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Abstract 12 

 13 

Recently developed long-read RNA sequencing technologies promise to provide a more accurate and 14 

comprehensive view of transcriptomes compared to short-read sequencers, primarily due to their 15 

capability to achieve full-length sequencing of transcripts. However, realizing this potential requires 16 

computational tools tailored to process long reads, which exhibit a higher error rate than short reads. 17 

Existing methods for assembling and quantifying long-read data often disagree on expressed transcripts 18 

and their abundance levels, leading researchers to lack confidence in the transcriptomes produced using 19 

this data. One approach to address the uncertainties in transcriptome assembly and quantification is by 20 

assigning the long reads to transcripts, enabling a more detailed characterization of transcript support at 21 

the read level. Here, we introduce TranSigner, a versatile tool that assigns long reads to any input 22 

transcriptome. TranSigner consists of three consecutive modules performing: read alignment to the given 23 

transcripts, computation of read-to-transcript compatibility based on alignment scores and positions, and 24 

execution of an expectation-maximization algorithm to probabilistically assign reads to transcripts and 25 

estimate transcript abundances. Using simulated data and experimental datasets from three well-studied 26 
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 2 

organisms — Homo sapiens, Arabidopsis thaliana, and Mus musculus — we demonstrate that TranSigner 27 

achieves accurate read assignments, obtaining higher accuracy in transcript abundance estimation 28 

compared to existing tools. 29 

 30 

Background 31 

 32 

Long-read RNA sequencing (RNA-seq) represents a remarkable advancement towards achieving full-33 

length sequencing of transcripts, offering novel insights into transcriptomes previously characterized only 34 

with short reads. Short-read sequencing data has limitations in several applications such as transcript 35 

assembly, primarily due to its fragmented nature and inherent biases (e.g., GC content, amplification) that 36 

add noise to downstream analyses (Benjamini & Speed, 2012; Hansen et al., 2010; Li et al., 2009). Long-37 

read sequencing technologies address these limitations by substantially increasing the read lengths, 38 

allowing each read to generally cover a full-length transcript, and employing strategies such as direct 39 

RNA sequencing to reduce biases. Consequently, long-read data can provide more comprehensive and 40 

accurate profiles of complex transcriptomes. 41 

 42 

However, despite their potential, the full capabilities of long-read RNA-seq remain untapped due to the 43 

limited inventory of tools optimized for analyzing long-read data. Although tools such as FLAIR (Tang et 44 

al., 2020), Bambu (Chen et al., 2023), ESPRESSO (Gao et al., 2023), and StringTie2 (Kovaka et al., 45 

2019) are designed to characterize transcriptomes by both identifying novel isoforms and quantifying 46 

transcripts using long-read RNA-seq data, their results often lack agreement (Chen et al., 2023; Gao et al., 47 

2023; Pardo-Palacios et al., 2023; Tang et al., 2020).  48 

 49 

One way to address uncertainties in transcriptome assemblies is by assigning specific long reads to 50 

transcripts. This allows for a more in-depth evaluation of the read-level support for transcripts, as opposed 51 

to relying on read counts only. Given read-to-transcript assignments, transcripts can be directly associated 52 
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with a distribution of supporting read lengths, quality scores, alignment positions, and more. These 53 

expanded sets of features can be used to derive a more confident set of transcripts and improve the 54 

accuracy of transcript abundance estimates. 55 

 56 

Few tools, including FLAIR and Bambu, track read-to-transcript assignments, but this functionality is 57 

integrated into more complex pipelines that also identify novel isoforms in addition to quantifying known 58 

transcripts. A standalone tool capable of performing read assignment and quantification on any input 59 

transcriptome can be paired with other methods focusing on transcriptome assembly and could therefore 60 

enable users to investigate any transcriptome of their choice. However, this need remains largely unmet, 61 

with only a few recent methods, namely NanoCount (Gleeson et al., 2021), attempting to address it by 62 

quantifying transcripts, yet still lacking the ability to assign specific reads to transcripts. 63 

 64 

Here we introduce TranSigner, a novel transcript quantification-only method that accurately assigns long 65 

RNA-seq reads to any given transcriptome. TranSigner first maps reads onto the transcriptome using 66 

minimap2 (Li, 2018, 2021) and extracts specific features from the alignments, such as alignment scores or 67 

the 3’ and 5’ end read positions on a transcript. These features are then utilized to compute compatibility 68 

scores between read and transcript pairs, which indicate the likelihood of a read to originate from a 69 

specific transcript. TranSigner then employs an expectation-maximization (EM) algorithm to derive 70 

maximum likelihood (ML) estimates for both the read-to-transcript assignments and transcript 71 

abundances simultaneously. We show that by guiding the EM algorithm in the expectation step with 72 

precomputed compatibility scores, TranSigner generates high-confidence read-to-transcript mappings and 73 

improves transcript abundance estimates.  74 

 75 

Results 76 

 77 
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Simulated data performance. We first compared TranSigner against an existing quantification-only 78 

tool, NanoCount (Gleeson et al., 2021). We benchmarked all three tools using five sets of simulated ONT 79 

reads: three sets of direct RNA reads and two sets of cDNA reads. The reads were simulated from 80 

protein-coding and long non-coding transcripts in the GRCh38 RefSeq annotation (release 110), and then 81 

each tool was provided with both the simulated reads as well as the full RefSeq annotation as the target 82 

transcriptome (see Methods for a full description of the simulated datasets). For simplicity, we will refer 83 

to the transcripts from which the reads were simulated as the origin transcripts. To estimate how 84 

accurately a tool assigns a read to its respective origin, we conducted both linear and nonlinear correlation 85 

analyses between the expected read counts and each tool’s estimates, using Pearson's correlation 86 

coefficients (PCCs) between raw read counts and Spearman's correlation coefficients (SCCs) between 87 

log-transformed read counts, 88 

respectively. A linear 89 

correlation analysis evaluates 90 

the ability of a tool to assign 91 

each read to a transcript, 92 

while a nonlinear correlation 93 

analysis assesses how well 94 

estimates capture monotonic 95 

trends in gene expression 96 

patterns.  97 

 98 

In both analyses, we observed 99 

that TranSigner’s estimates 100 

had stronger correlations with 101 

the ground truth compared to 102 

NanoCount’s, as illustrated in 103 

 
Figure 1. Correlation scatter plots comparing expected read counts to the read 
count estimates generated by NanoCount and Transigner on a simulated ONT 
direct RNA reads set. All tools were provided with the full RefSeq annotation 
from which the reads were simulated from. A: scatter plots showing the 
nonlinear correlations between the log-transformed ground truth and the 
estimated read counts. B: scatter plots showing the linear correlations 
between the raw ground truth and estimated read counts. The x- and y-axes 
were limited to [0, 2000] for demonstration purposes.  
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Figure 1, which shows results from one dataset typical of all three simulated ONT direct RNA datasets 104 

(see Supplementary Table S3 for the SCC and PCC values on each read set). In both log-transformed 105 

(Figure 1A) and raw (Figure 1B) read count correlation scatter plots, TranSigner shows higher 106 

concentrations of dots near the diagonal. However, this feature is not as pronounced in the plots of 107 

NanoCount's results; the accumulations of dots well below the diagonal in the case of NanoCount reveal 108 

the tool’s tendency to underestimate the read counts. On the simulated ONT direct RNA datasets, 109 

TranSigner’s average SCC and PCC values were 0.867 and 0.999, whereas NanoCount’s were 0.667 and 110 

0.997. TranSigner also achieves higher correlations with the ground truth when applied to the simulated 111 

ONT cDNA datasets (see Supplementary Figure S1, Supplementary Tables S4). 112 

 113 

Even for extensively studied species, gene annotation catalogs are often incomplete, missing both 114 

potential gene loci and many transcript 115 

isoforms (Amaral et al., 2023; 116 

Varabyou et al., 2023). This is one 117 

reason why most long-read processing 118 

tools identify which transcripts are 119 

present before quantification. 120 

Identifying novel isoforms not present 121 

in the annotation, as well as 122 

determining which of the known 123 

mRNA variants are expressed can lead 124 

to better quantification of expressed 125 

transcripts. This is illustrated by our results in Figure 2, where we show that the average nonlinear 126 

correlation coefficients between estimated and true read counts improve for both TranSigner and 127 

NanoCount when just the origin transcripts are provided in the input instead of the full reference 128 

 
Figure 2. SCC values observed when either the origin 
transcriptome (blue in A, orange in B) or the full RefSeq 
annotation (grey) is used to run TranSigner and NanoCount on the 
simulated ONT reads. A shows the averages across 3 simulated 
ONT direct RNA read sets , while B shows the averages across 2 
simulated ONT cDNA read sets. 
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annotation (see Supplementary Tables S3 and S4 for SCC and PCC values across all simulated ONT 129 

direct RNA and cDNA data sets). 130 

 131 

Achieving an accurate transcriptome remains a 132 

challenging problem, with different tools 133 

obtaining varying accuracies in this task, while 134 

also relying to varying degrees on the input 135 

reference annotation. Using the same simulated 136 

ONT data sets (3 direct RNA, 2 cDNA) we 137 

used to benchmark TranSigner and 138 

NanoCount, we evaluated existing tools’ 139 

ability to handle incompleteness in the input 140 

guide annotations. To do this, we randomly 141 

sampled the full RefSeq annotation to include 142 

varying percentages–between 0% and 100% 143 

with increments of 5%–of the origin transcripts 144 

and provided the resulting annotations as 145 

guides to StringTie2, FLAIR, and Bambu. We 146 

did not include ESPRESSO in this comparison, 147 

as processing a single simulated data set took 148 

more than 24h to process. We also randomly sampled each percentage of retained origin transcripts three 149 

times (see Methods for further details). 150 

 151 

Genome-guided transcriptome assemblers like StringTie2 (Kovaka et al., 2019) can reliably profile a 152 

transcriptome even in the absence of an input guide annotation, while methods like Bambu (Chen et al., 153 

2023) or FLAIR (Tang et al., 2020) demonstrate a substantial decrease in both sensitivity and precision of 154 

 
Figure 3. Long-read assembly accuracies of StringTie2, 
FLAIR, and Bambu with varying percentages (100% to 
0%) of randomly sampled origin transcripts provided in 
the input guide annotation. Mean values for all three 
metrics – sensitivity, precision, and F1 – across ONT 
direct RNA and cDNA datasets are shown as circles and 
crosses, respectively. 
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 7 

transcript identification when the percentage of origin transcripts in the input guide annotation is 155 

progressively reduced. Figure 3 shows that while Bambu outperforms StringTie2 and FLAIR in terms of 156 

average sensitivity when a substantial portion of the origin transcriptome is provided in the input, 157 

StringTie2 consistently outperforms the rest of the tools in precision across all percentages of origin 158 

transcripts kept in the input annotation. Bambu achieved highest F1 scores when the guides retained most 159 

of origin transcripts, but StringTie2 gradually surpassed others as guides became increasingly incomplete 160 

(Figure 3C). Such resilience to varying degrees of incompleteness in the input transcriptome is critical, 161 

especially for studies involving poorly annotated organisms or in cases where the RNA-seq sample 162 

contains many novel isoforms (see Supplementary Tables S1 and S2 for the metric values on each 163 

dataset). However, StringTie2 does not assign individual reads to the transcripts it assembles, making it 164 

difficult for the user to check the reliability of the isoforms it assembles using long reads. By introducing 165 

TranSigner, we aimed to also address this gap, in addition to improving transcript quantification 166 

accuracies.  167 

 168 

Next, we compared TranSigner’s quantification accuracies against those of several other tools – 169 

StringTie2, NanoCount, Bambu, and FLAIR – when provided with guide annotations containing varying 170 

percentages of the origin transcripts. Since TranSigner is not capable of identifying novel transcripts, we 171 

also ran TranSigner on the transcriptome assembled by StringTie2 (denoted as StringTie2 + TranSigner) 172 

to investigate its performance against other tools, such as FLAIR or Bambu, which are capable of novel 173 
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 8 

isoform identification. For this experiment, we re-used the same sets of simulated ONT reads and 5% ~ 174 

100% guide annotations sampled before.  175 

 176 

Average correlation coefficients between the true and estimated read counts are shown in Figure 4 (also 177 

see Supplementary Tables S5 and S6 for results on all input datasets). Except for StringTie2 + 178 

TranSigner, every tool experienced a drastic drop in SCC values as the percentage of origin transcripts 179 

decreased. TranSigner had the highest correlation values when the input guide annotation contained 180 

nearly all origin transcripts. However, when 90% or fewer of the origin transcripts were retained in the 181 

guide annotation, StringTie2 + TranSigner yielded the best SCC values in both ONT direct RNA and 182 

cDNA benchmarks  (Figure 4A, 4B), demonstrating that this combination is the best in preserving the 183 

rank of the expression values across most levels of incompleteness in the available annotation. This same 184 

pattern holds for PCC values (Supplementary Figure S2A, S2B). StringTie2 does not output read counts 185 

for its transcript abundance estimates, so it was excluded from this initial correlation analysis. As 186 

StringTie2 outputs read per base coverages, we post-processed TranSigner’s read-to-transcript 187 

assignments to generate read per base coverages (see Methods). TranSigner + StringTie2 obtains better 188 

 
Figure 4. Correlation coefficients between true and estimated abundances (read counts in A and B, and per base 
read coverages in C) computed at varying percent guide annotations computed using simulated ONT data. A: 
SCC values in simulated ONT direct RNA data. Average SCCs across 9 independent observations (3 read sets, 
3 guide samplings) shown. B: SCC values in simulated ONT cDNA data. Average SCCs across 6 independent 
observations (3 read sets, 2 guide samplings) shown. C: PCC values for both ONT direct RNA (solid line) and 
cDNA (dotted line) simulated reads. Averages across multiple samples are shown. Different colors indicate 
different tools. 
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 9 

read per base coverage PCCs (Figure 4C) and SCCs (Supplementary Figure S2C) correlation values than 189 

StringTie2. The improvement is more notable in PCCs than in SCCs. 190 

 191 

One key feature of TranSigner is its ability to 192 

assign specific reads to transcripts, particularly 193 

useful in experiments where users need to 194 

identify reads originating from specific 195 

transcripts of interest. In this context, we 196 

compared TranSigner and StringTie2 + 197 

TranSigner with FLAIR and Bambu, which also 198 

output read-to-transcript assignments. Their 199 

performance was evaluated using recall, 200 

precision, and F1 scores, computed by counting 201 

the number of correctly versus incorrectly 202 

assigned reads (see Methods). When all origin 203 

transcripts are provided (i.e., 100% complete 204 

guide annotation), TranSigner demonstrated the 205 

highest sensitivity, recall, and hence F1 score 206 

(see Figure 5, Supplementary Tables S7 and S8). 207 

However, as soon as the guides become even 208 

slightly incomplete, StringTie2 + TranSigner 209 

had the highest performance, making it the preferred choice when the target transcriptome is 95% or less 210 

complete.  211 

 212 

Although TranSigner achieved the highest F1 scores with nearly complete guides, its performance 213 

declined rapidly as the number of origin transcripts in the guides decreased, as expected (Figure 5C). A 214 

 
Figure 5. Read-to-transcript assignment accuracies for 
TranSigner, StringTie + TranSigner, Bambu, and 
FLAIR on simulated ONT data. Solid lines represent 
performance on ONT direct RNA reads and dotted lines 
represent performance on ONT cDNA reads. Three 
metrics – sensivitiy, precision, recall – are shown from 
top to bottom. Standard error of measurement (SEM) 
intervals are shown as shaded areas. 
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 10 

similar pattern of decline is observed in every tool across all metrics. Bambu experienced a greater drop 215 

in precision than StringTie2 + TranSigner, despite both starting at a similar value. Note that both Bambu 216 

and FLAIR showed fluctuations in performance depending on the ONT read types. In contrast, StringTie2 217 

+ TranSigner showed the least amount of variation in performance across different read types.  218 

 219 

Real data performance. To evaluate the performance of TranSigner and StringTie2 + TranSigner using 220 

experimental data, we utilized the ONT RNA-seq data sets provided by the Singapore Nanopore 221 

Expression Project (SG-NEx) (Chen et al., 2021), which include synthetic spike-in transcripts, known as 222 

sequins, with known annotation and concentrations. We selected 12 ONT direct RNA and cDNA samples 223 

from three different human cell lines: HCT116, K562, and MCF7. As ground truth for this experiment, 224 

we used the counts per million (CPM) values provided by SG-NEx and compared them with the estimates 225 

obtained by TranSigner, StringTie2 + TranSigner, and Bambu, the next best performer on the simulated 226 

data. We ran StringTie2 + TranSigner and Bambu twice, each time providing two different input guides: 227 

one including the full sequin annotation in addition to the GRCh38 reference annotation and the other 228 

containing only the GRCh38 229 

reference transcripts without the 230 

sequins. The guide annotation 231 

without the sequins reflects real-232 

world scenarios where transcript 233 

annotations are absent from the 234 

reference. TranSigner was only run 235 

with the full sequin annotation, as it 236 

cannot assemble any novel 237 

transcripts itself. 238 

 239 

 
Figure 6. Correlation coefficients between estimated and expected 
sequin abundances measured using the SG-NEx data. Green triangles 
represent benchmark results when the full sequin annotation is 
provided, and purple squares when no sequins were present. SCC 
values are shown in the left, and PCCs on the right. Error bars 
represent the SEM values across 12 samples. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.04.13.589356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.13.589356
http://creativecommons.org/licenses/by-nc/4.0/


 11 

TranSigner achieved an average SCC of 0.88 between ground truth and estimated values, surpassing both 240 

Bambu (0.76) and StringTie2 + TranSigner (0.81) when provided with the full sequin annotation, as 241 

displayed in Figure 6 (also see Supplementary Tables S9). However, when no sequin annotation was 242 

provided, StringTie2 + TranSigner outperformed Bambu, obtaining an average SCC value of 0.64, 243 

compared to Bambu's SCC value of 0.49. This trend persisted in linear correlation analyses, with 244 

TranSigner achieving the highest PCC value with full annotation (0.83), while StringTie2 + TranSigner’s 245 

was the best performer in the absence of sequin annotation (Figure 6 and Supplementary Tables S9). 246 

Overall, these results suggest that StringTie2 + TranSigner may be preferable in scenarios where 247 

numerous unannotated or novel isoforms are anticipated, while TranSigner is optimal when the reference 248 

is presumed to be nearly complete. Note that with complete sequin annotation, TranSigner outperformed 249 

both Bambu and StringTie2 + TranSigner, on all three different long-read types available in the data: 250 

direct RNA, direct cDNA, PCR-cDNA (average and per-sample SCC values shown in Supplementary 251 

Figure S3 and Supplementary Tables S9). 252 

 253 

We also evaluated the correlation between short-read-based and long-read-based abundance estimates 254 

using publicly available paired short and long-read datasets, sequenced from the same biological sample. 255 

In all following results, the short-read libraries were all generated through poly-A selection and 256 

sequenced with Illumina sequencers, while the long reads were mostly generated using ONT direct RNA 257 

or cDNA sequencing protocols. Unlike the sequin samples or simulated long reads, the ground truth is 258 

unknown for these datasets as we lack information on which transcripts are expressed and their relative 259 

abundances. However, it is generally assumed that short reads provide more accurate abundance estimates 260 

compared to long reads, as they are less error-prone and typically yield more reads.  261 

 262 
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Specifically, we assessed the long 263 

read-based abundance estimates by 264 

two quantification-only tools we 265 

benchmarked with simulated data: 266 

NanoCount and TranSigner. All tools 267 

were provided with a StringTie2-268 

assembled transcriptome, which 269 

represents a typical use for these 270 

tools where users provide 271 

transcriptomes assembled from 272 

samples of their interest. We used 273 

each tool’s abundance estimates to conduct nonlinear correlation analyses between the short read-derived 274 

TPM estimates and long read-derived CPM. As previously done for benchmarking long-read 275 

quantification tools (Pardo-Palacios et al., 2023), we assumed that a higher correlation between long read- 276 

and short read-derived abundance estimates is indicative of a higher quantification accuracy. Since none 277 

of the three quantification-only tools we used include TPMs in their output, we processed the read counts 278 

they provide to obtain counts per million (CPM) estimates, which are equivalent to TPMs in a long-read 279 

RNA-seq experiment where each read is considered to represent a transcript (see Methods for the read 280 

counts to CPM conversion equation). We used Salmon (Patro et al., 2017) to obtain TPM estimates on 281 

StringTie2 assemblies, using the Illumina short-read datasets (see Supplementary Text 3). As transcripts 282 

with low abundances are prone to misassembly and are often excluded from downstream analyses, we 283 

only included in our results transcripts with > 1 TPM as estimated by Salmon. 284 

 285 

For our first experiment, we chose 21 short and long read paired datasets: 9 pairs from two normal human 286 

cell lines, A549 and HCT116, included in the SG-NEx datasets (Chen et al., 2021), and 12 pairs from two 287 

human cancer cell lines, H1975 and HCC827, provided by the long-read benchmarking of human lung 288 

 
Figure 7. Box plots showing the distribution of SCC values 
between the short- and long-read-derived transcript abundances for 
12 different pairs of human data sets. NanoCount and TranSigner 
were run on the StringTie2 assemblies on the long-read samples. 
StringTie2’s intial estimates are shown in the rightmost column for 
reference. Four distinct read types are shown in different colors.  
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cancer cell lines (Dong et al., 2023). The human lung cancer cell lines data sets also included PacBio 289 

reads, which are not present in the SG-NEx data sets. As shown in Figure 7, TranSigner consistently 290 

achieved higher correlations than NanoCount as well as StringTie2, across all read types (see 291 

Supplementary Tables S10 for the SCC and PCC values on each pair). TranSigner improved StringTie2’s 292 

estimates to varying degrees, with the 293 

highest improvements observed in the 294 

ONT PCR-cDNA data sets. Note that 295 

NanoCount was not evaluated on PacBio 296 

data as it was designed specifically to 297 

work with ONT data only. 298 

 299 

Finally, we further expanded our 300 

benchmark to include paired short- and 301 

long-read data sets from two well-studies 302 

species: A. thaliana and M. musculus. To 303 

investigate how quantification accuracies 304 

vary at different levels of expression, we 305 

evaluated the performance of StringTie2 306 

and StringTie2 + <a quantification-only 307 

tool> at progressively increasing TPM 308 

thresholds: 1, 5, 10, 15, and 20. For this 309 

experiment, we selected eight M. 310 

musculus pairs (four ONT direct RNA, 311 

four ONT cDNA) and three A. athaliana 312 

pairs (all ONT direct RNA). We 313 

benchmarked TranSigner’s and 314 

 
Figure 8. Correlation coefficient values between short- and 
long-read-derived transcript abundances estimated by 
NanoCount and TranSigner when run on StringTie2 assemblies, 
as well as StringTie2 itself, on paired M. musculus (A and B) 
and A. thaliana data sets (C). Each plot is showing a different 
organism and a different read type. A: average SCC values 
across increasing TPM thresholds on M. musculus ONT direct 
RNA data sets. B: average SCC values across increasing TPM 
thresholds on M. musculus ONT PCR-cDNA data sets. C: 
average SCC values across increasing TPM thresholds on A. 
thaliana ONT direct RNA data sets. 
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NanoCount’s performances when run on unguided StringTie2 assemblies, consistent with the previous 315 

analysis. As illustrated in Figure 8, when TranSigner was applied to StringTie2's output, it achieved 316 

higher nonlinear correlations between short- and long-read TPM estimates than NanoCount, with the best 317 

improvements in SCC values obtained on the M. musculus ONT PCR-cDNA reads. These improvements 318 

were more pronounced for higher TPM thresholds. 319 

 320 

Discussion and Conclusions 321 

 322 

Assigning long reads to transcripts is a challenging task that involves the effective resolution of multi-323 

mapping reads. Recent studies have unveiled the growing complexity of eukaryotic transcriptomes, 324 

revealing numerous isoforms across gene loci. The introduction of long-read RNA-seq technologies 325 

promises to uncover even more novel isoforms, as reads produced by these methodologies can capture 326 

full-length transcripts, overcoming the limitations of short reads. Although long reads cover transcripts at 327 

greater lengths, technical artifacts such as base calling errors and end truncations prevent these reads from 328 

being accurately mapped to their origins. With TranSigner, we have developed several strategies to 329 

address this challenge, facilitating the correct assignment of reads that ambiguously map to multiple 330 

isoforms.  331 

 332 

Additionally, we designed TranSigner to complement another method capable of transcriptome assembly. 333 

As gene annotation is still an unresolved issue, determining the accuracy and completeness of a profiled 334 

transcriptome remains difficult. Users often struggle to select the appropriate reference for their analyses, 335 

leading to unpredictable impacts on their results. In our study, we observed a significant drop in assembly 336 

quality when less complete guides were provided. This suggests that tools heavily reliant on high-quality 337 

reference annotations may struggle in real-world scenarios where many novel isoforms are expected. By 338 

introducing a standalone tool for read-to-transcript assignments, we made these assignments easier to 339 

obtain regardless of the input transcriptome. Integrating this step into long-read RNA-seq data processing 340 
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pipelines will improve the accuracy of transcriptomes identified using long reads by allowing users to 341 

inspect the quality of the reads supporting the transcripts and filter out less-supported transcripts. This, in 342 

turn, will lead to more accurate abundance estimates, as our results demonstrate the significant influence 343 

of assembly accuracy on correctly identifying transcript abundances. 344 

 345 

Methods 346 

 347 

Long-read RNA-seq model for read assignment. We describe the long-read RNA-seq process using a 348 

generative model (Figure 9). The conceptualization of RNA-seq as 349 

a generative process in which reads are sampled from a pool of 350 

transcripts has already been used in models for short-read 351 

quantification. We adopted the general framework proposed by 352 

others (Li et al., 2009; Pachter, 2011) but introduced necessary 353 

modifications to tailor the model to long read data. Given a read, 354 

we assume that three unobserved events in the RNA-seq 355 

experiment determine a read’s sequence: (1) the transcript from 356 

which that read was sequenced, (2) the position within the 357 

transcript of the 3’ end of the read, and (3) the transcript position 358 

of the reads’ 5’ end. Our model, thus, associates each observed 359 

read with three latent variables: the transcript (𝑇) from which the 360 

read was generated, its 3’ end position (𝑆), and 5’ end position (𝐸) 361 

in 𝑇.  362 

 363 

Existing RNA-seq quantification methods focus on accurately 364 

estimating 𝜌, the relative transcript abundances (Jousheghani & Patro, 2024; Li et al., 2009; Pachter, 365 

2011). In contrast, our primary goal here is to assign reads to transcripts, which is solved by finding the 366 

 
Figure 9. Graphical representation 
of TranSigner’s long-read RNA-
seq model. Empty circles denote 
latent variables, the shaded circle 
represents the observed variable, 
and the blue circle indicates the 
primary parameter of the model – 
specifically, the relative abundance 
of the transcript. Parameters 𝜐, 𝜔 
approximate the likelihood of the 
specific 5’ and 3’ end positions of 
the read on the transcript, while 
parameter 𝜎 models the likelihood 
of observing a specific read 
sequence given a transcript and the 
read’s end positions. 𝑁 represents 
the total number of reads generated 
in a single long-read RNA-seq 
experiment.  
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most probable distributions over the latent variables, not 𝜌. However, deriving a maximum likelihood 367 

(ML) estimate on 𝜌 also gets us ML estimates on the latent variable distributions, as they get repeatedly 368 

updated in the process of optimization. Hence, 𝜌 is still the main parameter to optimize, and we define our 369 

objective with respect to 𝜌 as follows. Given a set of transcripts 𝑇 = {𝑡} where |𝑇| = 𝑀, the complete 370 

data likelihood function of our RNA-seq model is: 371 

 372 

ℒ(𝜌) =./Ρ(𝑟 ∈ 𝑡|𝜌)Ρ(𝑠!"|𝑟 ∈ 𝑡)Ρ(𝑒!"|𝑟 ∈ 𝑡)Ρ(𝑟|𝑟 ∈ 𝑡, 𝑠!" , 𝑒!")
"∈$!∈%

 373 

(1) 374 

where 𝜌 = {𝜌"}"∈$ with ∑ 𝜌""∈$ = 1, 𝑅 is the set of mapped reads defined as 𝑅 = {𝑟} with the cardinality 375 

of 𝑁, 𝑠!" and 𝑒!" are the 3’ and 5’ end positions of a read 𝑟 in a transcript 𝑡, and 𝑟 ∈ 𝑡 indicates that 𝑟 376 

comes from 𝑡. Note Ρ(𝑂! = 𝑡|𝜌) = 𝜌", since in an RNA-seq experiment the probability of selecting a 377 

transcript t to sequence depends on its relative abundance. We’ll approximate the 5’ end and 3’ end 378 

positions of a read in a transcript as the positions where the read alignment starts and ends on that 379 

transcript, respectively.  The relationship between this likelihood function and read assignment estimates 380 

is easier to understand when Eq. 1 is rewritten as: 381 

 382 

ℒ(𝜌) =.Ρ(𝑟)
!∈%

=./Ρ
"∈$!∈%

(𝑟|𝑟 ∈ 𝑡) =./𝛼!"
"∈$!∈%

 383 

(2) 384 

where 𝛼!" is the relative fraction of read 𝑟 assigned to transcript 𝑡. Ρ(𝑟) can also be written as a sum of 385 

conditional probabilities Ρ(𝑟|𝑟 ∈ 𝑡), which represents the likelihood of 𝑟 given that it comes from 𝑡. This 386 

conditional probability is also easily interpretable as the fraction of 𝑟 that ought to be assigned to 𝑡, 387 

implying that a lower Ρ(𝑟|𝑟 ∈ 𝑡) corresponds to a smaller 𝛼!". Moreover, optimizing ℒ involves driving 388 

𝑃(𝑟) to the maximum possible value in a probability distribution – 1, which is also equal to the sum of 389 

relative fractions of a read’s assignments to the set of transcripts  (i.e., ∑ 𝛼!""∈$ = 1). 390 
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 391 

Different long-read RNA-seq technologies show various biases towards the ends of the transcripts 392 

(Amarasinghe et al., 2020; Chen et al., 2021; Grünberger et al., 2022; Wongsurawat et al., 2022). 393 

Nonetheless, long reads are more likely to cover all bases of a transcript, compared to short reads, which 394 

are generated from fragments of the transcript. The likelihood of a read’s end position should decrease as 395 

its distance from the transcript end increases. We model this expectation using two indicator variables– 𝜐 396 

and 𝜔	for the 3’ and 5’ ends, respectively – to control how far apart the ends of a read can be from the 397 

ends of a transcript. For an alignment between a read 𝑟 and a transcript 𝑡, we will refer to the distances 398 

between the alignment ends and transcript ends as ‘end distances’ and denote them as 𝛿&!" and 𝛿'!" for the 399 

5’ and 3’ ends, respectively. Then we define 𝜐 and 𝜔 as: 400 

 401 

Ρ(𝑠!" = 𝑖|𝑟 ∈ 𝑡) ≈ 𝜐!" = 1	if	C𝛿&!"
! − 𝛿&!"C ≤ 𝛽&, 0	o.w.	 402 

Ρ(𝑒!" = 𝑗|𝑟 ∈ 𝑡) ≈ 𝜔!" = 1 if 	C𝛿'!"
! − 𝛿'!"C ≤ 𝛽' , 0	o.w. 403 

(3) 404 

where 𝛿&!"
! and 𝛿'!"( represent the end distances for the primary alignment of read 𝑟 and transcript 𝑡′.  405 

 406 

Here,  𝑡′ represents the transcript to which read 𝑟 aligns on the primary alignment, which might not be the 407 

same as transcript 𝑡. Since alignment positions are indexed from the 5’ to 3’ direction on transcript 𝑡, end 408 

distances are computed as 𝛿&!" = 𝑠!" = 𝑖 and 𝛿'!" = |𝑡| − 𝑒!" = |𝑡| − 𝑗 where |𝑡| is the length of transcript 409 

𝑡. Parameter 𝛽 represents the tolerance threshold on how much greater the end distances can be compared 410 

to the primary alignment’s end distances for a given read 𝑟. This relative thresholding on end distances 411 

(𝛿) ensures that each read is compatible with at least one transcript (i.e., 𝑡′) after this filtering step since 412 

the primary alignment will always be considered “good,” which would not be true if a constant threshold 413 

was uniformly applied for all reads. When either 𝜐 or 𝜔 is set to 0, Ρ(𝑟|𝑟 ∈ 𝑡) in Eq. 2 is also set to 0, and 414 
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no fraction of 𝑟 is assigned to 𝑡, guaranteeing that the corresponding (𝑟, 𝑡) pair will be considered entirely 415 

incompatible, filtering it out from any downstream analysis.  416 

 417 

Moreover, the parameters for the 3’ end are treated separately from those for the 5’ end because 418 

sequencing behaves differently at these ends. For example, there is a stronger coverage bias towards the 419 

3’ end when nanopore-based direct RNA sequencing protocols are employed (Amarasinghe et al., 2020; 420 

Chen et al., 2021; Grünberger et al., 2022; Wongsurawat et al., 2022). We set the 𝛽 parameter values 421 

based on both prior knowledge and a grid search (Supplementary Text 1). For the ONT direct RNA data, 422 

the current default values are 𝜐 = −∞ (i.e., no filter) and 𝜔 = −800, while for ONT cDNA and PacBio 423 

data, they are 𝜐 = −500 (i.e., unset) and 𝜔 = −550 for ONT cDNA and PacBio data. 424 

 425 

The probability of observing a read 𝑟 given all the latent variables is modeled using the alignment score 426 

between read 𝑟 and transcript 𝑡 (denoted by 𝑥!")	as: 427 

 428 

Ρ(𝑟|𝑟 ∈ 𝑡, 𝑠!" = 𝑖, 𝑒!" = 𝑗) ≈ 𝜎!" =
𝑥!"

max
)∈$

𝑥!)
 429 

(4) 430 

Note that if multiple alignments exist between read  𝑟 and transcript 𝑡, we only retain the alignment with 431 

the maximum score. Using the above definitions, we can redefine the likelihood function as: 432 

 433 

ℒ(𝜌) =./𝜌"𝜐!"𝜔!"𝜎!"
"∈$"!∈%

 434 

(5) 435 

where 𝑇! is the set of transcripts aligned to read 𝑟, with 𝜐!", 𝜔!", and 𝜎!" set to zero for any unaligned pair 436 

of read 𝑟 and transcript 𝑡. By combining Eqs 2 and 5 we obtain that: 437 

 438 
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𝜌"𝜐!"𝜔!"𝜎!" = 𝛼!" 439 

(6) 440 

which shows how 𝛼!" can be computed from the alignments between reads and transcripts, assuming that 441 

the relative transcript abundances are given.  442 

 443 

Alignment. We used minimap2 with parameter -N 181 to align the long reads to the set of input 444 

transcripts (Li, 2018, 2021). By default, minimap2 limits the maximum number of secondary alignments 445 

to 5. We observed that the number of true positives (correct read to transcript alignments) increases when 446 

we retain more secondary alignments, so we set -N to 181, the highest number of transcripts in a single 447 

gene locus according to the RefSeq release 110 annotation on the human GRCh38 genome, assuming this 448 

is the maximum number of secondary alignments a read can have. This strategy provides rough, 449 

preliminary estimates on the compatibility between reads and transcripts, without excluding any read and 450 

transcript pair for having suboptimal alignment scores. The user can freely adjust this parameter by 451 

specifying it in TranSigner's input, which will then pass it to minimap2. 452 

 453 

Alignment-guided expectation-maximization algorithm (AG-EM). Our primary goal is to accurately 454 

assign reads to their respective transcript origins. We previously introduced 𝛼 as a variable representing 455 

read-to-transcript assignments and established that the distribution over 𝛼 is equivalent to that over the 456 

latent variables of our long-read RNA-seq model (Figure 9 and Eqs. 1, 2, 3). An expectation-maximum 457 

(EM) algorithm finds a maximum likelihood (ML) estimate for a main parameter (e.g., 𝜌) through 458 

iterative updates to the distribution over a set of latent variables (e.g., 𝛼). Hence, TranSigner employs an 459 

EM algorithm to obtain the most probable–in the sense that the complete data likelihood is maximized– 460 

distribution over 𝛼 and presents the corresponding expected values as read-to-transcript assignments. It 461 

also outputs the ML estimates on 𝜌. 462 

 463 
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Update rules. The EM algorithm consists of alternating expectation (E) and maximization (M) steps, 464 

repeated until convergence. During the E step, the expected values for 𝛼!"
(+)–at some iteration 𝑛–are 465 

computed as follows: 466 

𝛼!"
(+) =

𝜌"
(+)𝜐!"𝜔!"𝜎!"

∑ 𝜌"!
(+)𝜐!"!𝜔!"!𝜎!"!"!∈$"

 467 

(7) 468 

where 𝛼 = {𝛼!"}!,"∈. and 𝐴 is the set of alignments between all reads and transcripts. In the following M 469 

step, then, the fragments of reads assigned to each transcript are summed up and then normalized by the 470 

total number of transcripts to get the relative transcript abundances, expressed as: 471 

 472 

𝜌" =
∑ 𝛼!"!∈%#

∑ 𝛼!!"!!!,"!∈.
 473 

(8) 474 

where 𝑅" is the set of reads aligned to transcript 𝑡. The denominator is constant across iterations and is 475 

equivalent to the total number of reads in a long-read RNA-seq experiment where each read represents a 476 

transcript, so we precompute this value before EM. 477 

 478 

Initialization. Before the EM iterations, the relative transcript abundances (𝜌) are initialized to the 479 

uniform distribution: 480 

𝜌" =
1
|𝑇.|

 481 

 482 

where 𝑇. is the set of transcripts with at least one alignment to a read in 𝑅. Additionally, the values for 𝜐, 483 

𝜔, and 𝜎 don’t change during iterations, so we precompute their values and store them separately in a 484 

matrix 𝑋 of dimensions 𝑁 rows and 𝑀 columns. For simplicity, we’ll refer to 𝑋 as the compatibility score 485 

matrix. The computation specified in Eq. 7 is further simplified as: 486 
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 487 

𝛼!"
(+) =

𝜌"
(+)𝑋!"

∑ 𝜌"!
(+)𝑋!"!"!∈$"

 488 

(9) 489 

The pre-computation step involves a single scan over the alignment results, extracting values such as the 490 

alignment scores and alignment start/end positions, and then applying the definitions provided in Eqs. 3 491 

and 4. 492 

 493 

Optimization. Once 𝑋 is precomputed and 𝜌 is initialized, EM iterations are repeated until convergence, 494 

i.e., until the total sum of changes in the relative transcript abundances is less than a predefined threshold, 495 

by default set at 0.005. The user can adjust this threshold to increase the accuracy of the ML estimates at 496 

the expense of speed.  497 

 498 

The novelty of our method comes from guiding the EM algorithm with the priors extracted from the 499 

alignment results, as detailed in the E-step update rule shown in Eq. 9. To further amplify the impact of 500 

these priors, we implemented an algorithm called the drop. The drop algorithm (Supplementary Figure 501 

S4) sets 𝑋!" = 0 if the fraction of read 𝑟 that is assigned to transcript 𝑡 (i.e., 𝛼!") gets below a threshold, 502 

𝜏 ∈ [0,1]. This effectively drops the compatibility relationship between read 𝑟 and transcript 𝑡 and 503 

ensures that no fraction of 𝑟 gets assigned to 𝑡 in any iterations following the drop, as 𝛼!" will always be 504 

0 since its computation involves multiplication by 𝑋!" (Eq. 9). After the drop, another E-step is performed 505 

with the updated 𝑋 scores to recompute the new 𝛼!" values. The 𝜏 value depends on the read r considered, 506 

and by default:  507 

𝜏! =
1
|𝑇!|

 508 

(10) 509 
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where 𝑇! is the set of transcripts that are compatible with 𝑟. The drop algorithm is called only right after 510 

the first E-step calculation, and its purpose is to discard minimap2 alignments that are not robust. The 511 

drop algorithm offers the potential to achieve a higher optimum compared to a naïve EM algorithm 512 

(Pachter, 2011), which relies solely on the relative transcript abundances (𝜌) in its E-step update. We also 513 

allow users to increase this threshold (i.e., make it stricter) using the -f parameter that’ll increment 𝜏! by 514 

a fraction of its own value as follows: 515 

𝜏!( = 𝜏! + (𝜏! ∗ 𝑓) 516 

(11) 517 

where 𝑓 is a fractional value within the range [0, 1]. 518 

 519 

Read assignment. We can use the 𝛼 values estimated by the EM algorithm to infer read assignments to 520 

transcripts. Raw 𝛼 values represent fractional read assignments, where a single read may be distributed 521 

among multiple transcripts. These assignments might be challenging to interpret, as we assume each read 522 

to originate from a single transcript. To increase the interpretability and usability of the 𝛼 values, we 523 

implemented the push algorithm (Supplementary Figure S5). This algorithm processes raw 𝛼 values, 524 

converting them into hard assignments where each read is assigned to exactly one transcript. The push 525 

algorithm iterates through the reads and pairs each of them to the transcript with the highest read fraction 526 

as shown by the corresponding 𝛼 value. It then recomputes the relative transcript abundances based on 527 

these hard assignments. These new 𝛼 and 𝜌 values may deviate from their EM-derived ML estimates, 528 

potentially resulting in reduced accuracy. We tested this using simulated data and observed only 529 

negligible reductions in accuracy.  530 

 531 

Implementation. TranSigner requires two inputs: a GTF file containing a reference gene annotation of 532 

the target transcriptome and a FASTQ file containing long RNA-seq reads. The reference annotation can 533 

be obtained from public sources such as RefSeq (O'Leary et al., 2016), GENCODE (Frankish et al., 534 
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2019), or CHESS (Varabyou et al., 535 

2023), or it can be derived from 536 

transcriptome assemblies produced 537 

by programs like StringTie2. The 538 

latter annotations have the advantage 539 

of including novel isoforms while 540 

restricting the annotated transcripts 541 

to only those found to be expressed 542 

in the analyzed sample.  543 

 544 

As illustrated in Figure 10, 545 

TranSigner consists of three 546 

modules: align, prefilter, and em. In 547 

the align module, input long reads are aligned to the target transcriptome using minimap2. The resulting 548 

alignment file becomes the input for the next module. Next, in the prefilter module, TranSigner extracts 549 

features such as the 3’ and 5’ end alignment positions and the ms alignment scores computed by 550 

minimap2. These features are used to compute the compatibility score matrix between transcripts and 551 

reads, as well as an index of the IDs of the transcripts found to be compatible with reads in the align 552 

module, which represent a subset of the target transcriptome. 553 

 554 

Finally, the EM module takes as inputs the compatibility score matrix and the target transcriptome index 555 

from the prefilter module. It estimates the transcript coverage abundances using an expectation-556 

maximization (EM) algorithm. The EM algorithm converges when the total change in the relative 557 

transcript abundances (𝜌) is less than a specified threshold, by default set to 0.05. The drop algorithm, 558 

described above and in Supplementary Figure S5, is implemented as a component of this module. It 559 

allows users to use the --drop flag to remove low compatibility relations between reads and transcripts 560 

 
Figure 10. TranSigner’s workflow consists of three modules: align, 
prefilter, and EM. A: In the align module, N reads are mapped to M 
transcript sequences; B: In the prefilter module, compatibility scores 
are precomputed, and some alignments are filtered out; C: In the EM 
module, read fractions are assigned to transcripts and transcript 
abundances are updated iteratively until convergence. 
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immediately after the first E-step update. Read-to-transcript assignments (i.e., 𝛼 estimates) and relative 561 

transcript abundances (i.e., 𝜌 estimates) are outputted as TSV files at the end of the EM module. Users 562 

also have the option to further process the assignments and output hard 1-to-1 assignments between reads 563 

and transcripts for increased interpretability by specifying the --push flag, whose algorithm is described 564 

in Supplementary Figure S5. 565 

 566 

Simulated data. Three sets of Oxford Nanopore Technologies (ONT) direct RNA reads and two sets of 567 

ONT cDNA reads were simulated using NanoSim (Gleeson et al., 2021). Expression levels were derived 568 

from protein-coding and long non-coding transcripts located on the main chromosomes (i.e., 569 

chromosomes 1 – 22, X, and Y) of the GRCh38 genome, extracted from the RefSeq annotation (release 570 

110). We supplied the NA12878 direct RNA and cDNA reads from Workman et al. to NanoSim’s read 571 

characterization module to first construct two separate read profiles, one for generating direct RNA and 572 

the other for generating cDNA reads (Workman et al., 2019). We then estimated the transcript 573 

abundances of the direct RNA and cDNA samples by aligning each sample to the GRCh38 genome using 574 

minimap2 and providing the alignment results to salmon (Patro et al., 2017) in its alignment-based mode. 575 

We used the RefSeq annotation as the target transcriptome. Salmon estimates were then used as input for 576 

the NanoSim simulation module. For each direct RNA read set, we generated ~14 million ONT direct 577 

RNA reads, and ~25 million for each cDNA read set (Supplementary Text 5). 578 

 579 

Spiked-in data. We used an ONT direct-RNA dataset, which was released as part of the Singapore 580 

Nanopore Expression Project (SG-NEx) (Chen et al., 2021). This dataset was sequenced from three 581 

different human cell lines, HCT116, K562, and MCF7, and includes synthetic sequencing spike-in RNAs, 582 

also known as sequin RNAs. We used the SG-NEx-provided genome, which includes the in silico 583 

chromosome on which sequins are defined, to align these datasets. We also obtained the sequin transcripts 584 

annotation, their raw abundances, and the sample-wise spike-in concentration (i.e., from the SG-NEx 585 

AWS repository). To obtain sequin counts per million (CPM) levels, we followed the same method as in 586 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.04.13.589356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.13.589356
http://creativecommons.org/licenses/by-nc/4.0/


 25 

Chen et al..The ground truth sequin CPM for a sequin transcript 𝑥 in a given sample 𝑠 was computed as 587 

follows: 588 

CPM/ =
𝑎/

∑ 𝑎""∈$
∗ 𝑐& ∗ 1000000 589 

(12) 590 

where 𝑎 is the set of raw abundances provided by SG-Nex, 𝑡 iterates through the entire set of transcripts 591 

to get the sum of all abundances, and 𝑐& is the spike-in concentration in sample 𝑠.  592 

 593 

Paired short- and long-read RNA-seq data. For humans, we employed paired short- and long-read 594 

RNA-seq data from the SG-NEx collection and long-read transcriptome profiling of human lung cancer 595 

cell lines data sets. Short- and long-read datasets are considered paired if they were obtained by 596 

sequencing the same biological sample. A subset of these samples included spike-in RNAs, and their 597 

reads were aligned to augmented versions of the GRCh38 genome that also includes the sequin-598 

containing in silico chromosomes, provided by the original authors. All other samples (i.e., not spiked) 599 

were aligned to the regular GRCh38 p13 genome. 600 

 601 

The goal with paired RNA-seq data sets is to compute the correlation between the short- and long-read-602 

derived transcript abundance estimates. Long reads are first aligned to the GRCh38 genome using 603 

minimap2 and the resulting alignments are provided to StringTie2 for a transcriptome assembly. Short 604 

reads are then quantified on the long-read-derived StringTie2 transcripts using Salmon. Afterward, we ran 605 

quantification-only methods – NanoCount and TranSigner – on the StringTie2 assembly to obtain long-606 

read-derived abundance estimates. We evaluated these tools’ estimates based on their nonlinear 607 

correlation with Salmon’s short-read-derived estimates (see Supplementary Text 3 for the commands used 608 

for short-read quantification). We repeated the same steps for two other organisms: A. thaliana and M. 609 

musculus. None of the samples from these two species contained sequins, so all reads were aligned to 610 

their respective reference genomes. 611 
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 612 

Read assignments evaluation. For simulated and sequin data, we can define the following values based 613 

on the known origin transcript of each read: 614 

• True positive (TP): a read is correctly assigned to its true origin. 615 

• False positive (FP): a read is incorrectly assigned to a transcript that is not its true origin. 616 

• False negative (FN): a read is not assigned to its true origin. 617 

If a read is assigned to multiple transcripts without specifying the fraction allocated to each transcript, 618 

then the read is evenly distributed among those transcripts, with these fractions contributing to TP and FP 619 

values as appropriate. If the exact fraction of a read assigned to a transcript is provided, those fractions are 620 

used instead. 621 

For each sample, the recall value of a method for the read-to-transcript assignment is calculated as the 622 

number of TPs divided by the total number of reads sequenced from that sample. The precision value is 623 

computed as the number of TPs divided by the sum of TPs and FPs. F1 score is defined as 2 * precision * 624 

recall / (precision + recall). 625 

 626 

Transcript abundance estimates evaluation. By default, TranSigner outputs read counts and relative 627 

transcript abundances as its quantification estimates. The read count of a transcript 𝑡 (denoted as	rc") is 628 

the sum of all positive read fractions assigned to transcript 𝑡, while the relative transcript abundance of	𝑡 629 

(denoted as 𝜌") is equal to rc" normalized by the sum of all transcript read counts, ensuring that ∑ 𝜌""∈$ =630 

1. Note that in a long-read RNA-seq experiment, each read counts as a transcript, making the sum of the 631 

read counts equivalent to the total number of transcripts identified from the long-read data.  632 

 633 

TranSigner’s read count estimates can be converted to counts per million (CPM) estimates by calculating 634 

CPM" = rc" 𝑙⁄ ∗ 100	where 𝑡 is a transcript and 𝑙 is the total number of reads (aligned and unaligned). 635 

TranSigner also outputs read-to-transcript assignments where each read is assigned to one or more 636 
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transcripts. More precisely, TranSigner outputs a list of transcripts to which a read 𝑟 is assigned along 637 

with the fraction of 𝑟 assigned to each transcript in that list, or the 𝛼 estimates. These assignments can be 638 

used to compute coverage estimates for transcripts as 𝜆" =
(∑ 𝛼!" ∗ 𝑙(𝑟)!∈%# )

𝑙(𝑡)e  where 𝛼!" is the 639 

fraction of 𝑟 assigned to transcript 𝑡, 𝑅" is the set of reads whose fractions were assigned to 𝑡, and 𝑙 is a 640 

function that returns the length of a read or a transcript.  641 

 642 

We performed both linear and nonlinear correlation analyses to evaluate the correlation between 643 

estimated and ground truth values, each assessing different qualities of the read assignment and 644 

quantification methods. While nonlinear correlation analysis, utilizing log-transformed read counts and 645 

Spearman’s correlation coefficient (SCC), evaluates monotonic trends in the data, linear correlation 646 

analysis, utilizing Pearson’s correlation coefficient (PCC), assesses a tool's accuracy in assigning all reads 647 

to transcripts, valuing each read equally regardless of its source. It's worth noting that log transformation 648 

is typically applied to reduce variance in gene expression values. However, log transformation may 649 

compress differences in data points with large magnitudes, potentially diminishing the impact of errors in 650 

assigning reads to high abundance transcripts.  651 

 652 

Evaluation of tools capable of transcriptome assembly. We assessed the quality of assemblies 653 

generated by StringTie2, Bambu, and FLAIR using the intron chain-level sensitivity and precision values 654 

computed by GffCompare (Pertea & Pertea, 2020). We initially wanted to include ESPRESSO in this 655 

comparison, but we were unable to run it as it took more than 24 hours to process a single sample 656 

containing ~14 million reads. 657 

 658 

We benchmarked each tool using random samples of the RefSeq annotation to observe how well the 659 

completeness of the guides impacts the accuracy of the assembled transcriptome and the simulated ONT 660 

data.  More precisely, we randomly sampled a percentage of the origin transcriptome, referring to the set 661 
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of transcripts from which a set of reads are simulated, to remove from RefSeq. The guides were sampled 662 

to contain 21 different percentages between 0% and 100% of the origin transcriptome. For each 663 

percentage, we independently sampled the guides three times, yielding 63 different guides per read set. 664 

StringTie2, Bambu, and FLAIR were provided with the same guide annotations. Additionally, StringTie2 665 

and Bambu were provided with the same minimap2 alignment results produced using the recommended 666 

options for processing ONT RNA-seq data (-x splice -uf -k14 for direct RNA reads and -x 667 

splice for cDNA reads); FLAIR had its own align module. Unlike StringTie2 and FLAIR which output 668 

an annotation containing only the identified expressed transcripts, Bambu outputs both expressed and 669 

unexpressed transcripts in the guide annotation (see Supplementary Text 2). Therefore, for our 670 

evaluations, we removed any transcript that was assigned a zero read count from Bambu’s output. 671 
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