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Background: Intrauterine growth restriction (IUGR) is among the most

challenging problems in antenatal care. Several factors implicated in the

pathophysiology of IUGR have been identified. We aimed to investigate the

e�ect of UPI on lung development by identifying metabolic changes during

the first seven days of postnatal life.

Materials and methods: On gestation day 17, four time-dated pregnant

Sprague Dawley rats were randomized to a IUGR group or a control group,

which underwent an IUGR protocol comprising bilateral uterine vessel ligation

and sham surgery, respectively. On gestation day 22, 39 control and 26 IUGR

pups were naturally delivered. The rat pups were randomly selected from the

control and IUGR group on postnatal day 7. The pups’ lungs were excised for

histological, Western blot, and metabolomic analyses. Liquid chromatography

mass spectrometry was performed for metabolomic analyses.

Results: UPI induced IUGR, as evidenced by the IUGR rat pups having

a significantly lower average body weight than the control rat pups on

postnatal day 7. The control rats exhibited healthy endothelial cell healthy and

vascular development, and the IUGR rats had a significantly lower average

radial alveolar count than the control rats. The mean birth weight of the

26 IUGR rats (5.89 ± 0.74g) was significantly lower than that of the 39

control rats (6.36 ± 0.55 g; p < 0.01). UPI decreased the levels of platelet-

derived growth factor-A (PDGF-A) and PDGF-B in the IUGR newborn rats.

One-way analysis of variance revealed 345 features in the pathway, 14 of

which were significant. Regarding major di�erential metabolites, 10 of the 65

metabolites examined di�ered significantly between the groups (p < 0.05).

Metabolite pathway enrichment analysis revealed significant between-group

di�erences in the metabolism of glutathione, arginine–proline, thiamine,

taurine–hypotaurine, pantothenate, alanine–aspartate–glutamate, cysteine–

methionine, glycine–serine–threonine, glycerophospholipid, and purine as

well as in the biosynthesis of aminoacyl-tRNA, pantothenate, and CoA.
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Conclusions: UPI alters lung development and metabolomics in growth-

restricted newborn rats. Our findings may elucidate new metabolic

mechanisms underlying IUGR-induced altered lung development and

serve as a reference for the development of prevention and treatment

strategies for IUGR-induced altered lung development.

KEYWORDS

uteroplacental insu�ciency, intrauterine growth restriction, lung development,

metabolomics, radial alveolar count

Introduction

Intrauterine growth restriction (IUGR) is one of the most

challenging issues in antenatal care. Occurring in 5–10% of

pregnancies, IUGR is a major predictor of perinatal morbidity

and mortality (1). IUGR refers to a fetus that does not develop

to its full biological potential in intrauterine, confirmed by

a documented low fetal growth rate. IUGR is a pathological

condition in which the placenta fails to provide an adequate

supply of oxygen and nutrients to the developing fetus, which is

called placental insufficiency. As a result, fetal growth becomes

stunted. Several factors implicated in the pathophysiological

of IUGR have been identified. Heredity, maternal availability

of nutrients, and environmental factors, combined with the

capacity of the placenta to adequately transfer nutrients and

oxygen to the fetus, and the endocrine modulation of these

interactions, are basic determinants of IUGR (2). Nonetheless,

impaired placentation, including uteroplacental insufficiency

(UPI), remains the primary and most common etiology and

factor involved in the pathophysiology of the IUGR (1, 3).

When UPI occurs, the developing fetus is subject to hypoxia

and malnutrition because of the compromised placental blood

supply (4). During pregnancy, chronic nutritional or oxygen

deprivation may cause fetal airway and lung anomalies.

This may put the fetus at risk of respiratory distress and

bronchopulmonary dysplasia (BPD) during the pregnancy.

These structural abnormalities and lung function impairment

may remain or even expand with age. IUGR can even cause

lifelong lung symptoms and accelerate lung aging (5). Recent

studies suggest that decreased vascular endothelial growth factor

receptor (VEGF) expression contributes to the pathogenesis

of BPD that pulmonary circulation growth and alveolarization

are highly coordinated, as demonstrated by the finding that

impaired angiogenesis impairs lung structure. Angiogenesis is

essential for the development and regeneration of human tissues.

VEGF, a key mediator of angiogenesis and vasculogenesis, is

required for the normal development of many tissues, including

lungs. VEGF, which is found on the basement membrane

of epithelial cells in the fetal lung, is thought to play an

important role in guiding the development of the newly formed

capillary network within the lung. In the absence of VEGF, lung

maturation, surfactant production, and blood vessel and alveolar

hypoplasia occur. These tissue abnormalities and altered tissue

VEGF levels have been observed in humans and animal models

with pulmonary diseases of infancy, such as respiratory distress

syndrome, BPD, and pulmonary hypoplasia. VEGF increase

alveolar units. Treatment of neonatal rats with VEGF inhibitors

and antiangiogenic agents decreased alveolarization, vascular

growth and lung growth in infant rats, which was similar to the

pulmonary histology of BPD. This suggests that impaired VEGF

signaling may contribute to abnormal lung structure following

neonatal lung injury (6, 7).

Metabolites are valuable biomarkers in cell physiology

because they play key roles in biological pathways (8).

Metabolomic analysis refers to the analysis of changes in

low-molecular-weight metabolites produced during disease

progression. Metabolomes respond rapidly to even the smallest

stimuli, which make metabolomic analysis a powerful approach

to assessing quantitative responses to stress and nutritional

alterations (8). The analysis of IUGR rat lung tissues and the

metabolic changes there in can aid in the identification of the

underlying etiological mechanisms and potential biomarkers of

IUGR as well as potential therapeutic targets for its treatment.

These findings may lead us to speculate that UPI is associated

with impaired lung development and will serve as a reference

for human studies in future studies. We hypothesized that the

pulmonary metabolomes of IUGR rats recorded during the first

7 days after their birth would reveal the differentiation of their

lung patterns reflected in their histological outcomes. Therefore,

we conducted this study aiming to investigate the effect of UPI

on altered lung development by identifying metabolic changes

during the first 7 days of postnatal life in the lungs of IUGR rats.

Materials and methods

Animal model and experimental groups

This study was performed in accordance with the guidelines

provided by the Animal Care Use Committee of Taipei Medical

University (Taipei, Taiwan). Time-dated pregnant Sprague

Dawley rats (180–250 g, 6–8 weeks old, and at 14 days gestation)

were purchased from BioLASCO (Taiwan). For 1week prior to
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the experiment, all the experimental rats were provided with

food and water ad libitum and were housed in a room at a

temperature of 20–25 ◦C and a relative humidity of 40–60%. A

12:12-h light–dark cycle was maintained. On gestation day 17,

bilateral uterine vascular ligation and a sham surgical protocol

were performed. Isoflurane is used to induce general anesthesia

in animals. A midline laparotomy was performed to reveal the

uterine horns and their blood vessels, and the fetus was counted

before surgery. According to the literature, bilateral uterine

vascular ligation sites were selected (9). The uterine blood vessels

are tied in the middle of each uterine horn, allowing blood

flow from both the iliac arteries and the ovaries to continue.

This performance resulted in a higher fetal viability rate and a

lower partial abortion rate in the test group. The animals in the

control group were subjected to a sham procedure that did not

involve ligation. Animals were given lidocane at the incision site

after the uterus was reinserted into the abdominal cavity (9, 10).

On gestation day 22, all the rat pups were naturally delivered.

Within 12 h of birth, litters were within-group pooled and

randomly redistributed to the newly delivered mothers to ensure

comparability and to prevent differing litter sizes from affecting

the study outcomes. After the pups were euthanized on postnatal

days 0 and 7, the litters in both groups were culled to nine and

four pups to ensure equal access to breast milk, respectively.

On postnatal day 7, rat pups were randomly selected from each

group, irrespective of sex, and their lung tissues were harvested

for histological, Western blot, and metabolomic analyses.

Lung histology

The lung sections were harvested from the right middle lobe

to standardize the analyses. Each of the sections was fixed in 4%

paraformaldehyde, dehydrated in alcohol, rinsed with xylene,

embedded in paraffin, cut into 5-µm sections, and stained with

hematoxylin and eosin. To assess the morphometry of the rats’

lungs, pathological alterations in the lung tissues were examined

using a light microscope. The radial alveolar count (RAC) in

each tissue sample was measured to evaluate the structural

development of the alveoli according to a methodmodified from

Cooney et al. (11). In order to offset bias, in addition to adhering

to the rules emphasized by them, we strictly select objects for

the RAC only when the respiratory bronchioles are symmetrical

and the number of alveoli is within 4–10 transected by the

perpendicular line from the center of the respiratory bronchioles

to the pleura. The mean septal thickness (MST) was measured as

described by Gao et al. (12). Briefly, 5 portions of every section

were randomly selected and captured at 200× magnification

and then analyzed using a computerized image analysis system

(Image-Pro Plus 5.1 for Windows; Media Cybernetics, Bethesda,

MD, USA). The septal thickness was measured using lines (60

per field) drawn at 90 angles across the narrowest section of

alveolar walls (to minimize the number of tangential sections).

An average value and its standard deviation were calculated.

Western blot analyses of PDGF-A and
PDGF-B

The lung tissue samples (0.06 g) were homogenized in ice-

cold buffer. Furthermore, it was trypsinized and rinsed with

phosphate buffered saline (PBS) before resuspension (1,500 rpm,

7min). After the PBS was aspirated, 100 µl lysis buffer (1%

Nonidet P-40 (NP-40), 0.01M deoxycnolic acid (Sigma-Aldrich,

St. Louis, MO, USA), 0.1% sodium dodecyl sulfate (Amresco,

Solon, Ohio, USA), 1mM EDTA and protease inhibitor were

added. After the samples were placed on ice for 30min, they were

centrifuged in a microcentrifuge (Heraeus Fresco 17 Centrifuge,

Thermo Fisher, Germany) for 20min at 4 ◦C and 12,000

rpm. The tubes were gently removed from the centrifuge and

placed on ice. The supernatant was aspirated and placed in a

fresh tube kept on ice, and the pellet was discarded. Under

reducing conditions, proteins (30 µg) were resolved through

12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis.

The gel was first equilibrated in transfer buffer (Tris 250mM;

Glycine 1.92M) (Omics Bio, Taipei, Taiwan) and then placed in

the “transfer sandwich” (filter paper-gel-membrane-filter paper),

cushioned by pads and pressed together by a support grid.

The supported gel sandwich was placed vertically in a tank

between stainless steel/platinum wire electrodes and the tank

was filled with transfer buffer. Multiple gels electrotransferred

were performed used high voltage (200V) for an hour in the

room temperature and tank transferred onto a polyvinylidene

difluoride membrane (ImmobilonP, Millipore, Bedford, MA,

USA). The membranes were blocked with 5% non-fat dried

milk (ImmobilonP, Millipore) and subsequently incubated with

platelet-derived growth factor-A (PDGF-A, 1:750, E10 Sc-

9974, Santa Cruz Biotechnology, CA, USA), PDGF-B (1:750,

F3 Sc-365805, Santa Cruz Biotechnology), and anti-β-actin

(1:1,000, C4 sc-47778, Santa Cruz Biotechnology). They were

then incubated with horseradish peroxidase–conjugated goat

antimouse (Pierce Biotechnology, Rockford, IL, USA). The

protein bands were detected using the BioSpectrum AC System

(UVP, Upland, CA, USA) and VisionWorks LS Software version

8.6 (UVP, Upland, CA, USA) with acquisitionmodeWBHS Top

(Image Integration – Total Time, 2s exposure time, 50 number

of frames).

Metabolomics

Sample preparation

The lung homogenate samples were extracted using 100 µl

of methanol solution (Macron Chemicals, Center Valley, PA,

USA) and H2O (Cat # W4502, Sigma-Aldrich, St. Louis, MO,

USA; 7:3, v:v). After two freeze–thaw cycles, the samples were

vortexed. After each sample was centrifuged (15min at 4 ◦C and

12,000× g), dried in a speed vacuum, and resuspended in 0.3ml

of 50:50 H2O/CH3CN, the supernatant was recovered.
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Liquid chromatography

A chromatographic separation was performed using a

Waters Acquity ultra performance liquid chromatography

(UPLC) system (Waters, Milford, MA, USA). A UPLC BEH C18

guard column (1.7µm, 5mm) was used as the reverse-phase

column, and the analytical column (1.7µm, 2.1 × 100mm)

was maintained at 45 ◦C. The linear gradient separations used

mobile phases composed of (A) water containing 0.1% formic

acid and (B) acetonitrile containing 0.1% formic acid. The

gradient profile was as follows: 0–1min, 1% B; 1–15min, 1–

100% B;15–17min, 100% B; 17–17.1min, 100–1% B; 17.1–

20min, 1% B. The eluent was then injected directly into the mass

spectrometer, without being divided first.

Mass spectrometry

Mass spectrometry (MS) was performed using a SYNAPT

G2 quadrupole time-of-flight mass spectrometer (Waters MS

Technologies, Manchester, UK). The machine was running in

positive mode. For the detection of positive ionization mode,

the parameters of the mass spectrometer were set as follows:

desolvation gas flow rate: 900 L/h; desolvation temperature:

550 ◦C; cone gas flow rate:15 L/h; source temperature: 120
◦C; capillary voltage: 2.8 kV; cone voltage: 40V; and TOF MS

scan range: 50 to 1,000 m/z. The Waters MSE acquisition mode

was used with a data acquisition rate and an interscan latency

of 1.2 and 0.02 s, respectively, and the full exact masses were

recorded simultaneously through rapid cycling between two

functions. The first function collected data with low-impact

energies of 4 eV for the collision cell trap and 2 eV for the

collision cell transfer, whereas the second collected data with

a transfer collision energy ramp from 15 to 25 eV. All the

analyses were performed using a lockspray to assure accuracy

and reproducibility. Leucine-enkephalin (m/z = 556.2771) at

a concentration of 1 ng/µL and a flow rate of 5 µL/min

was used as the lockmass. The lockspray frequency was set to

20 s, and the data were collected in continuous mode. Waters

MassLynxmass spectrometry software (version 4.1) was used for

all data collection.

Metabolomic data analysis

The metabolomic data analysis involved mass peak

detection, multivariate analysis, differentially expressed

metabolite (DEM) filtering, compound identification, pathway-

related compound discovery, and pathway enrichment analysis

(Figure 1). Progenesis QI v.2.1 was used to import, process,

normalize, and review raw UPLC-MS/MS data (Non-linear

Dynamics, Newcastle, UK). The DEMs were identified using a

cutoff value equating to a ≥1.2-foldchange in median intensity

between the two groups of samples. Progenesis QI was used

for compound identification by comparing the data against the

human metabolome database, and the compound prediction

FIGURE 1

Metabolomic data analysis workflow. The workflow included a

discrete combination of quadrupole time-of-flight mass

spectrometry, multivariate statistics, multivariate machine

learning, filtering of di�erentially expressed metabolites,

compound identification, and pathway enrichment analysis.

had an overall score of 40 according to mass accuracy and

isotope patterns. A cut off value that was ≥ 36 of the identified

score was applied. The pathway-related compounds were

compared against the Kyoto Encyclopedia of Genes and the

Human Metabolome Database, or HMDB (https://hmdb.

ca), and underwent pathway enrichment analysis performed

using MetaboAnalyst. All full MS sample was obtained for

quality control pool reference, with ≥ 90% alignment with the

reference, indicating the reliability of the ACQUITYTM Premier

CSH Phenyl-Hexyl 1.7µm column separation approach.

Unique ions (retention time and m/z pairs) were pooled

(obtaining the sum of the abundancies of the unique ions)

to generate unique “features” (retention time and m/z pairs)

typical of unannotated metabolites using both adduct and

isotope deconvolutions. The data were normalized to all the

features with Progenesis QI. Each feature ion was measured

in each run, allowing for the calculation of the ratio of the

abundance of feature ions in a given run to the corresponding

value in the normalized reference. Log10 transformation was

performed using Progenesis QI to produce a normal distribution

of all the ratio data in each process for all the samples, and the

subsequent scalar estimation shifted the log10 distribution to a

normalized reference. The FMS data were then used for relative

quantification. For each feature across both sample groups, the

minimum percent coefficient of variance was calculated. Prior to

statistical tests of significance, the data was exported to EZ Info

(Umetrics Software), and unsupervised (percent of mean). PCA

was conducted to visualize the clustering of the data groups

(with all features included). Furthermore, within Progenesis QI,

a one-way ANOVA test was used to assess significance between

IUGR and control groups, returning a p-value for each feature

(retention time m/z descriptor), with a nominal P-value of 0.05

considered significant.
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Statistical analysis

The data are presented as means ± standard deviations

(SDs). Differences were considered statistically significant

when the p value was < 0.05. A one-way ANOVA was

conducted using Progenesis QI to identify significant differences

between the IUGR and control groups. The fold change (FC)

threshold calculated by Progenesis QI from the combined

abundance data was used to further filter significant features,

with a FC of ≥ 1.2 considered significant (13–15). Volcano

plots were used to represent dysregulated metabolites [log2

[FC] vs. –log10 [p value]]. Within Progenesis QI, tentative

and putative annotations were determined using accurate

mass measurements (<5 ppm error), isotope distribution

similarity, and manual assessment of fragmentation spectrum

matching (when applicable) conducted by searching the Human

Metabolome Database (16), Metlin (17), MassBank (18), and the

National Institute of Standards and Technology database (19).

MetaboAnalyst 5.0 was used to perform multivariate analysis.

Pathway enrichment and metabolite pathway analysis were

performed using annotated feature lists that were statistically

significant in the discovery data set (20, 21).

Results

UPI rats had lower body weight on
postnatal day 7

In total, 39 control pups were delivered by four sham-

operated dams, and 26 IUGR rats were delivered by four

dams in which UPI was induced. The mean birth weight

of the 26 IUGR rats (5.89 ± 0.74 g) was significantly

lower than that of the 39 control rats (6.36 ± 0.55 g;

p < 0.01). On postnatal days 0 and 7, we retrieved

12 and 8 pups from the sham-operated and UPI-induced

dams, respectively. Compared with the control rats (n =

12), the IUGR rats (n = 8) had a significantly lower

average body weight on postnatal day 7 (14.50 ± 0.55 g

vs. 16.90 ± 1.39 g; p < 0.001). The body weight growth

FIGURE 2

(A) Representative lung sections stained with hematoxylin and eosin and radial alveolar count and mean septal thickness (B) representative

Western blots of PDGF-A and PDGF-B in the lung tissue samples of the control and intrauterine growth restriction (IUGR) groups on postnatal

day 7. *Denotes a respiratory bronchiole. Compared with the control rats, the IUGR rats had a significantly higher radial alveolar count,

significantly lower average PDGF-A levels, and comparable mean septal thickness and PDGF-B levels. Data are presented as means ± SDs. *p <

0.05, **p < 0.01.
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velocity was 1.5 and 1.3 g/day in the control and IUGR

rats, respectively.

UPI altered lung development in
growth-restricted newborn rats

Representative lung sections stained with hematoxylin and

eosin are presented in Figure 2A.Wemeasured RAC as an index

of alveolar development. The control rats exhibited normal lung

morphology, and the IUGR rats had a significantly lower average

RAC than the control rats (p < 0.01). The MST was comparable

between the control and IUGR rats.

UPI resulted in lower PDGF-A and
PDGF-B levels in growth-restricted
newborn rats

Representative Western blots and quantitative data

determined using densitometry for PDGF-A and PDGF-B are

presented in Figure 2B. The IUGR rats had significantly lower

PDGF-A levels (p < 0.05) and lower PDGF-B levels than the

control rats.

UPI induced a di�erent metabolic profile
in growth-restricted newborn rats

The PCA method employed in this study, which was based

on the ion intensity of 10 significant metabolites in lung tissue

samples of the control and IUGR rat pups, was used to further

investigate the statistically significantmetabolic changes induced

by IUGR in the lungs of the IUGR rats. Three-dimensional score

charts of the lung tissue samples are presented in Figures 3C,D.

Themetabolite pattern changed significantly, and the patterns of

the IUGR group differed significantly from those of the control

group. PCA was performed to give an overview of metabolites

data from all samples. In the score plot, each point on the

scores plot represents an individual sample. The PCA score plots

(Figure 3A) demonstrated some separation between control and

IUGR groups, and the separation between controls and IUGR

FIGURE 3

(A) Principal component analysis (PCA) score plot of IUGR rat lung tissue samples harvested on postnatal day 7 (in green) relative to the control

samples (in orange). (B) Partial least squares discriminant analysis (PLS-DA) score plot of the IUGR rat lung tissue samples relative to the control

samples. (C) Three-dimensional PCA score chart of IUGR rat lung tissue samples harvested on postnatal day 7 (in green) relative to the control

samples (in orange). (D) Three-dimensional PLS-DA score chart of the IUGR rat lung tissue samples relative to the control samples (n = 5).
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FIGURE 4

(A) Hierarchical clustering analysis and heat map of control and IUGR rat lung tissue samples harvested on postnatal day 7. Color scale represents

the scaled abundance of each variable, with red indicating high abundance and blue indicating low abundance. Compounds represented in the

heat map are numbered according to their peak numbers (n = 5). (B) Volcano plots of ultraperformance liquid chromatography–mass

spectrometry (MS)/MS datasets. The y-axis represents p value converted to –log [p value] and the x-axis represents log2 [fold change].

Significant metabolites (fold change < 1.2, p value < 0.05) were highlighted in blue and red. Gray points represent non-significant metabolites.

group was especially obvious. The PCA scores plot showed

clear separations between the three groups onto the first two

principal components (PCs), accounting for 65.47% of the total

variance (47.92 and 17.55%, respectively) of the PCA scores plot.

Furthermore, the close proximity PCA score of the IUGR and

control groups indicated that IUGR began to affect lung tissue

metabolism of the IUGR rat pups by postnatal day 7. Partial

least squares discriminant analysis (PLS-DA) was performed

on the experimental data (Figures 3B,D) since it is an efficient

and optimal method used in metabolomics when the number

of metabolites detected is high and likely correlated. PLS-

DA showed a well-defined separation between groups, being

component 1 (64.29%) and component 2 (11.92%) (Figure 3B)

which also indicated that the metabolic profile of the IUGR rat

pups had changed significantly by postnatal day 7.

The heat map of the hierarchical cluster analysis revealed

two main clusters that separated the control and IUGR rat

lung tissue samples (Figure 4A). The volcano plot incorporated

the FC and p values to identify significant metabolites.

Of the 65 metabolites examined, 10 differed significantly

between the groups (p < 0.05). The p values and descriptions

of the significant differential metabolites are presented in

Table 1. These findings indicate that IUGR induced metabolic

changes such as glutathione; arginine and proline; thiamine;

taurine and hypotaurine; alanine, aspartate, and glutamate;

cysteine and methionine; glycine, serine, and threonine;

glycerophospholipids; and purine and the biosynthesis of

aminoacyl-tRNA and of pantothenate and CoA in lung

development. Overall, the PCA and hierarchical cluster analysis

revealed that the lung tissues of healthy and IUGR newborn
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TABLE 1 Major di�erential metabolites and identified pathways in the rat lungs on postnatal day 7.

Initial untargeted UPLC-MS/MS

Pathway Name Formula KEGG ID Mol. Wt Retention

Time (mins)

p value

Glutathione metabolism Pyroglutamicacid C5H7NO3 C01879 130.049472 2.0872 0.00008

Cysteinylglycine C5H10N2O3S C01419 179.047733 2.0872 0.00031

L-Cysteine C3H7NO2S C00097 243.047239 2.0872 0.00044

Arginine and proline metabolism Pyrrolinehydroxycarboxylicacid C5H7NO3 C04281 130.049472 2.0872 0.00008

1-Pyrroline-4-hydroxy-2-carboxylate C5H7NO3 C04282 130.049472 2.0872 0.00008

(3R,5S)-1-pyrroline-3-hydroxy-5-

carboxylicAcid

C5H7NO3 C04281 130.049472 2.0872 0.00008

Thiamine metabolism,

Taurine and hypotaurine metabolism,

Pantothenate and CoA biosynthesis,

Cysteine and methionine metabolism,

Glycine, serine and threonine

metabolism,

Aminoacyl-tRNA biosynthesis

L-Cysteine C3H7NO2S C00097 243.047239 2.0872 0.00044

Alanine, aspartate and glutamate

metabolism

N-Acetyl-L-asparticacid C6H9NO5 C01042 176.056002 2.951017 0.00001

Glycerophospholipid metabolism LysoPC[20:5(5Z,8Z,11Z,14Z,17Z)/0:0] C28H48NO7P C04230 542.32244 6.4016 0.03953

Purine metabolism Guanosine C10H13N5O5 C00387 567.177136 1.27715 0.03102

rats could be distinguished according to their comprehensive

metabolic profiles.

We identified the 65 metabolites by comparing their m/z

values and extracted ion chromatograms against the metabolite

database and manually checking for matching m/z values and

peak shapes. We conducted a one-way ANOVA to identify

features of which the genotype-dependent abundance differed

between the IUGR and control group. The ANOVA revealed

345 features in the pathway, among which 14 were significant.

In Figure 4B, volcano plot analysis identified differential

metabolites and showed significance and magnitude of change

are plotted on the x-axis and y-axis, respectively.

Metabolic pathway analysis of control
and IUGR rat lung tissue samples

The main altered metabolic pathways included those

related to the metabolism of glutathione; arginine and

proline; thiamine; taurine and hypotaurine; alanine, aspartate,

and glutamate; cysteine and methionine; glycine, serine,

and threonine; glycerophospholipids; and purine and the

biosynthesis of aminoacyl-tRNA and of pantothenate and CoA.

A total of 11 pathways were identified, among which two differed

significantly between the study groups (p <0.05; Figure 5

and Table 2). The signaling compounds identified in the rat

lung tissue samples harvested on postnatal day 7 represented

their peak numbers (Table 3). Among the main differential

metabolites in the IUGR group, the mean levels of P2, P3,

P14, P22, and P27were significantly higher than those in the

control group. However, the levels of P26 and P28 did not differ

significantly between the IUGR group and the control group

(Table 3 and Figure 6).

Discussion

In this study, we examined IUGR rats on postnatal day

7 because we found that UPI-induced IUGR rats exhibited

a significantly higher volume fraction of alveolar airspace on

postnatal day 7 compared with the control rats (10). We used

a non-targeted metabolomic approach to elucidate the effects of

IUGR on fetal lung development and to identify metabolites that

may serveas perinatal biomarkers of IUGR-associated abnormal

lung development. Our in vivo model demonstrated that the

induction of IUGR through bilateral uterine artery ligation

in the pregnant rats altered the lung development of the rat

pups, as evidenced by the average RAC of the IUGR group

being significantly lower than that of the control group. These

findings are consistent with clinical observations of neonates

with IUGR, in which BPD has been linked to long-term

functional impairment due to abnormal lung growth (22). IUGR
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FIGURE 5

(A) Bar chart of the results of the enrichment analyses highlighting the altered metabolic pathways in the control and IUGR rat lung tissue

samples harvested on postnatal day 7. (B) Bubble plot of the results of pathway enrichment of the control and IUGR rat lung tissue samples

harvested on postnatal day 7 (n = 5).

pups had significantly lower levels of PDGF-A and PDGF-

B than control pups, according to western blot. This finding

is related to the mechanism of endothelial cell proliferation

inhibition leading to decreased alveolar septation; this effect may

be due to trophic effects on the vascular endothelium, altered

production of endothelial-derived products such as nitric oxide

or PDGF (23).

This study provides supporting evidence and clinically

relevant information regarding the effects of IUGR on rat

fetuses, are expected to reproduce the physiological features of

IUGR in humans. Targeted metabolic profiling in the IUGR

rat model revealed that IUGR causes statistically significant

metabolic changes in the fetal rat lung. These metabolic changes

included changes in the ion intensity of amino acids, fatty acids,

and energy metabolism intermediates. Our findings regarding

altered pulmonary metabolites may facilitate the identification

of clinical biomarkers for the early prenatal diagnosis of IUGR

and impaired lung development as well as the identification of

several possible treatment targets. IUGR has been determined to

affect alveolarization in the lungs of animals in previous studies;

therefore, models of IUGR are occasionally utilized as a BPD

model as well (24, 25). In this study, we evaluated metabolic

changes in the lungs of the IUGR rats by postnatal day 7 through

a metabolic analysis (n = 5). The metabolites that differed

significantly between the groups (p < 0.05 and FC > 1.2) were

selected and subjected to pathway analysis. A PLS-DA score plot

revealed that the clustering differed significantly between the

control and IUGR groups, suggesting that metabolic changes

occurred in the lungs of the IUGR rats (Figure 4 and Table 3).

The 10 metabolites that differed significantly between

the groups are summarized in Table 1. Glutathione is a key

antioxidant that protects the body from oxidative stress, and

glutathione levels are lower in patients with IUGR than in

healthy individuals (26). Higher glutathione consumption and

disrupted glutathione synthesis have both been linked to IUGR.

In one study, the total (reduced, oxidized, and protein-bound)
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TABLE 2 Network activity prediction analysis of the metabolic

pathways.

Network activity prediction analysis

Pathway name # of significant

features within

pathway

# features

within

pathway

p value

Glutathione metabolism 3 28 0.0027283

Arginine and proline

metabolism

2 38 0.059357

Thiamine metabolism 1 7 0.072041

Taurine and hypotaurine

metabolism

1 8 0.081926

Pantothenate and CoA

biosynthesis

1 19 0.18434

Alanine, aspartate and

glutamate metabolism

1 28 0.26006

Cysteine and methionine

metabolism

1 33 0.29923

Glycine, serine and threonine

metabolism

1 34 0.30683

Glycerophospholipid

metabolism

1 36 0.32179

Aminoacyl-tRNA biosynthesis 1 48 0.40539

Purine metabolism 1 66 0.51287

levels of glutathione in preeclamptic pregnancies were lower

than that in normotensive pregnancies (27). This indicates

that extrauterine and intrauterine factors, rather than genetics,

are responsible for IUGR. Cysteine availability affects the rate

of glutathione production. Glutathione is required for cell

development regulation, and a lack of glutathione may result

in severe mucosal damage, including epithelial cell destruction

and mitochondrial degeneration (28). Another study discovered

that glutathione is an essential molecule in redox cellular

signaling because it regulates the oxidation of cysteines from

oxidative stress sensors. However, inactivation of enzymes with

cysteine is the most basic redox signaling mechanism. One

such example is the stimulation of phosphorylation pathways

by oxidative inactivation of phosphatases and it may be linked

to IUGR (29, 30). The pathophysiology of illness in newborns

is thought to be dominated by oxidative damage caused by

oxygen toxicity (31, 32). This problem is aggravated in newborns

with IUGR, which causes oxidative damage in the lungs (33).

Previous studies have revealed that oxidative stress plays an

important role in the development of IUGR (34–36). N-

acetylcysteine is a precursor to the amino acid cysteine, which

has two key metabolic functions. By contributing to glutathione

production, cysteine participates in the general antioxidant

activities of the body. By modulating the glutamatergic system,

cysteine influences the reward/reinforcement pathway (37). A

study involving a rat model of preeclampsia and fetal growth

restriction revealed that N-acetylcysteine can alleviate maternal

hypertension (38). N-acetylcysteine also effectively protects

against chronic intrauterine hypoxia in animals (39). Chronic

fetal hypoxia is the leading cause of IUGR as well as fetal and

neonatal morbidity and mortality (40–42).

L-arginine, a nutritionally essential amino acid for fetuses

(43), is a precursor for nitric oxide synthesis (44). Arginine

concentrations increase with age (45). Consequently, L-arginine

may play a vital role in fetal nutrition and oxygenation, resulting

in the alleviation of the symptoms of IUGR, higher birth weights,

and a decreased risk of neonatal morbidity and mortality (43).

Furthermore, elevated proline and alanine levels were also

observed throughout the first week of life (45).

In another study, elevated phenylalanine levels are

associated with lung disease, and significant increases in

phenylalanine can be observed in infants with respiratory

distress syndrome (46). Urinary concentrations of alanine

and phenylalanine are lower in infants with IUGR than in

healthy infants, indicating that amino acid metabolism is

often disrupted early in the pregnancy. Elevated levels of

phenylalanine and alanine during pregnancies have been

observed in several studies (47–49). The umbilical cord blood

concentrations of phenylalanine and alanine of infants with

IUGR are also lower than those of healthy infants, indicating

that phenylalanine and alanine can be used to differentiate

between fetuses with IUGR and healthy controls during

healthy pregnancies. This maybe because of changes in

placental tissue due to the hypercatabolic state associated with

IUGR (46). Thiamine deficiency induces IUGR in rat fetuses,

specifically when induced by a thiamine-deficient diet plus

pyrithiamine supplementation (50). Taurine is involved in

various biological processes, including apoptosis, cell volume

regulation, neuromodulation, antioxidant defense, protein

stabilization, and stress responses (51). The levels of placental

amino acid transporters, which transport taurine and induce

the transport of neutral amino acids like glutamate and glycine,

are significantly reduced by IUGR during pregnancy (52).

Another metabolite of interest in the present study was

methionine, which was altered in several studies. UPI increases

methionine levels in IUGR. Methionine is a sulfur amino

acid with biological functions, including functions related

to protein metabolism, methylation, cysteine production,

glutathione reduction, and antioxidant systems (53–55).

Phenylalanine and methionine differ considerably, and a cutoff

value for phenylalanine that provided excellent differentiation

between IUGR and appropriate-for-gestational-age neonates

was identified in a previous study (56). Roecklein et al. (50)

proposed that thiamine deficiency could induce IUGR in rats.

They discovered that thiamine deficiency causes decreases in

body weight, placental weight, and liver weight and that a larger

brain-to-liver ratio is a sign of IUGR. The average thiamine
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TABLE 3 Identification of mass spectrometry signals in the rat lungs on postnatal day 7.

Peak number/

chemical class

Identification

P1 7-Aminomethyl-7-carbaguanine, 9-Ethylguanine

P2 S- Methylmethanesulfinothioate

P3 1-[(2R,5R)-4-Azidooxy-5-(hydroxymethyl) oxolan-2-yl]-5-methylpyrimidine-2,4-dione, 9-beta-d-Arabinofuranosylguanine,

hydroxydeoxyguanosine, 2-Amino-9-[(2R,4S,5R)-5-(hydroperoxymethyl)-4-hydroxyoxolan-2-yl]-1H-purin-6-one, Guanosine,

8-Hydroxy-deoxyguanosine, 8-Hydroxy-2-desoxyguanosine

P4 (Phenylthio)aceticacid

P5 Styrene, Vinylacetylene

P6 Cyclohexaamylose

P7 Pyroglutamicacid, Pyrrolinehydroxycarboxylicacid, N-Acryloylglycine, 1-Pyrroline-4-hydroxy-2-carboxylate, dimethadione,

(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylicAcid, 3-Hydroxy-1-methylpyrrolidine-2,5-dione, 4-Oxo-L-proline, 1-Methylpyrrole-2,3,5-triol,

pyrrolidonecarboxylicacid, (2S)-6-Oxa-1-azabicyclo[3.1.0]hexane-2-carboxylicacid

P8 Glycyl-Cysteine, Cysteinylglycine, S-Nitrosopenicillamine, 2-[[(2S)-2-Amino-3-sulfanylpropanoyl]amino]aceticacid

P9 L-Cysteine, D-Cysteine, DL-Cysteine

P10 2-[(6-Aminopurin-9-yl)methoxy]ethyldihydrogenphosphate

P11 (-)-Epigallocatechin, (+)-Gallocatechin, 4-Gallocatechol, Leucocyanidin

P12 [(2-Amino-3-((2-amino-3-((carboxymethyl)amino)-3-oxopropyl)dithio)propanoyl)amino]aceticacid

P13 Susalimod

P14 Cyclandelate, Panaquinquecol2, GinsenoyneC, (8)-Shogaol, GinsenoyneK

P15 Glycerophosphoinositol

P16 Limazocic, (4R)-3-((2S)-3-Mercapto-2-methylpropanoyl)-4-thiazolidinecarboxylicacid

P17 N-Acetyl-L-asparticacid, N-Formyl-L-glutamicacid, D-N-(Carboxyacetyl)alanine, 2-Amino-3-oxoadipate, Alaninepyruvate,

Dimethyloxalylglycine, Berteroin

P18 Elexacaftor/Ivacaftor/Tezacaftor, Atn-161

P19 Decanoylcarnitine,3,4,5,6,7,8-Methylnonanoylcarnitine, N-MyristoylSerine, DG

P20 Cytosine, 1H-Imidazole-4-carboxamide, 3-Aminopyrazin-2-ol, Imexon

P21 Hexyl2,5-dichlorophenylphosphoroamidate

P22 3-(2-Methylpropanoyloxy)-8-(2-methylbutanoyloxy)-9,10-epoxy-p-mentha-1,3,5-triene

P23 PC(2:0/18:3(9,11,15)-OH(13)), PC(18:3(9,11,15)-OH(13)/2:0), PC(2:0/18:2(10E,12Z)+ =O(9)), PC(18:2(10E,12Z)+ =O(9)/2:0),

PC(2:0/18:2(9Z,11E)+ =O(13)), PC(18:2(9Z,11E)+ =O(13)/2:0), PC(2:0/18:3(10,12,15)-OH(9)), PC(18:3(10,12,15)-OH(9)/2:0)

P24 Retapamulin

P25 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0), 1-Isopropyl-N-((6-methyl-2-oxo-4-propyl-1,2-dihydropyridin-3-yl)methyl)-6-(2-(4-methylpiperazin-1-

yl)pyridin-4-yl)-1H-indazole-4-carboxamide

P26 Gamma-linolenylcarnitine, Alpha-linolenylcarnitine, (9Z,11E,13Z)-Octadeca-9,11,13-trienoylcarnitine,

(5Z,9Z,12Z)-Octadeca-5,9,12-trienoylcarnitine, (8E,10E,12Z)-Octadeca-8,10,12-trienoylcarnitine

P27 Viloxazine

P28 Val-Pro-Asp-Pro-Arg

levels of infants with severe IUGR are significantly lower than

those of infants with normal birthweights. In cases of severe

IUGR, a modest reduction in plasma thiamine is often observed

toward the end of the pregnancy (>36 weeks). These findings

suggest that thiamine deficiency maybe a cause of IUGR (57).

Glycine is the main agonist of glycine receptors, which

are chloride channels that hyperpolarize the cell membranes

of inflammatory cells such as macrophages and neutrophils,

thereby desensitizing them to proinflammatory stimuli. In

addition, glycine has cytoprotective properties, improves

endothelial function, and reduces platelet aggregation. Glycine

plays a crucial role in the development of infants’ lungs (47, 49).

Prenatal nicotine exposure caused the metabolomic changes

of maternal plasma, fetal plasma, and amniotic fluid in nicotine-

induced UGR rat model (58). However, the effects of UPI on

offspring lung metabolomics were mostly unknown in IUGR

offspring. In this study, UPI alters lung development and

metabolomics in growth-restricted newborn rats. These findings

may clarify metabolic mechanisms underlying IUGR-induced

altered lung development. The limitation of this study is that our
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FIGURE 6

Relative ion intensities of significantly di�erential metabolites in the control and IUGR rat lung tissue samples harvested on postnatal day 7 (n =

5). Data are presented as means ± SDs. ns, not significant. *p < 0.05; **p < 0.01; ***p < 0.001.

study only focused on the lungs of IUGR and the control group

which only represents knowledge about itself and does not use

other organs that allow to study certain conditions in the lungs.

Conclusion

UPI alters lung development and metabolomics in growth-

restricted newborn rats. Our findings may elucidate the

metabolic mechanisms underlying IUGR-induced altered lung

development and serve as a reference for the development of

strategies to prevent and treat altered lung development induced

by IUGR.
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