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ABSTRACT: The degree of π orbital overlap (DPO) model has
been demonstrated to be an excellent quantitative structure−
property relationship (QSPR) that can map two-dimensional
structural information of polycyclic aromatic hydrocarbons
(PAHs) and thienoacenes to their electronic properties, namely,
band gaps, electron affinities, and ionization potentials. However,
the model suffers from significant limitations that narrow its
applications due to inefficient manual procedures in parameter
optimization and descriptor formulation. In this work, we
developed a machine learning (ML)-based method for efficiently
optimizing DPO parameters and proposed a truncated DPO
descriptor, which is simple enough that can be automatically extracted from simplified molecular-input line-entry system strings of
PAHs and thienoacenes. Compared with the result from our previous studies, the ML-based methodology can optimize DPO
parameters with four times fewer data, while it can achieve the same level of accuracy in predictions of the mentioned electronic
properties to within 0.1 eV. The truncated DPO model also has similar accuracy to the full DPO model. Consequently, the ML-
based DPO approach coupled with the truncated DPO model enables new possibilities for developing automatic pipelines for high-
throughput screening and investigating new QSPR for new chemical classes.

1. INTRODUCTION

Applications of machine learning techniques to research in
chemical and related fields have been gaining attention
recently. Some novel applications include generating drug
candidates,1 investigating chemical phenomena,2 and assisting
theoretical calculation.3−8 One of the most prominent tasks for
applying machine learning is physical or chemical property
predictions. In this direction, quantitative structure−activity
relationship (QSAR) specializes in the prediction of the
biological activity of compounds from their structural
information.9−12 Similarly, materials scientists employ a similar
technique called quantitative structure−property relationship
(QSPR) for predicting various properties of materials from
their 2D or 3D structural data.13−17 In most QSPR and QSAR
methodologies, predicting tasks heavily depend on a set of
descriptors,9,13 which serve as numerical representations of
structural information of molecules. Typically, these descrip-
tors are numerical objects obtained by transforming raw
molecular data by some predefined procedure. These
descriptors can be as simple as a list of molecule’s
compositions5,6 or as complex as matrices,18−20 finger-
prints,15,16,21 etc.8,14,22−26

Recently, representation learning27 has been introduced to
harness deep learning concepts for actively refining the process

of molecular representation extraction through learning. For
instance, neural fingerprints28 are modeled after the extended
connectivity fingerprints (ECFPs).21 The ECFPs are designed
to solely represent each molecular fragment as uniquely as
possible. On the other hand, neural fingerprints replace some
operations in ECFP generation with learnable modules that
actively configured themselves during training to optimally
represent molecular fragments for a certain task. As such,
fingerprints of fragments are similar if the learned model can
recognize the similarity between them. Hence, the representa-
tion has more expressiveness and interpretability. This
approach was recently featured in multiple publications and
yielded excellent results.29−32

The degree of π orbital overlap (DPO) model is a
quantitative structure−property relationship (QSPR) model
for predicting electronic properties of polyaromatic hydro-
carbon (PAH) and thienoacene compounds.33,34 The DPO
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model relies on a representation or descriptor called the degree
of π orbital overlap (DPO). Based on a quantum mechanical
physical model, this descriptor represents a PAH or
thienoacene molecule by a polynomial of six nonzero
parameters, each associating the contribution of a topological
trait of a polyaromatic hydrocarbon (PAH) compound to its
final electronic properties. This has been proven to be rather
accurate as it can accurately predict electronic properties,
namely, electron affinities, ionization potentials, and band gaps
to within 0.1 eV.33,34 The original parameter optimization
schedule is based on the prerecognition that each of them
associates with a structural feature, which suggests a specific
data set for optimizing it by trial and error. The described
optimization procedure gives rise to several setbacks. First, it
requires a large number of data points to calibrate the model,
yet the final set of parameters may not be optimal globally.
Second, the application of the DPO model to other chemical
classes is not trivial. Finally, to date, determination of the DPO
value of each molecule is done manually, and thus, it is
unrealistic to use for high-throughput screening of massive
databases.
In this work, we implement and assess the performance of a

learning procedure for developing a DPO model for a class of
molecules. The goal of this new procedure is to provide an
automated pipeline for parameter optimization in order to
remove the number of setbacks of our previous works as
mentioned above. This is motivated by recognizing that DPO
descriptors can be treated as a learnable representation, which
can be done by applying various learning principles and
techniques such as empirical risk minimization, gradient
descent, and backpropagation. Furthermore, toward the goal
of creating an automatic pipeline for the DPO model, we
devised a truncated DPO model. The analysis of results in the
optimization of the DPO descriptors reveals that several terms
in the DPO descriptor can be neglected with little
consequence, thus suggesting a truncated DPO model. With
the truncated DPO model, we demonstrate an automated

pipeline that uses simplified molecular-input line-entry system
(SMILES) strings as input for molecular representations that
can be employed for high-throughput screening. Assessments
for the accuracy and applicability of the truncated DPO model
in predicting the electronic properties of PAHs and
thienoacenes are then provided.

2. METHODS
2.1. DPO Models and Descriptors. 2.1.1. DPO Models.

A DPO model is a physics-based QSPR model for predicting
electronic properties of polyaromatic compounds such as
PAHs and thienoacenes. It is based on a simple particle in the
2D box quantum mechanical model to connect structural
information to its physical properties related to its energy levels
such as its electron affinity (EA), ionization potential (IP), and
highest occupied molecular orbital (HOMO)−lowest unoccu-
pied molecular orbital (LUMO) gap. Technically, input
structural information can be represented by 2D structures
of polyaromatic compounds. The procedure of the model can
be described briefly as follows. First, from a polyaromatic
compound’s structure, a polynomial of six preoptimized
nonzero parameters is evaluated to obtain the structure’s
DPO value. This step is done manually by following a set of
structural descriptive rules. The DPO value is subsequently
used in QSPR linear equations to obtain the predicted
properties. Three distinct linear equations of the form y =
wx + wb, in which x is the DPO value, y is the property, and w
and wb are weights, correspond to three modeled electronic
properties mentioned above. In this work, the term DPO
descriptor is referred to the polynomial, as it reflects the
topological structure value of the polyaromatic compound. The
parameters that associate with these DPO descriptors are
called DPO parameters.

2.1.2. Rules for Determining DPO Descriptors. A brief
explanation of the DPO rules is presented here to introduce
some important features of the rules. Complete descriptions of
the DPO rules with examples are given in our previous

Figure 1. Examples of assigning DPO values to different fused bonds. The overlayer order k and orientation o are also given for some segments.
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works.33,34 In this study, we explain how the DPO descriptor
captures topological structural information and how the
truncated DPO descriptor arises.
The goal of the DPO rule is to assign each fused bond in the

polyaromatic compound a component in the DPO polynomial
suggested by the use of an effective 2D particle-in-a-box
quantum mechanical model. Fused bonds of the same segment
are assigned similarly depending on the topological position of
the segment in the molecule. The topological position can be
defined with respect to the reference segment, which can be
uniquely determined via a set of rules. Thus, the reference
segment needs to be determined first and is generally the
longest segment. With reference to this segment, the
topological position of any segment is specified by the
orientation and the overlayer order. In terms of orientations
of different segments in a PAH, a segment can be parallel,
forming an angle of 120°, or forming an angle of 60° to the
reference segment. For each of those segments, the parameters
a, b, and c are used in assigning value to its fused bonds. The
overlayer order of a segment represents its distance to the
reference segment orthogonally. As such, the farther the
segment is above or below the reference segment, the larger
the order is. The sum of values assigned to fused bonds of such
segments is scaled by a factor of d raised to the power of the
overlayer order k. In summary, supposing o and k are
respectively the relative orientation and the overlayer order
of a segment, the equation below is the contribution of a given
segment to the overall DPO value and describes how fused
bonds in that segment are assigned value.

g o k

a a d o

b bd bd d o

c cd cd d o

( , )

1 (1 ) (1 2 ) ... , 0

... , 120

... , 60

k

k

k

segment

1 2

1 2 1

=

[ + − + − + ] = °

[ + + + ] = °

[ + + + ] = °−

l

m
ooooooo

n
ooooooo

(1)

Figure 1 illustrates examples for assigning DPO values to
fused bonds using the above equation. For compound C1, the
reference segment is marked with an arrow across. Its fused
bonds are assigned as the first case of the equation with k = 0.
The segment that forms with the reference segment an angle of
120° is assigned to the second case with k = 0. Finally, the
uppermost segment that is parallel with the reference segment
is two orders above the reference; therefore, the first case of
the equation is used with k = 2. For compound C2, consider
the upper rightmost segment that forms with the reference
segment (marked with an arrow) an angle of 120°. Since it
stems from the parallel segment that is one order above the
reference segment, the second case of the equation is used with
k = 1 assigned to this segment. For similar cases where there
are segments that form an angle of 60° with the reference one,
refer to compounds C3 and C4.
Lastly, the parameters a* and d* are used whenever

thiophene rings are in the segment. The DPO value of a
structure is the sum of DPO values of all segments with the
assigned terms to all of its fused bonds.

2.1.3. Truncated DPO Descriptors. In the DPO model, the
contribution of each overlayer segment is scaled by dk.
Previous studies showed that the d parameter is between 0.2
and 0.3. This suggests that segments that are far from the
reference segment can be assumed to have a negligible
contribution and thus can be dropped from the total DPO

Figure 2. Illustrations of computing truncated DPO values for the case of multiple longest segments. Molecule A has the two longest segments
shown as arrows in A1 and A2. The truncated DPO of A is the average of DPO values when A1 and A2 are chosen as the reference segment, i.e.,

DPOA
DPO DPO

2
A1 A2= +

.

Figure 3. Illustration on the assignment of DPO values to each fused bond; terms in gray are neglected in the truncated DPO model.
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descriptor. The truncated DPO model presented here omits
the contributions of several types of overlayer segments.
The truncated DPO inherits most of the original DPO

assignment rules two new simplifications. First, if multiple
segments have the same longest length, then there is no need
to go through an elaborate process to determine the unique
reference segment. Instead, the final DPO value is the average
of all DPO values where each one of such segments is treated
as the reference segment. Figure 2 illustrates this rule.
Second, only two types of overlayer segments are

considered. One is the adjacent segments that have one ring
in common with the reference segment. The other is segments
that have one ring in common with the adjacent segments.
Contributions from other overlayer segments are ignored. For
instance, Figure 3 shows two different structures that have the
same value of truncated DPO.
2.2. Generating Truncated DPO from SMILES Strings.

In order to employ machine learning techniques and further
expand the applicability of the DPO model to different
chemical classes, we need to provide a means to extract
structural information from polyaromatic molecules repre-
sented by the simplified molecular-input line-entry system
(SMILES).35 A SMILES string provides information regarding
atoms and bonds of a molecule that can be used to create
graph data structures. From there, recognizing groups of atoms
that form rings can be done by employing a graph traversal
algorithm. Rings that are in a straight line can be easily
recognized and grouped into segments. Subsequently, the
longest segments along with their adjacent segments and
topology can be determined easily for the truncated DPO. The
process is schematically illustrated in Figure 4.
2.3. Optimization of the DPO Model. In this work,

instead of manually optimizing six DPO parameters for PAHs
and thienoacenes one at a time as in our previous works, a
machine learning technique is developed. The optimization
scheme is based on the empirical risk minimization (ERM)
principle.36 The empirical risk refers to the error of the model’s
predictions for all training samples and is assessed by the so-
called loss function, which is the mean square error (MSE) for
regressing models. According to the ERM paradigm, the set of
optimal parameters of the model is obtained by minimizing the
value of the empirical risk and can be solved by the gradient

descent algorithm. The first-order derivative of the loss
function with respect to parameters is obtained by working
backward from the loss function to the parameters using chain
rules. Hence, this technique of finding derivatives is named
backpropagation.37 The optimization procedure is given step
by step below.
In step 1, set t = 0. Initiate six nonzero DPO parameters p[0]

= a[0], b[0], c[0], d[0], a*[0], and d*[0] as zeros. We adopt the
convention that the number inside the square bracket of the
superscript of a parameter denotes the number of time steps or
iterations, while the subscript denotes the general index of a
molecule. Also, p is used to collectively denote six nonzero
parameters a, b, c, d, a*, and d*.
In step 2, derive analytically the gradient of the DPO

polynomial gi with respect to the parameter p for each
molecule in the training set.

g
p

g a b c d a d( , , , , , )p i
t

i
t t t t t t∇ = ∂

∂
[ ] [ ] [ ] [ ] [ ] *[ ] *[ ]

(2)

In step 3, compute the DPO value xi
[t] and its derivative with

respect to p ∇pxi
[t] numerically using the set of parameters in

the current time step. Note that we denote xi as a numerical
DPO value, while gi denotes its polynomial.

x g a b c d a d( , , , , , )i
t

i
t t t t t t=[ ] [ ] [ ] [ ] [ ] *[ ] *[ ]

(3)

x g a b c d a d( , , , , , )p i
t

p i
t t t t t t∇ = ∇[ ] [ ] [ ] [ ] [ ] *[ ] *[ ]

(4)

In step 4, apply the least-square algorithm to determine w[t]

and wb
[t] from DPO value xi’s and the true value of the modeled

property yi’s.
In step 5, compute the prediction ŷ[t] by plugging xi

[t] into
the linear equation (eq 5).

y w x wi
t t

i
t

b
t̂ = +[ ] [ ] [ ] [ ]

(5)

In step 6, compute the mean square error (MSE) loss
function (eq 6) for all molecules in the training set.

y y
N

y y( , )
1

( )t t t

i

N

i
t

i
t

1

2∑̂ = ̂ −[ ] [ ] [ ]

=

[ ] [ ]

(6)

Figure 4. Flow chart illustrating the process of extracting truncated DPO descriptors from SMILES strings.
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In step 7, compute the gradient of the loss function with
respect to each parameter by working backward using the
chain rule:

p y
y
g
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y y w x
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In step 8, update these parameters according to equations
(eq 8).

p pt t
p

t1 α= − ∇[ + ] [ ] [ ]
(8)

α is the adjustable learning rate that is 0.1 by default.
In step 9, increment t = t + 1 and repeat steps 3 through 6 to

obtain a new loss value with the value of new parameters. If
predefined conditions are not satisfied, then continue steps 7
through 9. Else, if predefined conditions are satisfied, then stop
and return to the model with the optimized parameters.
Many conditions can be set in step 9 to mitigate training

hardships and make the training process more automatic. For
instance, to make the algorithm practical, a maximum number
of cycles and the convergent threshold were introduced. The
algorithm is succinctly illustrated in the form of a flow chart as
in Figure 5.

The DPO model described above is called the machine
learning (ML)-based DPO model. This model is implemented
in the Python programming language. The model is built with
various libraries. Numpy38 is employed to rapidly carry out
vector computation. Pandas39 is employed for working with
data sets. Sklearn40 is used to rapidly deploy linear regression
models. Sympy41 is used for symbolic differentiation and rapid
evaluation of symbolic expressions.

2.4. Data. This work mainly concerns the electronic
properties of polyaromatic compounds, namely, PAHs and
thienoacenes. The PAH data is reused from our previous work
on the DPO model for PAH.34 The data sets consist of a
training set containing PAH molecules of 3−6 rings and a test
set consisting of PAH molecules of 7−8 rings. Similarly, taken
from our previous work on the DPO model for thienoacene
molecules33 are two pairs of training and testing data for two
classes of thienoacenes containing either one or two thiophene
rings. Cumulatively, there are 248 data points, of which 132 of
them are training instances and the remaining 116 data points
are for testing.
The current methodology enables us to investigate the

convergence and stability of the parameter optimization
procedure via machine learning framework as functions of
the data training size. To make the optimization procedure
more robust, for each run, all 248 data points are freshly split
into 132 data points for training and 116 data points for testing

Figure 5. Flow chart illustrating the ML-based DPO parameter optimization procedure.
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in a random and stratified manner. This is done by first binning
all data points according to their bandgap values. The bin
width is chosen to be 0.5 eV. The range of bandgap values
starts from 1.5 eV and ends at 5.0 eV. Data points are then
drawn from each bin to assemble the training set. The number
of data points to be sampled from each bin is the size of the
training set scaled by the ratio of the bin size and the total
number of data points. Additional data points may be sampled
randomly regardless of bins to meet the specific sampling size.
This sampling method is referred to as stratified sampling
throughout this work.

3. RESULTS AND DISCUSSION
3.1. Convergence Rate of the ML-Based DPO Models.

To examine the convergence rate of the ML-based DPO
models, we fitted the DPO models against the bandgap
property of samples in a full-size training set with various
learning rate values. The mean square error (MSE) of the
model for the HOMO−LUMO gap is monitored at each time
step. The model is considered converged if the difference
between its MSE before and after an update is less than 10−5

eV2. The maximum number of time steps is 150.
Plots of the root-mean-square deviation (RMSD, square root

of MSE) of models for the bandgap property as a function of
the number of time steps are shown in Figure 6. Models

trained with learning rate values of 0.01, 0.05, and 1.5 fail to
reach convergence within the allotted number of time steps.
With learning rates of 0.01 and 0.05, the model’s error
descends too slowly, and thus, it is unable to reach the
converged error of 0.1 eV within 160 time steps. On the other
hand, the error at a learning rate of 1.5 oscillates around 0.20
and 0.25 eV and is unable to converge. Models trained at

learning rate values of 0.50, 1.00, and 1.25 take 43, 24, and 126
time steps to converge, respectively, while it is barely
converged for models at a learning rate of 0.10. Note that at
a learning rate of 1.25, the error exhibits some oscillation and
does not monotonically decrease as observed for those
between 0.1 and 1.0. These results suggest that the learning
rate values should range between 0.10 and 1.0. For this study, a
learning rate of 1.0 was used.

3.2. Training and Testing ML-Based DPO Models.
Here, we present the results of the ML-based full and
truncated DPO models trained with full-size (132 data points)
training sets and their accuracy assessed with the full-size test
set (116 data points). In order to compare them with our
previous works,33,34 DPO parameters are fitted against the
same density functional theory (DFT) calculation HOMO−
LUMO gap values. These parameters are then used to
obtained QSPR linear equations for predicting band gaps,
EA, and IP properties.
The converged values for DPO parameters and parameters

of the linear equation fitted against HOMO−LUMO gap
values are presented in Table 1 along with those from our
previous studies. The machine learning-based optimized
parameters are rather close to those obtained using the
manual optimizing process mentioned. The converged
parameters for both the full and truncated DPO models are
also quite close together.
Figures 7 and 8 show the linear correlations between the

optimized DPO values and the quantum mechanical DFT-
calculated values of the HOMO−LUMO gap, EA, and IP.
Excellent linear correlations between the values of structural
DPO and the physical electronic properties further confirm the
physics behind the QSPR model. Figure 9 plots correlations
between predictions from both ML-based full and truncated
DPO models and the DFT-calculated values of electronic
properties of molecules in the test set. Moreover, we repeat
this experiment 20 times, each with freshly generated training
data sets, and then average them over the optimized
parameters and the root-mean-square deviation (RMSD)
values. It is found that both the full and truncated DPO
models converged to the average, and standard deviation
values of the RMSD of all 20 runs are 0.10 ± 0.01, 0.07 ± 0.01,
and 0.06 ± 0.00 eV for the HOMO−LUMO gap, EA, and IP,
respectively. They are the same magnitude of errors compared
to our previous studies and are within the accuracy range of the
DFT level of theory, which was used to generate the data.
Two general problems in machine learning that models

often encounter are underfitting, which is identified by the low
training accuracy, and overfitting, which is recognized by a high
training accuracy but low test accuracy. The results presented
in Figure 9 and the average results of multiple test runs
indicate that the ML-based DPO models do not suffer from
either the overfitting or underfitting case. The former is no
surprise since the DPO model has been based on a quantum

Figure 6. Plots of RMSD for the band gap of ML-based DPO models
trained at different learning rates versus the number of time steps.

Table 1. Values of DPO Parameters and Linear Regression Weights for the ML-Based Full and Truncated DPO Models and
Published Values

DPO parameters parameters of the linear equation

a b c d a* d* wb w

full DPO 0.08 −0.12 0.32 0.30 0.40 0.16 4.99 −0.77
truncated DPO 0.07 −0.13 0.36 0.28 0.41 0.16 4.99 −0.76
refs 33 and 34 0.05 −0.25 0.33 0.33 0.50 0.15 4.68 −0.65

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02650
ACS Omega 2022, 7, 22879−22888

22884

https://pubs.acs.org/doi/10.1021/acsomega.2c02650?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02650?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02650?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02650?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mechanical model that connects structural variables to their
physical properties.33,34 The latter problem is entirely over-
come thanks to the use of the stratified data splitting approach.
The above results justify the present truncation to simplify

the calculation of the total DPO value for a given molecule.
Furthermore, the ML-based approach provides equally
accurate results to the previous methodology in deriving
QSPR relationships but is more robust and can be automated.
Next, we investigated the stability of the ML-based models,

particularly the robustness of the ML-based methodology in
optimizing the DPO model, namely, the effect of the training
set size on the accuracy of the models is examined. To this end,
using the stratified data splitting approach, different training
sets with sizes of 13, 26, 40, 53, 66, 79, 106, and 132 data
points were constructed. The performances of those models
for the task of predicting values of the HOMO−LUMO gap,
EA, and IP were then assessed using the full-size test set of 116
data points. Similar to the above, for each training data size, 20
experiments were done with different random data splits (data
ensembles from 132 data points), and the results were then

averaged. The plots of average RMSDs for both the truncated
and full DPO models as a function of training set sizes are
presented in Figure 10. Figure 11 presents the plots of the
variation of DPO parameters versus the sizes of the training
set.
Figure 10 shows that the RMSDs for both the full and the

truncated DPO models decrease rapidly as the training set size
increases. In particular, both ML-based DPO models converge
to an RMSD value between 0.10 and 0.11 eV for the band gap
and 0.06 and 0.07 eV for both the EA and IP by about 53
training data points, which is less than half of the full-size
training set. Even with a smaller data set of 26 training samples,
both models already achieve a satisfactory RMSD of around
0.12−0.13 eV for the band gap and 0.07−0.08 eV for the EA
and IP. Similarly, as shown in Figure 10, both models’
parameters nearly converge to their respective optimal values
with only 26 training points.
The result indicates that the machine learning methodology

presented in this study is much more robust and efficient in
optimizing the DPO parameters as compared to our previous
manual approach. Furthermore, the fact that nearly identical
results were achieved for both the full and truncated DPO

Figure 7. Plots of linear correlations between the optimized full DPO
values and the DFT-calculated properties of (A) HOMO−LUMO
gap, (B) electron affinity, and (C) ionization potential of molecules
from the training set.

Figure 8. Plots of linear correlations between the optimized truncated
DPO values and the DFT-calculated properties of (A) HOMO−
LUMO gap, (B) electron affinity, and (C) ionization potential of
molecules from the training set.
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models justify the truncation approximations used and the
applicability of the truncated DPO model in automated
pipelines for high-throughput applications. In addition, the
success of the truncated DPO model also indicates that for
electronic properties of PAH or thienoacene, only the longest
segment and its nearest neighbor segments are important.
Contributions from other segments are negligible.
3.3. How to Use the ML-Based DPO Models. To

encourage applications of the ML-based DPO model presented
here, we provided a set of tools that users can easily modify to
apply to other physical properties of aromatic hydrocarbons or
other classes of molecules. In particular, code for the ML-based
DPO model can be found in the GDDPO.py script. Data
splitting, model training, and testing can be done in a couple of
lines using the all-in-one Python Object Trainer from the
trainer.py script. The data set consists of either manually
formulated DPO polynomials or SMILES strings representing
molecules and their “true” values of physical properties such as
the band gap, EA, or IP. Data and codes presented in this work
are available via GitHub at https://github.com/Tuan-H-
Nguyen/Machine-Learning-Degree-Pi-Orbital.
In addition, it is also worth pointing out that models that

have a similar structure to the DPO model but with different
rules for mapping compounds to polynomial descriptors can

also be used with this script. Note that users can customize for
different descriptors, which requires a list of symbols used to
denote parameters to be provided to either the model or the
Trainer object. In this case, the object serves as an optimizer
for seeking optimal values of those designated parameters
using a given set of data.

4. CONCLUSIONS
In this study, we present a machine learning approach to
optimize the QSPR-DPO model for mapping structural
information of PAHs and thienoacenes to their electronic
properties. Furthermore, to expand the possibility of employ-
ing the DPO model to other chemical applications, a truncated
DPO model that can be easily implemented in an automated
pipeline is proposed. While the former provides the original
model with a deep learning-inspired learning mechanism, the
latter introduces some new rules that facilitate the extraction of
DPO descriptors from linear molecular SMILES strings.
Systematic assessments on the performance and accuracy of
both the ML-based methodology and the truncated DPO

Figure 9. Plots of QSPR-predicted values versus DFT-calculated
electronic properties of the HOMO−LUMO gap, electron affinity,
and ionization potential, respectively from the top to bottom for
compounds in the test set. Plots (A)−(C) (left side) are from the full
DPO model, and plots (D)−(F) (right side) are from the truncated
DPO model.

Figure 10. Plots of RMSDs and their standard deviations (as error
bars) of the full and truncated DPO models of data from the test set
versus the sizes of the training set. (A) HOMO−LUMO gap, (B)
electron affinity, and (C) ionization potential.
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model in comparison with previous works were done using the
same data set of 248 PAHs and thienoacenes.
The results indicate that the ML-based methodology can

optimize DPO parameters to a reasonable accuracy of around
0.12 eV in the band gap with as little as 26 data points, which is
much smaller than the 132 data points used in our previous
works. The methodology rapidly converges as the number of
training samples increases. The ML-based methodology also
shows the same level of accuracy in generating QSPR
relationships for predicting the band gap, ionization potential,
and electron affinity electronic properties to within 0.1 eV as
compared to our previous works and within the accuracy of the
quantum chemistry method used to generate the data.
Comparison between results from the full and truncated
DPO models shows that the truncated DPO model can achieve
the same level of accuracy as the full model. This confirms the
validity of the truncated DPO model. Consequently, the ML-
based methodology combined with the truncated DPO model
enables an automated DPO model-based pipeline that takes in
SMILES strings and returns predictions on electronic proper-
ties to be implemented, thus expanding the ease of use and
applicability of the DPO model to different chemical classes as
well as its applicability in high-throughput screening for
materials design.
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