoimmune diseases (44). pDCs are able to produce
type I interferons, such as IFN-a and IFN-b, to promote
proinflammatory responses through activating effector T cell,
cytotoxic T cells, and NK cells (39, 45). These inflammatory cells
can further facilitate AAA development. cDC1s and cDC2s
are two subsets differentiated from pre-cDCs. cDC1s are well
known for their cross-presenting functions, and are involved in
immune responses to bacterial and viral infections. cDC2s
are specialized for sensing danger signals and producing high
levels of IL-6 and IL-8 (46). These two phenotypes of cDCs are
both characterized as regulatory mediators of immune responses.
cDC1 can activate CD8+ T cells, promote T helper type 1 (Th1)
activation by MHC class I, and activate natural killer responses
with by IL-12 (47, 48). cDC2 can cross-present antigens to
induce the proliferation of Th1 cells though MHC class II
molecules (49). Their effects enrich the communications in the
inflammatory microenvironment of AAA tissues. The process
that monocytes differentiate into DCs under the induction of
GM-CSF plus IL-4 has been observed in vitro culture. Monocyte-
derived DCs have the potential to transform into cDCs, and
in vivo experiments showed they can induce Th1 and Th17 cell
polarizations (50). However, the detailed roles of DC subsets in
AAA need to be explored.

Mast Cells
Mast cells are widely distributed in the tunica adventitia and
media of aortic wall. The mast cell count is positively correlated
with the maximum of AAA diameter (51). The roles of mast cells
in AAA have been intensively discussed in Shi et al.’s review, that
elevated proteases of mast cells like chymase and tryptase in
patients with AAA, and these proteases contribute to leukocyte
adhesion and migration, vascular smooth muscle cells (VSMC)
Frontiers in Immunology | www.frontiersin.org 4
apoptosis, foam cell formation, and expression of MMP and
cathepsins (52). Cathepsin is a kind of enzyme containing in mast
cells. Cathepsin C (Ctsc) acts as an upstream activator of
tryptases, chymases and other cathepsins by cleaving the
N-terminal pro-peptide of the zymogen forms of these proteases
(53). Cathepsin G has similar function with chymases, which can
generate angiotensin II from angiotensin I. Mice deficient of
Ctsc were resistant to elastase perfusion-induced AAA compared
with WT mice, and suffered from less transmural inflammatory
cell infiltration (54). However, controlling mast cells solely are not
efficient enough as a medical treatment option for aortic
aneurysms. A randomized clinical trial showed that pemirolast,
a potential mast cell stabilizer, could not inhibit the development
of AAA at several different doses, which may be due to the limited
influences of pemirolast on plasma tryptase concentration (55, 56).
In addition to directly suppress the activity of mast cells,
diminishing their impact like inducing VSMC apoptosis might
be an alternative way to treat AAAs. A master regulator of
autophagy and lysosome biogenesis named transcription factor
EB, for example, was shown to prevent VSMC apoptosis and
attenuate AAA development (57).

Natural Killer Cells
NK cells are lymphocytes which have important effects on innate
immune responses to tumors and infections (58). Although the
fraction of NK cells is not that high as T cells in AAA tissues, they
have an impact on aneurysm development both through causing
aortic wall damage and through accelerating atherosclerotic
changes (59–61). NKT cells, a special subtype of immune cells
that express both T cell receptor and markers characteristic of
NK cells, are amplified both in vivo and in vitro after injected
with Ang II. NKT cells exacerbate aneurysm progression
by increasing matrix degrading enzymes in VSMC and
macrophages, and by secreting cytokine downregulating VSMC
viability (62, 63). Forester et al. reveal peripheral level and
cytotoxicity of NK cells are increased in AAA patients than
control groups, and these NK cells retained amount and
cytotoxicity to destruct VSMC even after aneurysm repair (64).
ADAPTIVE IMMUNE CELLS

CD4+ T Cells
The most predominant infiltrated inflammatory cells in AAA
specimens are T lymphocytes (65), and the majority are CD4+ T
cells (mainly helper T cells). The distinct phenotypes and
functions of CD4+ T cells are summarized in Table 1.
Depending on surface markers and functions, CD4+ T cells
can be differentiated into diverse subsets in response to various
microenvironment stimuli, including Th1 cells, Th2 cells, Th17
cells, regulatory T cells and follicular helper T (Tfh) cells (66).
Specifically, these CD4+ T cells express various immune
molecules, including ab T cell receptors, T cell activation
markers, memory cell phenotypes (CD45RO+CD45R A–

CD62L–), and distinct patterns of cell surface molecules
February 2021 | Volume 11 | Article 609161
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(including CD54, CD31, CD11a, CD29, CD44, CD95, and
CD27) (67).

Th1 and Th2 Cells
The most significant effect of CD4+ T cells on AAAs rely on
cytokine secretions, such as Th1 cytokines (IFN-g, IL-2 and
TNF-b) and Th2 cytokines (IL-4, IL-5, IL-6 and IL-10) (13, 67).
Some of these cytokines are associated with macrophage
activation, regulation of VSMC apoptosis and direct
destruction of aortic walls (68). Deletion of Il12b can inhibit
macrophage expansion, decrease production of cytokines like IL-
6 and TNF-a in the early stage of AAA, and suppress aneurysm
development (69). Another research determined a strikingly
higher level of circulating IL-4 in patients with AAA than
healthy individuals (70). Wanfen et al. showed that aneurysm
dilation and MMP secretion were prevented in Ifng deficient
mice (71).

Th1 cells, Th2 cells also have effects on aortic wall
degradation. There are profound interactions between various
types of helper T cells and vascular smooth muscle cells
(VSMCs) through autoimmunity. Fas ligand (FasL) expressed
by Th2 cells are indicated to promote VSMC death (72). Besides,
TNF and IFN-g released by Th1 cells can further inhibit collagen
synthesis (73, 74). A study aiming to investigate the interactions
among immune cells in AAAs reveals that CD4+ T cells could
promote VSMC proliferation through direct cell-to-cell contact
(60). VSMC, the main cellular constituent of the aortic wall (75),
subsequently induce NK cells aggregation and finally result in
VSMC apoptosis. Extracellular matrix (ECM) enables artery wall
to obtain the blood containing function, and the main
component of ECM, especially collagen and elastin, are
synthesized and processed by VSMC. Collagen defects can lead
to aneurysm rupture, while elastin depletions are associated with
continuous dilation (11). All these results demonstrate the
essential position of Th1 and Th2 in aneurysmal diseases.

Th17 Cells
Th17 cells, the main origin of IL-17, are elevated in AAA tissues
(76). IL-17 secreted by Th17 cells mediates a quantity of immune
responses like neutrophil recruitments and plays a central part in
vascular superoxide production (77). This can sharpen oxidative
stress in aortic walls. Oxidative stress is one of the major
pathogenic factors of AAA, and a study proved riboflavin
(vitamin B2), a kind of antioxidant, could prevent aneurysm
Frontiers in Immunology | www.frontiersin.org 5
formation in rat models (78), which suggests inhibiting oxidative
stress by controlling IL-17 synthesis and activity of Th17 cells
may be a potential therapeutic target for AAA patients.

Owing to their various cytokines in addition to IL-17, such as
IL-17F, IL-21 and granulocyte-macrophage colony-stimulating
factor (GM-CSF), Th17 cells have been implicated in several
autoimmune diseases, including inflammatory bowel disease,
multiple sclerosis and rheumatoid arthritis (79). Therefore, it is
rational to anticipate that Th17 cells is also probably of great
relevance to AAA. Ashish et al. showed that there is a evidently
higher expression of IL-17 in AAAs. Besides, Il17a-/- mice are
relatively resistant to AAA, and plasma concentration of
inflammatory cytokines are also decreased, which proved the
proinflammatory and atherosclerotic properties of IL-17 (76).
Wei et al. introduced digoxin to antagonize retinoic acid-related
orphan receptor gamma thymus, a master transcription of Th17
cell differentiation, and found out that this can attenuate
aneurysm expansion in two different kinds of models with
AAA (80). These findings indicate the role of Th17 cells in
AAA development.

Tfh Cells
Tfh cells express CXCR5, a chemokine receptor that helps guide
cells into B cell follicles (81). Tfh cells could provide assistant to B
cells activation through autocrine or interactions with B cells,
and are essential for formation and maintenance of germinal
centers (82). Tfh cells have a role in atherosclerosis. Gaddis et al.
found that deletion of Bcl6, a transcription factor of Tfh cells,
prevented plaque formation in Ldlr-/- murine models (83). This
finding suggests decreasing Tfh cells activity may slow down the
exacerbation of aneurysms. However, the roles of Tfh cells in
AAA need to be established.

Regulatory T Cells
Regulatory T (Treg) cells are a specific kind of CD4+ T cells
which express forkhead box protein 3 (FOXP3) and regulate the
effects of other T cell subsets (84). Treg cells have an impact on
suppressing local inflammation, and compromised Treg
functions may promote AAA growth (85). The suppressive
effect is determined by acetylation levels of FOXP3, which is
lower in human aneurysm tissue. SIRT1 can specifically regulate
the acetylation of FOXP3 (86). Studies have shown that EX-527,
an inhibitor of SIRT1, can recover the acetylation levels of
FOXP3, increase the number of active Treg cells and bring
TABLE 1 | Differentiation, function, and role of various phenotypes of CD4+ T cells in AAA.

Th1 Th2 Th17 Treg Tfh

Activators IFN-g, IL-12 IL-2, IL-4 IL-1, IL-6, TGF-b TGF-b, IL-2 IL-21, Bcl-6
Affiliated cell Macrophage, CD8+ T cell B cell, eosinophil, mast cell Neutrophil B cell
Products IFN-g, IL-2 and TNF-b IL-4, IL-5, IL-6 and IL-10,

FasL
IL-17, IL-21, GM-CSF TGF-b, IL-10, IL-35 CXCR5, IL-21

Role in AAA Activate macrophage,
inhibit collagen synthesis

↓Macrophage cytotoxicity
and MMP secretion,
↑VSMC apoptosis

↑Macrophage and
neutrophil recruitment

↓T cell proliferation and
IFN-g production,
↓Inflammatory cell
chemotaxis, arterial wall
remodeling, and
angiogenesis

May upregulate
autoantibody secretion
through assisting B cell
proliferation
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back their suppressive functions on AAA (86). Zhou et al. found
that Treg cells could release IL-10 and thereby suppress
inflammatory cell chemotaxis, arterial wall remodeling, and
angiogenesis (87). Another study showed that the proportion
of Treg cells in peripheral mononuclear cells were markedly
decreased in AAA patients than controls (88). The average aortic
diameters of Foxp3-/- mice were larger than WTs after CaCl2
induction, while infusion of normal Treg cells to Foxp3-/- mice
can render their similar aortic size with WTs after CaCl2
induction (88). Administration of IL-2 to expanse FOXP3+

Treg cells also reduced the incidence and mortality of AAA in
Apoe-/- mice with angiotensin II infusion (89). Besides, Treg cells
are an essential source of TGF-b, which is a matrix-protecting
and anti-inflammatory cytokine in human. Wang et al.
concluded that systemic neutralization of TGF-b would
increase the activity of MMP-12 and subsequently contributed
to aneurysm progression and rupture (90). This growing body of
evidence suggests an important role of Treg cells in enhancing
inflammation and inducing AAA enlargement.

CD8+ T Cells
CD8+ T cells represent a considerable part of adaptive immunity.
According to the immune state, CD8+ T cells can be generally
divided into effector cells and memory cells, which can provide
both immediate clearance and long-term protective effect on
killing tumor cells and virally infected cells (91). CD8+ T cells are
found to be elevated in AAA wall and perivascular tissues (92).
Zhou et al. indicated that IFN-g released by CD8+ T cells could
promote cellular apoptosis in vivo and MMP-producing
macrophage recruitment (93). CD8+ T cells exert versatile
impacts on atherosclerosis. Chemokines like MCP-1 and
CCL-2, which can induce monocytes infi ltration in
atherosclerotic lesions, were observed to be deceased in mice
depleted of CD8+ T cell (94). However, CD8+ T cells can
promote apoptosis of antigen presenting cells and suppress
functions of CD4+ T cells, which can resist progression of
atherosclerosis (95). This discrepancy may result from
production of inflammatory cytokines and lysis of endothelial
cells by CD8+ T cells. The pro-atherogenic and protective effects
of CD8+ T cells may also regulate the enlargement of AAA, but
need to be further explored.

gd T Cells
In contrast to ab T cells, gd T cells are independent of MHC class
II or b2 microglobulin for development and activation (96),
suggesting that they are eligible to generate rapid immune
responses in blood. gd T cells can produce various cytokines
including TNF‐a, IL−17, IL‐22, and IFN‐g (97). Besides, gd T
cells also secrete chemokines, which influence recruitment of
other immune cells at the site of inflammation and modulate the
function of other innate and adaptive immune cells (97). These
features establish distinct role of gd T cells in sterile and non-
sterile inflammation. gd T cells were found to be present in
samples of AAA patients (98), so the special immune
properties of gd T cells may play of role in early stage of
aneurysm formation.
Frontiers in Immunology | www.frontiersin.org 6
B Cells
B cells serve as essential functional parts in humoral immunity of
the adaptive immune system through secreting antibodies. B cell
can be divided into three subpopulations, including B1, B2 and
regulatory B cells (99). Schaheen et al. discovered that depletion
of B1 and B2 cells with anti-CD20 antibody significantly limit
AAA growth in animals treated with elastase perfusion or
angiotensin II-infusion (45). However, B2 cell refusion was
exhibited to ameliorate AAA exacerbation in B cell-deficiency
murine models (100). This anomalous phenomenon might be
due to upregulation of Treg cells and TGF-b despite of the
atherogenic effects of B2 cells (101), and also serves as another
proof that AAA is an inflammation-driven disease rather than
simple atherosclerotic lesions. The complex impact of B cells on
AAA development may need more studies to verify, such as
purely B1 cell deficiency murine models.

In addition to producing cytokines like TGF-b, the main
function of B cells is to secrete immunoglobulins. After
contacting with antigens, the activation-induced cytidine
deaminase (AID)-driven somatic hypermutation (SHM) of the
variable regions of immunoglobulin genes generate a number of
mutated B cells that can differentiate into immunoglobulin-
secreting plasma cells and memory B cells, which provide both
immediate and persistent effects on the same antigens (102).
Some of these B cells are overactive and produce autoantibodies
after stimulated by autologous components of human tissues,
and result in a variety autoimmune diseases including AAA (103,
104). Immunoglobulins were found widely deposited in mouse
AAA tissues, and these autoantibodies can not only induce
secretions of IL-6 and MMP-9 from T cells and macrophages,
but directly cause local destruction of aortic walls (105). For
example, B cell-derived anti-beta 2 glycoprotein I antibody was
shown to exacerbate HHcy-aggravated vascular inflammation
and AAA expansion (106). In addition, a study isolated
antiphospholipid (aPL) antibody (a kind of autoantibody able
to cause blood clots) from human AAA tissue, and found that
more aPL-positive patients underwent AAA progression that
aPL-negative patients (107). Another study purified antibodies
against Chlamydia pneumoniae outer membrane proteins
(OMPs) from serum of AAA patients, and used these
antibodies to analyze the aortic walls of AAA patients with
western blot and found positive reactions in all of the tested
samples, which could be an evidence of the association between
the Chlamydia pneumoniae OMP antigens and AAA (108).
Besides, some of the immunoglobulin subtypes can interact
with other immune cells. For instance, IgE can affect
macrophage polarization and induce mast cell activated to
synthesize various elastases (109, 110). These dramatically
increasing evidences indicate that B cell may be an ideal target
to treat AAA patients, and subsequent experiments confirmed
this hypothesis. Zhang et al. reported that vinpocetine could
alleviate AAA development by suppressing TNF-a-induced B
cell activation and proinflammatory mediator expression in
primary cultured macrophages both in vitro, and in vivo (111).
The interactions of between B cells and other immune cells are
illustrated in Figure 2.
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OTHER INFLAMMATORY-INVOLVED
MECHANISMS

Matrix Metalloproteinases
MMPs have been implicated in the pathologic origin of AAAs.
MMPs have significant destructive effects on elastin fiber
integrity, and thereby cause elastin to lose its mechanical
properties (112). Several types of MMPs can be secreted by
AAA tissue, such as MMP-2, MMP-3, MMP-8, MMP-9,
MMP-12 and MMP-13 (113, 114). MMP-9 is the most
abundant elastolytic proteinase found in AAA tissue and is
predominantly expressed by macrophages infiltrated in AAA
(115). Several studies showed that Mmp9 and Mmp2 knockout
mice are protected from CaCl2 challenging, indicating the
important role of MMPs in AAA developments (116). Besides,
targeted delivery of MMP inhibitors with nanoparticles was
shown to inhibit aneurysmal progression (113). Robert et al.
found that the relative resistant to AAA formation in Mmp9
deficient mice was related to the preservative structure of elastic
lamellae despite the presence of infiltrating mononuclear
phagocytes and neutrophils (115). It has also been found that
MMP-9 can hardly cause local tissue injury without the presence
of MMP-2, because MMP-2 can initiate cleavage of the triple-
helix-structured collagen into one-quarter and three-quarter
lengths, which complement the effects of MMP-9 (116).
Netrin-1, a neuronal guidance signal that can specifically
regulate the activity of MMP-3, was found to be elevated in
murine and human AAA tissues, and targeted depletion of Ntn1
in macrophages evidently decreased the risk of developing
murine AAA (117).

All of above mechanisms give MMP the potential to be a
target of screening and therapy for AAA patients. As a specific
Frontiers in Immunology | www.frontiersin.org 7
history hallmark of aneurysm formation, fragmentation of ECM
by MMPs has been frequently studied to investigate particular
biomarkers in AAA patients (118). A meta-analysis including
eight case-control studies revealed strikingly increase of
circulating MMP-9 levels in AAA patients (119). Hovsepian
et al. found that the elevated MMP-9 had a sensitivity of 48% and
a specificity of 95% to establish AAA diagnosis (120). Several
other types, such as MMP-1, -2, -3, -7,-12 and -13 have been
shown to have an increased level accompanied with reduction of
their inhibitors by some researchers (121–123). Doxycycline is a
kind of tetracycline antibiotic which is capable to suppress a cast
of MMPs, and has been shown to be effective in reducing elastin
degradation and aneurysm development in murine AAA models
(1). Small randomized clinical trials showed doxycycline
suppressed the expansion of AAA (124). A meta-analysis,
however, concluded that patients with doxycycline prescription
had no significant growth rate reduction of aneurysm diameter
than control groups (125).

Inflammasomes
Inflammasomes are large multimolecular complexes that are able
to induce inflammation reactions and control the activation of
caspase-1, which regulates the proteolytic maturation of IL-1b
and IL-18 (126, 127). These intracellular molecular protein
scaffolds work through inducing pyroptosis (an inflammatory
form of cell death) and necroptosis (a lytic form of inflammatory
cell death) by cleaving the N-terminal of pro-IL-1b and pro-IL-
18 with caspase-1 (128). Five kinds of receptor proteins have
been identified so far to assemble inflammasomes, including
nucleotide-binding oligomerization domain (NOD), leucine-rich
repeat (LRR)-containing protein (NLR) family members NLRP1,
NLRP3 and NLRC4, as well as the proteins absent in melanoma 2
FIGURE 2 | Interactions of between B cells and other immune cells in AAA. B cells can differentiate into plasma cells and memory B cells under the stimulation of IL-
4 from Th cells. Plasma cells continuously secrete immunoglobulins, which directly attack aortic walls. Specifically, IgE can activate macrophage polarization and
mast cell degranulation and subsequently increase their productions of proteases such as MMPs and cathepsins. These factors work together in the pathogenesis of
extracellular matrix degradation of aorta, and is an example of immune cell interactions in the whole process of AAA development. Figures were produced using
Servier Medical Art (www.servier.com).
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(AIM2) and pyrin (126). It has been shown that inflammasomes
are involved in a cast of inflammatory disorders (126). Recent
works suggest that NLRP3 and AIM2 inflammasomes are
implicated in the pathogenesis of AAA, and we summarized
the process of these inflammasome activations in Figure 3.

A pilot study demonstrated an upregulation of the
inflammasome core components ASC (apoptosis associated
speck-like protein containing a caspase activation and
recruitment domain), caspase-1 and IL-1b in AAA tissue
compared to normal aortas and claimed AAA-associated
lymphoid cells could carry on inflammasome signaling (129).
Some subsets of inflammasomes like AIM2 were significantly
increased in circulating granulocytes, monocytes, B lymphocytes
of AAA patients, and IL-1b released by peripheral blood
mononuclear cells of AAA patients was significantly higher
than controls (130). Another study found expression of NLRP3
and AIM2 were notably lower in control samples than AAA.
However, with the AAA lesion progression, inflammasome
expressions decreased (131), which suggests the inflammasome-
induced signaling plays a more important role in early AAA
pathogenesis. Markus et al. found that necrotic cell debris from
autologous cells promotes AIM2 and NLRP3 inflammasomes in
VSMC of late stage AAA tissues, and thereby activates
downstream inflammatory attacks (132). Ren, et al. found that
NLRP3 inflammasomes directly activate MMP-9 by cleaving its
Frontiers in Immunology | www.frontiersin.org 8
N-terminal inhibitory domain, so blocking the inflammasome
pathway with MCC950, a potent selective small-molecule
NLRP3-inflammasome inhibitor, could prevent aortic
aneurysm formation (133). Similarly, silencing of NLRP3 in
macrophages remarkably ameliorated AAA formation (134). In
the meanwhile, NLPR3, caspase 1, and IL-1b levels were
elevated in hyperhomocysteinemia (HHcy) models compared
with WTs, and administration of folic acid to reverse
the HHcy-accelerated AAA could alleviate activation of
inflammasomes in the tunica adventitia (134). These studies
demonstrate inflammasomes may be a promising target for
medical intervention of AAA.
PERSPECTIVES

AAA still remains to be a life-threatening disease. In the current
review, we summarized the updated pathogenic roles of
inflammatory cells in AAA development. The roles of T cells
and macrophages in AAA have been predominantly studied,
including inflammatory cytokines, MMPs, inflammasomes, etc.
However, how the other types of inflammatory cells influence
AAA are still not fully verified. Despite of the advances of
endovascular aneurysm repair and open surgery for large or
ruptured AAA, there is still lacking efficient medical therapy
FIGURE 3 | Pathways of NLRP3 and AIM2 inflammasome activation. There are two distinct signals needed for inflammasome to be effective. Initially, pathogen-
associated molecular patterns (PAMPs) as the first signal binds to Toll like receptors (TLRs) and stimulate NF-kB, which increases downstream pro-IL-1b and pro-IL-
18 production. Then, efflux of K+ and dsDNA are the second signals correspondingly to induce NLRP3 and AIM2 inflammasome formation. The pathway of NLRP3
inflammasome activation usually proceed under the assistant of cathepsin released by lysosome and ROS mtDNA from mitochondria. The final result of
inflammasome activation is cleaving pro-casp-1 into caspase-1, which transforms pro-IL-1b and pro-IL-18 to IL-1b and IL-18. These two effective cytokines are
secreted out and participate the inflammatory responses in aortic walls. Figures were produced using Servier Medical Art (www.servier.com).
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choices for asymptomatic patients. This review lists a
considerable number of pathways of inflammatory cell effects,
and provides evidences from studies that suppressing
corresponding pathways may influence the development of
AAA in murine models or patient samples in vitro .
These evidences not only prove the irreplaceable roles of
inflammatory cells in AAA, but provide new methods to
develop ideal drugs for researchers and physicians. Specific
targets, such as inflammatory cytokines and MMPs, have been
investigated for biomarker screening and possible medical
therapies for asymptomatic AAA. These novel applications
may serve as advanced strategies for early identification and
therapeutic intervention for AAA.

It should be noted that most studies on detailed cellular
mechanisms were conducted in animal models or in vitro
experiments, which could not entirely mimic the pathogenesis
of AAA in humans. Studies bridging pre-clinical mechanisms
and clinical data are needed. Furthermore, most of the animal
studies were only focused on the initiation of diseases, while how
to prevent AAA rupture in real-world patients are more
Frontiers in Immunology | www.frontiersin.org 9
challenging. Further studies on different stages of AAA will
be helpful.
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