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Abstract: To gain further insight into the ventilation at urban street intersections, this study con-
ducted 3D simulations of the ventilation at right- and oblique-angled intersections under eight
wind directions by using the Reynolds-averaged Navier–Stokes (RANS) κ-ε turbulence model. The
divergent responses of ventilation and pollution concentration for the pedestrian zone (ped), the
near-wall zone (nwz), and the canopy layer to the change in intersection typology and wind direction
were investigated. The flow characteristics of the intersections, taken as the air flow hub, were
explored by employing indices such as the minimum flow ratio (β) between horizontal openings.
The results show that oblique wind directions lead to a lower total volumetric flow rate (Qtotal) but
a higher β value for right-angled intersections. For T-shaped intersections, a larger cross-sectional
area for the outflow helps to increase Qtotal. Oblique-angled intersections, for example, the X-shaped
intersection, experience a more significant difference in Qtotal but a steady value of β when the wind
direction changes. The vertical air-exchange rate for the intersection was particularly significant
when the wind directions were parallel to the street orientation or when there was no opening in the
inflow direction. The spatially averaged normalized pollutant concentration and age of air (τ∗) for
the pedestrian zone and the canopy layer showed similar changing trends for most of the cases, while
in some cases, only the τ∗ped or τ∗nwz changed obviously. These findings reveal the impact mechanism
of intersection configuration on urban local ventilation and pollutant diffusion.

Keywords: intersections typology; CFD simulations; pedestrian ventilation; near-wall concentration;
volumetric flow rate; age of air

1. Introduction

In a realistic urban context, street canyons and adjacent intersections are commonly
considered as two basic physical elements with a symbiotic relationship [1,2]. An intersec-
tion connects three or more street segments in different directions, while two intersections
determine a street canyon along the long axis. Multiple traffic flows from the street, includ-
ing pedestrians, cyclists, and motor vehicles, converge at intersections. Traffic flows slow
or stop at intersections before moving on to their destination streets. Therefore, intersection
typologies are primarily shaped by street networks [3], particularly the number of branches,
the angle between street segments, and the dimensions of each adjacent street.

To improve the traffic flow for expressways and highways, grading separation is
commonly adopted by setting up roads with different elevations. Grade crossings, that
is, crossings intersecting at a plane, are more common in downtown areas, connecting
primary and secondary roads. According to the number of branches, grade crossings can
be categorized into three-way, four-way, five-way, or higher. In grid-plan urban areas,
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east–west oriented streets are perpendicular to north–south oriented streets, forming
regular-shaped intersections [4]. Regular intersections evolve into oblique intersections
when encountering radial or irregular street grids. To smooth the traffic flow, a traffic
island set up at the intersection center (i.e., roundabouts) is used to distribute traffic flows
instead of traffic signals [5]. When using roundabouts, traffic travels around a central
island, which is considered more effective and suitable for junctions where higher-intensity
traffic flow occurs.

From the perspective of the urban canyon environment, intersections are regarded as
a lateral opening for street canyons, which provide an essential horizontal flow exchange
other than the vertical air exchange at the top of the canyon [6]. The ventilation for the in-
tersection itself, such as the flow pattern, vortices, wind velocity ratio, vertical distribution,
and air flow rate, further affects the ventilation within nearby street segments [7]. Previous
studies have reported the benefits of intersections in enhancing ventilation in street canyons
by bringing more air flow into their centers [8,9]. Thus, reasonable intersection density can
help improve urban local ventilation and reduce pollutant concentration, in addition to
strengthening the flexibility of urban street networks and the links between urban areas.

One of the concerns within intersections and street canyons is pedestrians. Pedestrians
encounter the bottom flow from the ground to 2 m, which carries pollutants released by
motor vehicles [10]. The street ends and intersections are noticeably more complex than
the two-dimensional middle slice of the canyon. However, chamfering [11], setback [12],
and disjointing [13] of buildings at street corners may help enlarge the space to a certain
extent. Thus, more sophisticated flow form at street ends and intersections, as evidenced
by three-dimensional vortices and the complex stratification of velocity. Another concern
is the street-facing building spaces. Building facades serve as the lateral boundary of a
street canyon or an intersection [14]. The underlying risks include the inward transport of
traffic-related pollutants through infiltration, natural ventilation, or even mechanical air
systems, which subsequently cause the deterioration of indoor air quality [14–16]. Under
specific conditions, the top floor of a building may even face a higher ambient pollutant
concentration under specific conditions owing to the vertical diffusion and transport of
pollutants [15].

Although not a hotspot, the ventilation and pollutant dispersion at or near street inter-
sections and their contributing factors were quantitatively investigated in previous studies.
Some researchers have used field measurements to explore the spatiotemporal distribution
of wind velocity and pollutant concentration at intersections [16]. The dynamic traffic flow
and time-varying local wind velocity showed considerable influence; however, the impact
of factors such as building morphology, intersection configuration, and prevailing wind
directions cannot be accessed without parametric studies. Alternatively, ventilation at or
near intersections has been analyzed using wind tunnels [9,17] and computational fluid
dynamics (CFD) methods [8,18]. In more recent studies, intersections were modeled as a
node with certain resistance of the urban street network model for ventilation or pollutant
dispersion analysis [6].

Ahmad et al. [17] reviewed studies on the investigation of the air flow and pollutant
concentration for urban street canyons and intersections and found that a significant
street-level flow exchange existed at the intersections, which could help change the street
canyon vortices into helical or intermittent ones. Some wind tunnel studies [19,20] have
explored pollutant concentrations at regular intersections within uniform rectangular urban
blocks under eight wind directions. Significant concentration variations throughout the
intersection were observed at the pedestrian level, and the parallel and perpendicular winds
to the long street led to street-level minimum and maximum concentrations, respectively.
Wang and McNamara [7] investigated the dispersion at urban intersections under wind
direction not aligned with the upwind street and found that the in-canyon spiraling flow led
to ground-level emissions being elevated to higher altitudes and crosswind streets. Yassin
et al. [8] reported that the intersection configuration, such as regular-, T-, and skew-shaped,
impacts air flow and pollutant dispersion within urban canyons based on the simulation
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of the horizontal and vertical distribution of wind velocity and pollutant concentration.
Shen et al. [11] assessed pedestrian and street canyon ventilation using indices such as net
escape velocity and age of air for six irregular real-world cases under the wind direction
parallel to the street and concluded that octagon and oblique intersections were favorable
for central street ventilation. He et al. [12] conducted a numerical parametric study on
pedestrian ventilation at four-way street intersections of 13 angular patterns within a
high-rise urban area, confirming the effect of both the prevailing wind direction and
the relative orientation of adjacent street segments and concluded that moderate angles
for downstream segments help balance the downstream and lateral flow penetrations.
Guo et al. [21] simulated pollutant dispersion and ventilation, particularly at street and
pedestrian levels, by normalized concentration and net escape velocity, at three types of
intersections with different green configurations, and reported that the presence of greening
could worsen the pollutant conditions at intersections to different extents because of the
change in intersection typologies and approaching wind directions.

Although the ventilation and air quality at or near intersections have been investigated
from multiple perspectives in previous studies, the divergent response of ventilation for
pedestrian-level, near-wall zone, and canopy layer to the change of intersection typologies
and approaching wind directions are still lacking. Thus, this study aims to provide a better
insight into the effects of different types of intersections within urban-like geometries,
considering contributing factors such as the number of branches, angles between street seg-
ments, and intersection shapes. Numerical simulations of ventilation for the intersections
were conducted under eight wind directions shifting in a clockwise manner at intervals
of 45◦. The results of different cases were analyzed by employing the indices usually
used for urban areas and building ventilation, for example, the volumetric flow rate and
age of air. It is expected that this work will help to predict the ventilation for pedestrian
and street-facing buildings, which further contributes to improving the ventilation by
optimizing street intersection typologies.

2. Methodology

An overview of the methodology used in this study is shown in Figure 1. In step 1, the
identification of intersection typologies was carried out by summarizing categories of street
intersections using morphological factors such as the number of branches and street aspect
ratio and establishing research cases (see Section 2.1 for details). In step 2, the flow field
and pollution diffusion for the studied cases were simulated using eight approaching wind
directions to explore the response of ventilation performance for street intersections to
different wind directions (see Section 2.2). In step 3, the ventilation and pollution dispersion
for the studied cases were evaluated from the perspectives of pedestrian zone, near-wall
zone, and canopy layer by exploring the flow field and by employing ventilation indices;
a comparative study was undertaken using dimensionless parameters (see Section 2.3
for details).
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Figure 1. Methodology flowchart showing the major steps in this study: the main aspects are shown
in solid shapes, and the methods in wireframed shapes.

2.1. Description of the Investigated Cases

Multiple types of street intersections are usually set up to link street segments and form
a flexible urban street network. Figure 2a displays an example of an urban area of Xuanwu
District, Nanjing, where there are right-angled intersections, such as the “+”-shaped (or
regular-shaped) intersection, “+*”-shaped intersection (regular-shaped intersection with
a narrower street), T-shaped intersections, and oblique-angled intersections, such as the
X-shaped intersection and r-shaped intersection.

In addition to the above five types of intersections, Y-shaped intersections were found
to be common intersections in urban street networks [5]. In this study, these six types of
intersections, including right- (90◦) and oblique-angled (120◦), were studied. Sketches of
these intersections are displayed in Figure 2b: right-angled (“+”-shaped, “+*”-shaped, and
T-shaped), oblique-angled (X-shaped, Y-shaped, and r-shaped). The six intersections were
built by modeling building blocks, thus obtaining the corresponding six cases (Cases A–F),
as shown in Figure 2b. The effects of morphology, including intersection type, street corner
shape, street aspect ratio, and the number of branches, on flow, pollutant dispersion, and
ventilation were analyzed.

It should be noted that only the street intersection at the center was considered as the
study area. All the cases are composed of street canyons with an aspect ratio (AR) of 1
aside from Case B, which represents narrow streets with an AR of 2.5. The width of the
street was assumed to be 20 m, and the height of building H was 20 m, according to field
investigations of street widths in Nanjing [11].

In the analysis, each case was further numbered as follows: “Case i—wind direction”
where i represents the intersection types A to F (Figure 2). For example, Case A-0 indi-
cates the “+”-shaped intersection for a wind direction (ϕ) of 0◦. Specifically, the south
direction (i.e., from bottom to top in Figure 2) is taken as the 0◦ wind direction, and a 45◦
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interval (moving counter-clockwise) is considered to evaluate the influence of the wind
direction change.
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Figure 2. (a) Diagram showing several typical intersections in Nanjing, China (base image source: Google Earth): “+”-
shaped, “+*”-shaped, X-shaped, T-shaped, and r-shaped; (b) six cases of street intersections with a uniform context
investigated in this study.

2.2. CFD Set-Up

Three-dimensional steady-state isothermal simulations were performed using ANSYS
FLUENT (Ansys, PA, USA) 15.0, with the Reynolds-averaged Navier–Stokes (RANS)
standard κ-ε turbulence model. The standard κ-ε turbulence model is a two-equation
model in which the solution of two separate transport equations allows the turbulent
velocity and length scales to be independently determined. It is a semi-empirical model
based on model transport equations for the turbulence kinetic energy (κ) and dissipation
rate (ε). Large eddy simulations (LES) perform better in predicting turbulence in complex
geometries. However, the computational cost of the LES model is several times higher
than that of the RANS model, and there are still challenges with its application [22].
Therefore, the RANS approach is still the most common approach for predicting the spatial
distribution of mean velocity and concentration fields in urban ventilation [7,8,11,21,23,24].

The computational domain is shown in Figure 3a. To account for the influence of
the surrounding buildings, three arrays of buildings (height H = 20 m) surrounding each
case were considered. Considering the change in the wind direction at the entrance, the
distance between the lateral boundaries and the urban geometry was set to 15 H, while
the domain roof was set to 10 H. The volume of the urban geometry in the computational
domain accounted for less than 3% of the calculation area, in accordance with the CFD
guidelines [25]. No-slip wall boundary conditions were used for all the solid surfaces. The
second-order discretization scheme was used for pressure, and second-order up-winding
discretization schemes were used for momentum, k, ε, and the scalar to increase accuracy
and reduce numerical diffusion. The SIMPLE scheme was used for pressure–velocity
coupling. The wind profile at the inlet is [26]

UZ

UH
=

(
Z
H

)α

(1)
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where UZ is the average wind velocity at height Z, UH is the average wind velocity at H,
and α = 0.22 is the ground roughness index representing an urban landform with dense
buildings. The turbulent kinetic energy κZ and turbulent dissipation rate εZ profiles are
specified as follows:

κZ =
u2
∗√
Cµ

(2)

εZ =
u3
∗

K(Z + Z0)
(3)

where u∗ is the friction velocity, K = 0.4 is the von Karman constant, and Z0 is the roughness
length. Symmetry boundary conditions were adopted at the lateral sides and top of the
computational domain, while a pressure outlet was used at the outlet of the domain, and
no-slip wall boundary conditions were used at the ground and building surfaces.
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Dispersion calculations were performed using the advection–diffusion module. In
turbulent flows, FLUENT computes the mass diffusion as follows:

J = −
(

D +
µt
Sct

)
∇Y (4)

where D is the molecular diffusion coefficient for the pollutant in the mixture, Y is the mass
fraction of the pollutant, and ρ is the mixture density. Sct = µt/(ρDt) = 0.7 is the turbulent
Schmidt number, where Dt is the turbulent diffusivity coefficient. The tracer gas (CO, with
an emission rate

.
m = 10−7 kg/(m3·s)) [24] was uniformly released in the space at the

bottom (0–2 m) of the urban geometries (Figure 3a), with the assumption that pollutants
released by vehicles are perfectly mixed at ground level due to vehicle motion.

The domain was discretized using a structured grid with hexahedral cells for Cases
A, B, and C, while an unstructured grid was employed for the other cases. Case C had
the lowest number of cells at 1,978,640. The total number of cells for the other cases was
between 3,418,436 and 4,817,223. The area below 2 m at the intersection was refined with
a minimum cell size δx = δy = δz = 0.0125 H = 0.25 m. The choice of the grid size was
based on a sensitivity test performed using Case A-0 as an example, as shown in Figure 3b.
Three lines were selected within the intersection area, and vertical profiles (L1, L2, and
L3) were compared for different grid sizes. Wind velocities and concentrations were
found to be similar when the grid size refinements were 0.0125 H and 0.00625 H and thus
δx = δy = δz = 0.0125 H = 0.25 m was chosen here. The setup employed in this study is
similar to several previous studies in terms of the turbulence model, boundary conditions,
and grid size [5,11], where the impact of different street morphologies on ventilation within
arrays of buildings was studied.

2.3. Evaluation Method and Indices

Figure 3a shows the structure of the “+”-shaped intersection (Case A). The area of
focus, referred to as “the intersection” in the following discussion, includes the intersection
area, and half of each adjacent street canyon that directly interacts with the intersection [27].
The intersection area of Case A has five openings or interfaces: the roof opening to the
upper boundary layer and four horizontal openings to the adjacent street canyons [6].
To evaluate the overall ventilation, the volumetric flow rate (Q) at each opening and the
total value (Qtotal) were calculated. Considering Case A as an example, the air exchange
between the intersection and south street segments (QS) and other adjacent canyons, for
example, the east canyon (QE), may differ greatly [9]. Thus, the minimum flow ratio (β)
between each horizontal opening was explored to determine whether balanced ventilation
existed at the intersection. In addition, the intersection has air exchange with the upper
urban boundary layer at the roof opening (Qroof), which helps to remove pollutants from
the canopy layer [6,23], thus weakening the effect of traffic pollutants on pedestrians and
residents. The percentage of Qroof to Qtotal, referred to as λ, was calculated to explore the
difference in vertical air-exchange between the cases.

Furthermore, the ventilation and pollutant concentrations in the pedestrian zone,
near-wall zone, and canopy layer were analyzed and compared. The pedestrian zone was
set from the ground, the entire area of the intersection without considering the difference
between the pavement and motor vehicle lane, to a height of 2 m (Figure 3a). For the
near-wall zone, the surface effect commonly induces a large velocity gradient near the
building wall, which may further affect the local pollutant concentration. Previous studies
calculated the data in the zone from the wall to a certain distance away [28,29] as the micro-
scale ambient conditions for buildings. The near-wall zone in this study was determined as
from the building facades to 1.0 m away (Figure 3a), where the concentrations more directly
affect the outdoor pollutant concentration entering the indoor spaces [30]. Meanwhile, the
detailed distributions of wind velocity and pollutant concentration were explored based
on the results for the pedestrian level, Z = 1.5 m, and the near-wall surface, 0.5 m away
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from the walls [31,32]. The canopy layer was set from the ground to the roof level, that is, a
mean building height of 20 m (Figure 3a).

The studied cases have slightly different release volumes of pollutants that may
affect the comparability of the calculated concentration (C, kg/m3). Thus, the normalized
pollutant concentration (C∗) was employed to compare the pollutant distribution. The C∗

value was calculated as follows:

C∗ =
C×UH ×H2

.
m ×V

(5)

where
.

m is the uniform pollutant emission rate (= 10−7 kg/(m3·s)) and V is the volume of
the emission zone where the pollutant is released (m3).

The normalized spatial average of pollutant concentration was calculated as follows:

C∗ =
∫

Vol

C∗dxdydz
Vol

(6)

where Vol is the target control volume (m3).
Recent studies have employed ventilation indices to assess urban ventilation based

on the assumption that urban areas “inhale” fresh air from upwind and “exhale” air
with pollutants downwind. These indices were initially proposed and used to assess
indoor ventilation and to evaluate indoor exposure. The local mean age of air (τ) was
calculated in this work by adopting the “homogeneous emission method” [24], which
was originally proposed for tracer gas techniques. Thus, the pollutants are assumed to be
released at a uniform rate within the entire urban area from the space from the ground to
2 m. The method coincides with the worst scenarios in which pollutant generation occurs
everywhere within an urban environment. The age of air (τ) can be calculated as:

τ =
C

.
m

(7)

The age of air (τ) was further normalized as τ* in this study to consider the local
effective flow rate at the intersection. τ* was calculated as follows:

τ∗ =
τ×Qtotal

Vcnp
(8)

where Vcnp is the volume (m3) of the canopy layer (cnp) at the intersection. Subsequently,
the normalized spatial average of the air age was calculated as follows:

τ∗ =
∫

Vol

τ∗dxdydz
Vol

(9)

3. Results
3.1. Ventilation and Pollutant Concentration at Right-Angled Intersections

Figure 4a,b shows the wind velocity at the pedestrian level (Uped) of the “+”- or
regular-shaped intersections for the wind directions ϕ = 0◦ and 45◦, that is, Cases A-0 and
A-45. For ϕ = 0◦, the channel effect was observed in the Y-axis street, and a substantially
lower Uped was observed on both the left and right sides. The Uped on the X-axis street,
where there exists a canyon vortex due to the perpendicular wind direction for the street,
is more evenly distributed. When ϕ changes to 45◦, oblique to the street orientation, a
lower Uped exists at the leeward sides of the buildings. The spatially averaged Uped values
for the four street segments were reduced. Figure 4c displays the difference between the
two cases, with Case A-0 as the control case. It is noted that Uped increased because of an
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oblique wind direction, particularly at the windward side of the Y-axis street. Only the
leeward side of the left half of the X-axis street experienced a lower wind velocity.
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Figure 4d–f shows the normalized pollutant concentrations (C∗ped) of Cases A-0 and
A-45, and the concentration difference between the two Cases. Case A-0 experiences a
higher C∗ped downstream of the Y-axis street owing to the vortex and decreasing trend
in wind velocity. The intersection also had a relatively higher C∗ped. Case A-45 generally
has a lower C∗ped, particularly at the intersection and windward sides of the buildings.
By comparison, it is noted that the C∗ped was substantially reduced on the Y-axis street,
although the C∗ped in areas in the left half of the X-axis street.

Figure 5a,b displays the variation in wind velocity (Unwz) and normalized pollutant
concentration (C∗nwz) along the height (Z = 0–20 m) in the near-wall surface (<0.5 m) for
Cases A-0 and A-45. For the Y-axis street in Case A-0, Unwz shows a general increasing
trend above 2 m, while C∗nwz decreases along the height, particularly between 0 and 5 m.
The difference in Unwz for the windward and leeward sides of the X-axis street varied at
different height intervals. The windward side has a higher Unwz below 2 m and above 10 m.
However, the C∗nwz on the windward side, where there is more “effective air flow,” was
substantially lower. As for Case A-45, the leeward side has an obviously lower Unwz and
higher C∗nwz. The windward side of the upstream side has a lower Unwz at a height below
5 m, while the windward side of the downstream side has a lower Unwz above 5 m. The
windward side of the upstream generally has a lower C∗nwz except for below 2 m. Overall,
the C∗nwz below 5 m in Case A-45 was lower than in Case A-0 and the Unwz at different
locations in Case A-45 showed greater divergence than in Case A-0, particularly above
10 m.

Figure 6 displays the flow rate for the intersection, which is considered as the air
flow hub [9], and its interfaces in Cases A-0 and A-45. When the wind direction ϕ was
0◦, the total volumetric flow rate (Qtotal) of the intersection reached 558.8 m3/s. The south
interface supplies a large proportion of inflow, in addition to that contributed by the east
and west interfaces. The flow ratio (β) of 0.16 indicates an unbalanced ventilation at the
intersection, which provides less air exchange for the X-axis street. The outflow mainly
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passes through the north interface, while there exists still 20.0% of Qtotal flows through the
roof interface to the urban boundary layer. Vertical air-exchange was one of the reasons
for the decreasing trend of C∗nwz along the height. When ϕ changes to 45◦, a smaller Qtotal
of 440.0 m3/s was observed, but with balanced ventilation for the air exchange between
the intersection with adjacent street segments. The south and east interfaces supply an
equal amount of inflow, and the north and west interfaces pass through an equal amount of
outflow. The vertical air-exchange at the roof interface was approximately 10.6% of Qtotal,
which was significantly less than that in Case A-0.
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Figure 7a,d displays the Uped and C∗ped for the “+*”-shaped intersection, with a narrow
X-axis street, for the wind directions ϕ = 0◦, that is, Case B-0. The symmetric wind field
with a higher Uped near the central line of the Y-axis street indicates the channel effect. The
X-axis street has a similar Uped with both sides of the upstream of the Y-axis street, which
reflects the poor ventilation in streets with a larger AR (2.25) when the wind direction is
perpendicular to the street orientation. A relatively higher C∗ped was observed downstream
of the Y-axis street due to pollutant accumulation. The axis street has a lower C∗ped except
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for the area near the leeward walls. Figure 7b,e shows the difference between Uped and
C∗ped when ϕ changes from 0◦ to 45◦. It was noticed that Uped experienced an obvious
increase, particularly at the Y-axis street and the windward side downstream of the X-axis
street. C∗ped decreased at the corresponding locations. However, a higher C∗ped was present
upstream of the X-axis street. Figure 7c,f shows the difference between Uped and C∗ped
when ϕ changes from 0◦ to 90◦. The X-axis experiences a higher Uped with no obvious
decrease in Uped on the Y-axis street. The accumulation effect downstream of the X-axis
street, which is narrower than the Y-axis street, leads to an obvious increase in C∗ped.
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Figure 7g,j displays the Uped and C∗ped for the T-shaped intersection for the wind
direction ϕ = 90◦, that is, Case C-90. There exists a lower Uped at both sides of the X-axis
street, the intersection, and the right sides of the Y-axis street. Thus, a relatively higher
C∗ped was observed in the X-axis street and on the right side of the Y-axis street. Figure 7h,k
displays the differences in Uped and C∗ped between Cases C-45 and C-90, the latter taken
as the control case. It was noticed that Uped experienced an overall increase, except for
the upstream and central areas downstream of the Y-axis street. Therefore, C∗ped decreased
in these areas. Figure 7i,n displays the difference in Uped and C∗ped between Cases C-0
and C-90. Overall, the X-axis street experiences an increase in Uped, while the Y-axis street
experiences the opposite. We observed that C∗ped increased particularly on the left side of
the Y-axis street.

Figure 8a,b displays the variation in wind velocity (Unwz) and normalized pollutant
concentration (C∗nwz) along the height in the near-wall surface in Case B. For B-90, there was
an obvious difference between the Unwz for the upstream and downstream of the X-axis
street. Therefore, C∗nwz in the downstream region was distinguished from the upstream
region. The Unwz on the Y-axis street windward side was larger or less than the leeward
side in different height ranges. However, the C∗nwz on the windward side was generally
lower, which indicates that the windward side near-wall zone has a greater pollutant
removal ability. For Case B-45, the Unwz on the leeward side, that is, the near-wall surfaces
of the right-down building, was generally lower than on the windward side, that is, the
near-wall surfaces of the left-up building. Unwz reached its highest value at the upper
middle of the canyon, and the Unwz on the windward side showed a decreasing trend
below 4 m. The C∗nwz on the leeward side was generally higher, and it may achieve two or
three times the C∗nwz on the windward side, particularly at heights below 5 m.

Figure 8c,d displays the variation of Unwz and C∗nwz along the height in the near-wall
surface in Case C. For Case C-90, the Unwz in the X-axis street, the only inflow path, showed
an increasing trend along the height, while C∗nwz showed the opposite trend. The Unwz
on the Y-axis street windward side was obviously higher than that on the leeward side,
and the highest value existed at the lower middle of the canyon, except for the velocity
increasing near the top of the canyon. The C∗nwz in the windward side was significantly
lower, and it was lower than C∗nwz in the Y-axis at heights below 8 m. For Case C-45, Unwz
showed a relatively slower changing trend along the height, except for the range near the
top of the canyon. The Unwz on the windward side was generally higher, and the C∗nwz on
the windward side was lower.

Figure 9a–c show the flow rates for the intersections in Cases B-0, B-45, and B-90,
respectively. The total volumetric flow rate (Qtotal) of the intersection in Case B-0 reached
493.6 m3/s. Similar to Case A-0 (Figure 6a), the south interface supplies a large proportion
of inflow, in addition to the contribution from the east and west interfaces. An even
smaller flow ratio (β) of 0.05 indicates less air exchange for the X-axis street. The outflow
mainly passed through the northern interface. For Case B-45, a Qtotal similar to that of
Case B-0 was observed, and unbalanced ventilation was indicated by the β of 0.20. The
narrower X-axis street showed a significantly lower air-exchange rate. For Case B-45, a
much smaller Qtotal was observed than for Cases B-0 and B-45. The east interface supplied
a large proportion of the inflow owing to the strong channel effect. In addition, the vertical
outflow at the intersection top opening accounts for approximately 19.0% of Qtotal, which
reflects a considerable potential for pollutant removal.

Figure 9d–f show the flow rates for the intersection in Cases C-90, B-45, and B-90,
respectively. The total volumetric flow rate (Qtotal) of the intersection in Case C-90, under
wind direction ϕ = 90◦, reached 473.9 m3/s, which was totally induced from the east
interface. The north and south adjacent street segments have the same outflow rate,
and the top opening accounts for over 26.1% of Qtotal because of the vortex and reverse
flow near the left building. When ϕ changed to 45◦, Qtotal decreased significantly by
approximately 34.5%. The inflow comes from the south and east interfaces, and the former
has a relatively higher inflow rate. The flow ratio (β) of 0.60 indicates balanced ventilation
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for the intersection and adjacent street segments. When ϕ changes from 90◦ to 0◦, Qtotal
increases with the Y-axis street as the main flow path. The east interface only provided
approximately 22.0% of the inflow, which means there was unbalanced ventilation at
the intersection.

Table 1 summarizes the spatially averaged C∗ for the pedestrian zone (0–2 m), near-
wall zone (within 1 m from the facade), and canopy layer (0–20 m), referred to as C∗ped, C∗nwz

and C∗cnp, respectively, at three right-angled intersections. Detailed domains for the three
target zones are shown in Figure 3 and discussed in Section 2.3. For Case A of “+”-shaped
intersection, the C∗ped and C∗cnp showed similar decreasing extent when the wind direction

(ϕ) change from 0◦ to 45◦. However, the C∗nwz showed a less obvious change. For Case B
of “+*”-shaped intersection, the C∗ped and C∗cnp showed similar decreasing extent of over

−30.0% when ϕ changed from 0◦ to 45◦. Meanwhile, a less decreasing extent of C∗nwz was
observed. When ϕ changed from 0◦ to 90◦ (parallel to the narrower street), a significant
increase in C∗nwz was observed, in comparison to the changes in C∗ped and C∗cnp. Based
on the above, it can be preliminarily concluded that the change in wind direction has a
similar impact on the pollutant concentration for the pedestrian zone and canopy layer.
For Case C of the T-shaped intersection, Case C-90 was taken as the control case, in which
the inflow wind direction was parallel to the axis of symmetry. It should be noted that
when ϕ changes from 90◦ to 0◦ or 270◦, also perpendicular to the building arrays, the C∗ped

showed a more significant increase, whereas when ϕ changed to oblique values, the C∗cnp
showed a more significant decrease.
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Table 1. Spatially averaged normalized pollutant concentration for the pedestrian zone (C∗ped), the

near-wall zone (C∗nwz), and the canopy layer (C∗cnp) at right-angled intersections.

Cases C*
ped C*

nwz C*
cnp

Case A
(“+”-shaped)

A-0 0.37 0.24 0.22
A-45 0.31 (−16.6%) 0.22 (−5.1%) 0.18 (−18.8%)

Case B
(“+*”-shaped)

B-0 0.42 0.20 0.22
B-45 0.28 (−32.4%) 0.18 (−13.8%) 0.15 (−30.7%)
B-90 0.44 (6.3%) 0.26 (25.9%) 0.25 (10.8%)

Case C
(T-shaped)

C-90 0.34 0.23 0.22
C-0 0.39 (16.1%) 0.25 (9.0%) 0.24 (5.5%)
C-45 0.31 (−8.7%) 0.21 (−7.5%) 0.19 (−14.8%)
C-270 0.43 (26.1%) 0.27 (16.4%) 0.27 (18.6%)
C-315 0.28 (−17.0%) 0.20 (−12.6%) 0.16 (−27.4%)

Note. The results for the control cases, that is, Cases A-0, B-0, and C-90, of each group are in bold. The percentage
differences of concentration are displayed in brackets.
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3.2. Ventilation and Pollutant Concentration at Oblique-Angled Intersections

Figure 10 shows the wind velocity (Uped) and normalized pollutant concentration
(C∗ped) at the pedestrian level for the oblique-angled intersection cases, including Cases D
(X-shaped), E (Y-shaped), and F (r-shaped).
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Figure 10a–f shows the Uped and C∗ped for three oblique-angled intersections under
wind direction ϕ = 0◦. For Case D-0, there exists a larger Uped at the left street segments,
the intersection, and the left side of the down street segments, which indicates that the
X-shaped intersection improves the pedestrian ventilation for upstream street segments.
Therefore, more areas of the left and lower streets experienced lower C∗ped. For Case
E-0, lower Uped values were observed on both sides of the Y-axis street, leeward sides
of the downstream street, and especially the central area of the intersection. In contrast,
the downstream branches experience higher Uped and lower C∗ped, particularly on the
windward sides of buildings. For Case F-0, Uped was lower at the intersection and on the
right side of the Y-axis street. While, C∗ped was higher on the left side of the Y-axis street
and the leeward corner of the right-down building, which was caused by the reverse flow
and local vortex.

Figure 10g–n displays the ∆Uped and ∆C∗ped for Cases E-45, E-90, and E-135, with
Case E-0 as the control case. The ϕ of 45◦ contributed to an obvious increase in Uped
at the intersection and the Y-axis street, but a decrease in Uped at the leeward side of
the right-down building. Consequently, a decrease in C∗ped was observed in the left and
down street segments with smaller angles with the prevailing wind, while the right street
experienced an increase in C∗ped, especially on the leeward side. The comparison between
Cases E-90 and E-0 shows that the intersection and down street segments have increased
Uped and decreased C∗ped. However, downstream of the left street segment decreased C∗ped.
For ϕ = 135◦, the two downstream street segments experienced an increase in Uped and
a decrease in C∗ped. The upstream street, and especially the leeward sides of the building,
experienced an obvious increase in C∗ped.

Figure 11a–c shows the variation in wind velocity (Unwz) and normalized pollutant
concentration (C∗nwz) along the height of the near-wall surface in Cases D-0, F-0, and E-0.
The changing trends of Unwz and C∗nwz on both sides of the street parallel to the inflow
wind direction, at the windward or leeward sides of the street, show similar changing
trends along the height in these three cases, which was also found for Cases A-0, B-90, and
C-90. Figure 11d shows the variation of Unwz and C∗nwz along the height in Case E-45. The
changing gradient of Unwz was generally lower, except for those above 15 m.

Figure 12a,b displays the flow rate for the intersection in Cases D-0 and D-45. The
intersection had a larger Qtotal and a higher β value when the wind direction (ϕ) was
parallel to the Y-axis. In contrast, the east street segment provided a limited inflow when
ϕ = 45◦. The main reason for this is the large angle between the east street orientation and
the approaching wind direction. Figure 12c–f displays the flow rate for the intersection in
Case E. The Qtotal reached a maximum at 135◦, with a small angle to the east street. Cases
E-0 and E-90 have relatively higher values of β than those of Cases E-45 and E-135, in
which there exists one street segment that has a significantly lower amount of air exchange
with the intersection. Figure 12g,h displays the flow rate for the intersection in Cases F-0
and F-45. Both cases have quite low β values, which reflect only the Y-axis street serving as
the main flow path, and there was a limited flow rate (≤100 m3/s) between the intersection
and east street.

Table 2 summarizes the spatially averaged C∗ values for the pedestrian zone, near-wall
zone, and canopy layer at three oblique-angled intersections. For Case D of the X-shaped
intersection, a significant decrease in C∗nwz was observed when the wind direction (ϕ)
changed from 0◦ to 45◦. When ϕ changed to 90◦ or 135◦, there was no obvious change,
all below 10%, of the spatially averaged C∗. For Case E of the Y-shaped intersection, C∗

decreased significantly, especially the C∗cnp, when ϕ changed to 45◦. The C∗cnp, C∗ped, and

C∗nwz showed more obvious changes when ϕ changed to 90◦, 135◦, and 180◦, respectively.
A decrease in C∗ped, and an increase in C∗nwz and C∗cnp were observed when comparing

Cases E-180 and E-0. For Case F of the r-shaped intersection, C∗ped and C∗cnp showed a
similar decrease when ϕ changed to 45◦, 90◦, 225◦, and 315◦. A more obvious increase in
C∗nwz was observed when ϕ changed to 135◦ and 180◦. There is an obvious increase in C∗
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for all three domains when comparing Case F-270 to F-0, which is mainly because there is
no opening of the r-shaped intersection for ϕ = 270◦.

Table 2. Spatially averaged normalized pollutant concentration for the pedestrian zone (C∗ped), the

near-wall zone (C∗nwz), and the canopy layer (C∗cnp) at oblique-angled intersections.

Cases C*
ped C*

nwz C*
cnp

Case D
(X-shaped)

D-0 0.34 0.21 0.21
D-45 0.32 (−6.7%) 0.17 (−15.3%) 0.20 (−9.0%)
D-90 0.35 (3.8%) 0.22 (6.8%) 0.22 (3.5%)
D-135 0.36 (4.8%) 0.22 (5.8%) 0.21 (0.0%)

Case E
(Y-shaped)

E-0 0.34 0.23 0.23
E-45 0.28 (−19.1%) 0.17 (−25.5%) 0.16 (−30.4%)
E-90 0.30 (−11.7%) 0.20 (−10.9%) 0.18 (−22.9%)
E-135 0.27 (−21.3%) 0.21 (−8.3%) 0.20 (−14.3%)
E-180 0.32 (−6.0%) 0.27 (17.2%) 0.26 (11.8%)

Case F
(r-shaped)

F-0 0.33 0.18 0.19
F-45 0.25 (−25.7%) 0.17 (−3.0%) 0.15 (−21.0%)
F-90 0.19 (−42.9%) 0.17 (−5.3%) 0.12 (−39.3%)
F-135 0.33 (−0.1%) 0.21 (15.0%) 0.21 (8.6%)
F-180 0.29 (−13.8%) 0.22 (22.7%) 0.21 (8.8%)
F-225 0.26 (−20.7%) 0.16 (−9.2%) 0.16 (−18.3%)
F-270 0.51 (54.7%) 0.28 (55.4%) 0.32 (65.9%)
F-315 0.23 (−32.2%) 0.14 (−21.3%) 0.13 (−32.1%)

Note. The results for the control case, that is, Cases A-0, B-0, and C-90 (the inflow wind direction is parallel to the
axis of symmetry), of each group is in bold. The percentage differences of concentration are displayed in brackets.
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3.3. Comprehensive Ventilation Analysis

To comprehensively evaluate the ventilation at different types of intersections, the
overall flow conditions for each case under the given simulation inflow conditions were
first compared, followed by an analysis of the divergent responses of τ∗ped, τ∗nwz, and τ∗cnp
to the change in intersection typology and approaching wind direction.

Figure 13a displays the difference of Qtotal for all the cases compared to Case A-0,
the “+”-shaped intersection under wind direction (ϕ) of 0◦. It was observed that all the
cases of right-angled intersections have a lower Qtotal, especially Case B-90 ϕ parallel
to the narrower street, Case C-45 with ϕ 45◦, oblique to the building array that led to a
larger inflow cross-sectional area, and Case C-270 with no opening in the inflow direction.
Meanwhile, the difference in Qtotal between Cases C-0, C-315, and A-0 was within 5%. For
the cases of oblique-angled intersections, larger differences may appear; for example, Cases
E-180 and F-270 have significantly lower Qtotal, and Case F-315 has an obviously higher
Qtotal. For Case D of the X-shaped intersection, Qtotal was higher when ϕ was parallel
to either the Y-axis or X-axis street. For Case E of the Y-shaped intersection, Qtotal was
higher under oblique ϕ angles of 45◦ and 135◦. For Case F of the r-shaped asymmetrical
intersection, Qtotal was higher under oblique ϕ angles of 45◦, 180◦, and 315◦.
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Figure 13. Flow rate conditions for all six types of intersections: (a) difference of Qtotal compared to that of Case A-0;
(b) flow ratio (β) for each case; (c) fraction of Qroof (λ) for each case.

Figure 13b displays the minimum flow ratio (β) between the horizontal openings
at intersections for all cases. The β for Case A-45 reached the highest value of 0.89,
which means that all four adjacent street canyons have similar air-exchange rates with the
intersection area. The Case B of “+*”-shaped intersection has the lowest average value of β
in all three groups of four-way intersection, which is due to the great difference of cross-
sectional area between X-axis and Y-axis streets. For Case D of the X-shaped intersection, β
was relatively higher, particularly under the approaching wind direction of 135◦, which
had a smaller angle of 15◦ with the oblique X-axis street. For other cases of three-way
intersections, it was common for one of the adjacent street canyons to serve as the only
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inflow or outflow path. Thus, a considerably balanced ventilation can be expected when
β reaches 0.5. It was noticed that the symmetrical cases, that is, Case C of the T-shaped
intersection and Case E of the Y-shaped intersection, had a higher average value of β,
compared to Case F of the asymmetrical r-shaped intersection. Subsequently, Cases F-0, F-
45, and F-270 may experience significant differences in pollutant concentrations at different
street canyons near the intersection.

Figure 13c displays the fraction of Qroof to Qtotal (λ) at the intersections for all cases.
A positive λ means there exists an inflow to the intersection at the roof opening, while a
negative λ indicates there is outflow from the intersection to the upper boundary layer.
Case C of the T-shaped intersection had the largest average value of λ absolute values. The
other cases normally have a value of λ approximately or less than ± 10%, except for Cases
A-0, B-90, and F-180, in which the approaching wind direction (ϕ) was parallel to one of the
streets, and Cases E-180 and F-270, in which there exists no opening in the inflow direction
and thus leads to a considerable vertical air-exchange by the local vortex, and Cases D-90,
E-90, and F-90, in which there exists an angle of 30◦ between ϕ and the inflow street, thus
forming a three-dimensional swirling airflow at the intersection.

The results shown in Figure 13c indicate that Qtotal for the six groups of cases with
different intersection typologies differ greatly under given inflow conditions, that is, the
same wind velocity profile and different wind directions. Therefore, it should be noted that
the spatially averaged pollutant concentration (C∗) shown in Tables 1 and 2 was calculated
without considering the difference between the flow rates at the intersections of different
cases. To further explore the pollutant removal capacity of each case, the normalized
indices of τ∗ped, τ∗nwz, and τ∗cnp were calculated by considering the influence of the total
volumetric flow rate (Qtotal) and volume of the studied area (Vcnp). Figure 14 displays the
difference in τ∗ped, τ∗nwz, and τ∗cnp between Case A-0 and other cases. It can be observed
that Cases A-45, B-90, C-45, C-270, D-45, D-90, E-90, E-180, F-90, F-225, and F-270 had
overall lower τ∗. Specifically, τ∗ped, τ∗nwz, and τ∗cnp for Cases B-45, B-90, C-0, C-270, E-180,

and F-225 showed similar changing trends. The differences in τ∗ped and τ∗cnp were similar

for the above cases, while τ∗nwz for Cases A-45 and F-90 showed relatively less variation,
and τ∗nwz for Cases D-45, D-90, and F-270 showed relatively greater changes. It was also
noticed that τ∗ped for Case B-0 showed a more significant increase compared to τ∗nwz, and

τ∗cnp. For Cases D-0 and D-135, τ∗nwz showed a relatively greater decrease. For Case F-180,
τ∗nwz and τ∗cnp showed a significant increase compared with τ∗ped. These differences reflect
the divergence in ventilation and pollutant diffusion of pedestrian zones, near-wall zones,
and the canopy layer.
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4. Limitations and Prospects

Although this study investigated only six types of intersections under homogeneous
urban texture, it provides particular insight into the influence of intersection typology and
wind direction on the ventilation and pollutant dispersion in pedestrian zones, near-wall
zones, and the canopy layer. Other factors, such as the street length–width ratio [15], nearby
building morphology [11,12], and surrounding urban context [33], have been confirmed
to influence urban ventilation in previous studies, and should be further studied. The
vehicle emissions were assumed to be uniform and evenly mixed at the bottom of the
street canyon, that is, from the ground to 2 m, which is consistent with the setting of
Hang et al. [24]. Different settings were seen in relevant studies [9,34], and it can be
expected that the emission intensities of pollutants are affected to varying degrees owing
to the different average traffic speeds at various intersections. Therefore, the pollution
source settings should be further studied by employing experimental studies [35]. Under
low wind speed conditions, solar radiation and convective heat transfer play leading
roles in the ventilation of street canyons and intersections [36] and need to be further
studied using non-isothermal simulations. Moreover, to further explore the impact of
ventilation at intersections, pedestrian exposure to traffic-related pollutants, indices such
as the personal intake fraction [14] and detailed modeling methods for sidewalks, trees,
and moving vehicles [37], need to be considered. Notably, the pollutant concentration in
the near-wall zone affects the indoor air quality in complex ways. For example, a wind
flow parallel to windows brings significantly less air and pollutants into a room compared
with a perpendicular flow [38]. As such, coupled outdoor and indoor air quality modeling
approaches [14,39] should be employed to explore resident exposure, including outdoor
air flow simulation and building ventilation that considers adaptive hybrid natural and
mechanical ventilation strategies [40].

5. Conclusions

We studied the flow and pollutant dispersion of six intersection models with different
typologies (right-angled and oblique-angled) for eight wind directions. The distribution
and spatially averaged values of wind velocity and normalized pollutant concentration for
the pedestrian zone, the near-wall zone, and the canopy layer were analyzed. The total
volumetric flow rate (Qtotal), the minimum flow ratio (β) between the horizontal openings
of the intersection, the ratio of Qroof to Qtotal (λ), and the spatially averaged normalized
age of air (τ∗) were used to evaluate the ventilation at intersections. The main conclusions
are summarized as follows:

• Right-angled intersections have a larger Qtotal but lower β values because of the
significant channel effect when the wind direction is parallel to the street canyon.
Oblique wind directions led to a lower Qtotal but a higher β value. For T-shaped
intersections, a larger cross-sectional area for the outflow appears when the wind
direction (ϕ) = 315◦, which helps to increase Qtotal.

• Oblique-angled intersections experience a more significant difference in Qtotal when
the wind direction changes. However, β shows higher stability except for the r-
shaped asymmetrical intersection or X-shaped intersection for ϕ = 45◦, oblique to the
building arrays.

• The vertical air-exchange rates for intersections are considerable when the wind
directions are parallel to the street orientation, for example, “+”-shaped intersection
when ϕ = 0◦, or when there is no opening in the inflow direction, for example, a
Y-shaped intersection when ϕ = 180◦.

• For most cases, the C∗ and τ∗ values for the pedestrian zone and the canopy layer
showed similar changes to ϕ, compared to those for the near-wall zone. There are
still cases in which only the τ∗ped or τ∗nwz changed substantially; for example, when the
Y-shaped intersection experienced a change in the inflow wind direction from 0◦ to
135◦. This reflects the divergence in ventilation and pollutant diffusion at different
locations of the intersections.
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This study provides insight into the divergent responses of the ventilation and pol-
lutant concatenation of the pedestrian zone, the near-wall zone, and the canopy layer, to
changes in intersection typology and wind direction. These results can be directly used
to evaluate the environmental quality of intersections under specific prevailing wind di-
rections. Present urban ventilation assessments need to pay closer attention to the risk
of pollutant accumulation near building facades, as this impacts the amount of resident
exposure to pollutants. In future research, the real neighborhood environment and overall
performance of multiple intersections in an area should be further considered, which will
help gain more practical knowledge for optimizing local urban design.
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