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Protein fold classification plays an important role in both protein functional analysis and drug design. The number of proteins
in PDB is very large, but only a very small part is categorized and stored in the SCOPe database. Therefore, it is necessary to
develop an efficient method for protein fold classification. In recent years, a variety of classification methods have been used in
many protein fold classification studies. In this study, we propose a novel classification method called proFold. We import protein
tertiary structure in the period of feature extraction and employ a novel ensemble strategy in the period of classifier training.
Compared with existing similar ensemble classifiers using the same widely used dataset (DD-dataset), proFold achieves 76.2%
overall accuracy. Another two commonly used datasets, EDD-dataset and TG-dataset, are also tested, of which the accuracies are
93.2% and 94.3%, higher than the existing methods. ProFold is available to the public as a web-server.

1. Introduction

Protein fold classification is a crucial problem in structural
bioinformatics. Protein folding information is helpful in
identifying the tertiary structure and functional information
of a protein [1]. In recent years, many protein fold classifica-
tion studies have been performed. The methods proposed by
researchers can be roughly divided into two categories: one
is template-based method [2–7], and the other is taxonomy-
based method [8–15]. Recently, taxonomy-based methods
have attracted more attention due to their relatively excellent
performance.

The taxonomy-based method was proposed by Dubchak
et al. [8, 9] in 1995 for the first time. Many taxonomy-based
methods classify a query protein to a known folding type.
This nonmanual label method contributes to the growth
of the quantity of protein in Structural Classification of
Proteins (SCOP) [16] and could narrow the gap between the
number of proteins in SCOP and Protein Data Bank (PDB).
In this paper, the taxonomy-based method is equivalent to
the classification problem in machine learning. There are
two significant problems in classification tasks: one is feature
extraction, and the other is machine learning method.

In terms of feature extraction, most of the researchers
extract multidimensional numerical feature vectors from
amino acid sequences. In 1995, Dubchak et al. [8, 9] extracted
global description of amino acid sequence for the first time.
Since then, in order to improve the accuracy of classification,
some researchers have put forward other feature extrac-
tion methods, such as pseudoamino acid composition [12,
17], pairwise frequency information [18], Position Specific
Scoring Matrix (PSSM) [17], structural properties of amino
acid residues and amino acid residue pairs [19], and hidden
Markovmodel structural alphabet [20, 21]. Except for extract-
ing features from amino acid sequence directly, some features
are extracted from evolution information combining the
functional domain and the sequential evolution information
[22] and predicted secondary structure [14, 23, 24]. Although
the classification accuracy can be improved after combining
these features together [20, 25], it is still not good enough.

For protein fold classification, many classifiers have been
used, such as neutral network (NNs) [8, 13], SVMs [10, 13, 18–
21, 24, 26–33], k-nearest neighbors (k-NN) [12], probabilistic
multiclass multikernel classifier [25], random forest [23, 34–
37], rotation forest [38], and a variety of ensemble classifiers
[11, 12, 14, 18, 22, 39–41].
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Up to 28th April, 2016, PDB had 109850 protein struc-
tures (http://www.rcsb.org/pdb/home/home.do). However,
Structural Classification of Proteins- extended (SCOPe) [42]
only had 77439 PDB entries (http://scop.berkeley.edu/statis-
tics/ver=2.06). Therefore, there still exists a great number of
protein structures which do not have their structure classi-
fication labels in the SCOPe database. What is more, most
protein structures in SCOPe are classified manually, so it
requires a lot of manual labor. In this study, we start from
the PDB file 3D structure studying the protein fold classifi-
cation. In terms of feature extraction, we use a new feature
extraction method, combining the existing methods of the
global description of amino acid sequence [13], PSSM [43],
and protein functional information [22] proposed by other
researchers. The new feature extraction method extracts
eight types of secondary structure states from PDB files by
the Definition of Secondary Structure in Proteins (DSSP)
software [44]. In terms of machine learning classifiers, we
propose a novel ensemble strategy. With the new added
feature extracted fromDSSP and the novel ensemble strategy
we propose, our method can achieve 1–3% higher accuracy
than similar methods.

As demonstrated by a series of recent publications [45–
55] in compliance with Chou’s 5-step rule [56], to establish
a really useful machine learning classifier for a biological
system, we should follow the following five guidelines: (a)
benchmark dataset construction or selection for training and
testing the model; (b) extract features from the biological
sequence samples with effectivemethods that can truly reflect
their intrinsic correlation with the target to be predicted; (c)
introduce or develop a powerful algorithm (or engine) to
operate the classifier; (d) properly perform cross-validation
tests and test on independent dataset to objectively evaluate
the anticipated accuracy of the classifier; (e) establish a user-
friendly web-server (http://binfo.shmtu.edu.cn/profold/) for
the classifier that is accessible to the public. In the following,
we are to describe how to deal with these steps one-by-one.

2. Materials and Methods

2.1. Data Sets. In this study, three benchmark datasets are
used, respectively: (1) Ding and Dubchak (DD) [13], (2)
Taguchi and Gromiha (TG) [58], and (3) Extended DD
(EDD) [10]. DD-dataset was proposed by Ding and Dubchak
in 2001 and modified by Shen and Chou in 2006 [12].
Since then, DD-dataset has been used in many protein fold
classification studies [11, 18, 20–24, 26, 32–36, 38, 40, 57, 59].
There are 311 protein sequences in the training set and 386
protein sequences in the testing set with no two proteins
having more than 35% of sequence identity. The protein
sequences in DD-dataset were selected from 27 SCOP [35]
folds comprehensively, which belong to different structural
classes containing 𝛼, 𝛽, 𝛼/𝛽, and 𝛼 + 𝛽.

TG-dataset contains 30 SCOP folds and 1612 protein
sequences with no two protein having more than 25%
sequence identity.

EDD-dataset contains 27 SCOP folds, like DD-dataset.
There are 3418 protein sequenceswith noprotein havingmore
than 40% sequence identity.

These three datasets can be downloaded directly fromour
website (http://binfo.shmtu.edu.cn/profold/benchmark.html).

2.2. Feature Extraction Method. With the rapid growth of
biological sequences in the postgenomic age, one of the most
important but also most difficult problems in computational
biology is how to represent a biological sequence with a
discrete model or a vector.Therefore Chou’s PseAAC [60–62]
was proposed. Encouraged by the successes of using PseAAC
to deal with protein/peptide sequences, three web-servers
[63–65]were developed for generating various feature vectors
for DNA/RNA sequences. Particularly, recently a powerful
web-server called Pse-in-One [66] has been established that
can be used to generate any desired feature vectors for
protein/peptide and DNA/RNA sequences according to the
need of users’ studies. Inspired by this, in this study,we extract
four feature groups, including the DSSP feature, the amino
acid composition and physicochemical properties (AAsCPP)
feature, the PSSM feature, and the functional domain (FunD)
composition feature.These feature extractionmethodswill be
described as follows.

2.2.1. Definition of Secondary Structure in Proteins. TheDSSP
programwas designed byKabsch and Sander [44] and used to
standardize protein secondary structure. The DSSP program
works by calculating the most likely protein secondary
structure given by the protein 3-dimensional structure. The
specific principle of the DSSP program is calculating the H-
bond energy between every two atoms by the atomic position
in a PDB file, and then the most likely class of secondary
structure for each residue can be determined by the best two
H-bonds of each atom.

The DSSP feature extraction process is as follows. Firstly,
DSSP entries are calculated from PDB entries by DSSP
program. Secondly, the corresponding DSSP sequences from
DSSP entries are obtained. DSSP sequence contains eight
states (T, S, G, H, I, B, E, —), which can be divided into four
groups, as shown in Table 1. Finally, according to the eight
states and four groups, a 40D feature vector can be extracted
from a DSSP sequence. The detail of the description and
dimension of the features are shown in Table 2.

2.2.2. Amino Acids Composition and Physicochemical Proper-
ties. As effective features to describe a protein, the amino acid
composition and physiochemical properties have reached
good predict result, respectively [13, 34, 35]. Ding and
Dubchak [13] tried to integrate the features for the first time
and achieved a good result. Later, many other researchers
proposed other feature integration methods. In 2013, Lin
et al. [41] used a 188D feature vector combining amino
acid composition and physiochemical properties. The 188D
feature extraction method is also used in this paper.

The eight physiochemical properties of amino acids are
hydrophobicity, van der Waals volume, polarity, polariz-
ability, charge, surface tension, surface tension, and solvent
accessibility. Different kinds of amino acids have different
physiochemical properties so that they can be divided into
three groups [13, 41], as shown in Table 3.
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Table 1: The eight states of DSSP feature in four groups.

Eight-state SS Code Description Four groups
310 helix (G) G Helix-3

FirstAlpha-helix (H) H Alpha helix
pi-helix (I) I Helix-5
Beta-strand (E) E Strand Second
Beta-bridge (B) B Beta bridge
Beta-turn (T) T Turn Third
High curvature loop (S) S Bend
Irregular (L) — Empty, no secondary structure assigned Fourth

Table 2: The description and dimension of the DSSP feature.

Features description Dimension
State composition 8
Group composition 4
Number of continuous states 8
Number of continuous groups 4
Number of continuous state compositions 8
Number of continuous group compositions 4
Alternate frequency between groups 4

The percentage composition of the 20 amino acids in
the query protein forms a 20D feature vector. The group
composition of amino acids (3D), the pairwise frequency
between every two groups (3D), and the distribution pattern
of constituents (where the first, 25%, 50%, 75%, and 100%
of a given constituent are contained) (5 × 3D) from each
physiochemical property are extracted. Therefore, we can get
a 168D feature vector from a protein sequence according
to the eight physiochemical properties. Adding up the 20D
amino acid composition feature and the 168Dphysiochemical
feature, we can get a 188D feature vector altogether.The name
and the dimensions of the features are listed in Table 4.

2.2.3. Position Specific Scoring Matrix. PSSM is a relatively
common feature. In addition to protein fold type classifica-
tion research area, there are some studies on protein struc-
tural class prediction [67, 68] which used this feature. PSSM
is derived from PSI-BLAST (Position Specific Iterative Basic
Local Alignment Search Tool) [43] by taking the multiple
sequence alignment of sequences in nonredundant protein
sequence database (nrdb90) [69]. The iteration number is 3
and the cutoff 𝐸-value is 0.001. Two 𝐿 × 20 matrices can be
obtained by PSI-BLAST, in which 𝐿 represents the length
of the query amino acid sequence, and 20 represents the 20
amino acids. One of the two matrices contains conservation
scores of a given amino acid at a given position in sequence,
and the other provides probability of occurrence of a given
amino acid at a given position in the sequence. The PSSM
feature is extracted from the former matrix. Suppose that
the parameter in the matrix is 𝑆𝑖𝑗 (𝑖 = 1, 2, . . . , 𝐿; 𝑗 =1, 2, . . . , 20). Then the feature can be calculated by (1). That

is to calculate the average value of each column in the matrix
and form a 20D feature vector.

𝑃pssm = [∑
𝐿
𝑖=1 𝑆𝑖1𝐿 ,
∑𝐿𝑖=1 𝑆𝑖1𝐿 , . . . ,

∑𝐿𝑖=1 𝑆𝑖20𝐿 ]
𝑇

. (1)

2.2.4. Functional Domain Composition. Proteins always con-
tain some modules or domains, which involve different
evolution resources and functions. Therefore, we can extract
features in some FunD databases. There are some differ-
ent FunD databases: SMART [70], Pfam [71], COG [72],
KOG [72], and CDD [73]. In 2009, Shen and Chou [22]
considered CDD as a relatively more complete functional
domain database, and they used CDD to extract features.
In this study, we used CDD (version 2.11), which co ntains
17402 common protein domains and families. Taking each of
protein domains as a vector-base, we can extract a 17402D
feature vector. Specific process is as follows. Firstly, use
RPS-BLAST program [74] to compare the protein sequence
with each of the 17402 domain sequences. Secondly, if the
significance threshold value (expect value) is no more than
0.001, this component of the protein in the 17402D feature
vector is assigned 1; otherwise, it is assigned 0. In this way,
we can extract a 17402D feature vector, and each component
of the feature can be either 1 or 0.

2.3. The Proposed Ensemble Classifier. In this study, we pro-
pose a novel ensemble strategy which includes 5 individual
steps. Step 1: 10 widely used machine learning classifiers,
LMT [75], RandomForest [34], LibSVM [76], SimpleLogistic
[75], RotationForest [38], SMO [77], NaiveBayes [78], Ran-
domTree [79], FT [80], and SimpleCart [81], are selected, and
a 5-fold cross validation is implemented on the DD-dataset.
Step 2: the classifier with the highest accuracy in each feature
group is chosen. Step 3: corresponding models by training
each feature group with the chosen classifier are selected.
The four models are DSSP classification model, AAsCPP
classification model, PSSM classification model, and FunD
classification model. Detailed process is shown in Figure 1.
Step 4: features from the test dataset are extracted and
the classification result 𝑃𝑖𝑗 by calculating the corresponding
models is obtained, 𝑖 represents a kind of classification model
ranging from 1 to 4, and 𝑗 represents a kind of fold index,
ranging from 1 to the total number of the fold classes (e.g.,
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Table 3: The 20 amino acids divided into 3 groups according to their physiochemical properties.

Physicochemical property The 1st group The 2nd group The 3rd group
Hydrophobicity RKEDQN GASTPHY CVLIMFW
Van der Waals volume GASCTPD NVEQIL MHKFRYW
Polarity LIFWCMVF PATGS HQRKNED
Polarizability GASDT CPNVEQIL KMHFRYW
Charge KR ANCQGHILMFPSTWYV DE
Surface tension GQDNAHR KTSEC ILMFPWYV
Secondary structure EALMQKRH VIYCWFT GNPSD
Solvent accessibility ALFCGIVW RKQEND MPSTHY

40D DSSP features
by DSSP program

20D PSSM features 

by PSI-BLAST

17402D FunD features
by RPS-BLAST

RandomForest
classifier

RandomForest
classifier

RotationForest
classifier

FT
classifier

188D AAsCPP
features

DSSP classifier
model

AAsCPP classifier
model

PSSM classifier

model

FunD classifier
model

Train protein

Figure 1: The training process of the four feature groups through the corresponding classifier.

Table 4: The name and the dimension of the amino acids composi-
tion and physiochemical features.

Feature name Dimension
Amino acids composition 20
Hydrophobicity 21
Van der Waals volume 21
Polarity 21
Polarizability 21
Charge 21
Surface tension 21
Secondary structure 21
Solvent accessibility 21

the value of 𝑗 ranges from 1 to 27 on DD-dataset). Step 5: the
average of the probabilities of the four models in each fold
class is calculated. The fold class with the highest probability
will be chosen as the classification result. Detailed process is
shown in Figure 2.

The machine learning tool we used is WEKA (Waikato
Environment for Knowledge Analysis) [56], a collection of
machine learning classifiers for data mining tasks based on
Java.

2.4. Measurement. In this study, the standard 𝑄 percentage
accuracy is used to test the effect of the proposed classification

method, which helped us to compare our result with other
researchers’ results [12, 13, 34]. The definition of the standard𝑄 percentage accuracy is described in

𝑁 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑖 + ⋅ ⋅ ⋅ + 𝑛𝑘,
𝐶 = 𝑐1 + 𝑐2 + ⋅ ⋅ ⋅ + 𝑐𝑖 + ⋅ ⋅ ⋅ + 𝑐𝑘,
𝑄 = 𝐶𝑁,

(2)

where 𝑛𝑖 represents the number of the proteins which belong
to class 𝑖, 𝑐𝑖 represents the correct number in 𝑛𝑖 test data, 𝑐𝑖/𝑛𝑖
represents the classification accuracy of class 𝑖, 𝑘 represents
the total number of classes,𝑁 represents the total number of
tests, 𝐶 represents the total number of the correct classified
data, and 𝑄 represents the classification accuracy.

3. Results and Discussion

3.1. Performance of ProFold. In order to test the performance
of proFold, we first select the widely used DD-dataset for
evaluation. The overall accuracy is 76.2%. Comparison with
existing ensemble learning methods on DD-dataset is shown
in Table 5. From Table 5, we can see that the accuracy of
the other methods are under 75%, and the accuracy of our
method is 3% higher than PFPA (2015) [40], which is the best
one in the other methods.
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P11 · · · P1n

P21 · · · P2n

P31 · · · P3n

P41 · · · P4n

(1) Pj = ∑(Pij)Test protein

Classified fold

Ensemble

DSSP classifier
model

PSSM classifier
model

FunD classifier
model

20D PSSM
features by
PSI-BLAST

17402D FunD
features by

RPS-BLAST

188D AAsCPP
features

40D DSSP
features by

DSSP program

AAsCPP

model
classifier

(2) max (Pj)

Figure 2: The ensemble process of calculating the test data through the models.

Table 5: Comparison with existing ensemble learning methods on
DD-dataset.

Methods References Overall
accuracy (%)

PFP-Pred [12] 62.1
GAOEC [11] 64.7
ThePFP-FunDSeqE [22] 70.5
Dehzangi et al. [34] 62.7
Dehzangi et al. [38] 62.4
MarFold [18] 71.7
PFP-RFSM [35] 73.7
Feng and Hu [36] 70.2
Feng et al. [23] 70.8
PFPA [40] 73.6
proFold (the proposed method) This paper 76.2

In order to further evaluate the performance of proFold,
we also select another two large scale datasets: EDD-dataset
and TG-dataset. Training and testing dataset are not clearly
distinguished in the two datasets, so a 𝑘-fold cross validation
is implemented on them.

We calculated the classification accuracy of EDD-dataset
by 10-fold cross validation for 10 times and compared the
result with other methods. The results are shown in Table 6.
We can see from the table that only the accuracies of Paliwal
et al. and Lyons et al. are more than 90%, which are lower
than that of proFold. The result showed that the advantage
of proFold is obvious when larger scale datasets are used for
validation.

Regarding TG-dataset, we also took experiments by 10-
fold cross validation for 10 times and compared the results
with other methods.The results are shown in Table 7. We can
see from the table thatHMMFold (2015)method achieved the
highest accuracy, which is 93.8%.The accuracy of ourmethod
is 94.3%, which is higher than HMMFold. TG-dataset has
threefold classes more than DD-dataset and its scale is twice
larger than DD-dataset.The result showed that the advantage

Table 6: Comparison with the different methods on EDD-dataset
by 10-fold cross validation.

Methods References Overall
accuracy (%)

Paliwal et al. [29] 90.6
Paliwal et al. [30] 86.2
Dehzangi et al. [31] 88.2
HMMFold [32] 86.0
Saini et al. [33] 89.9
Lyons et al. [21] 92.9
proFold (the proposed method) This paper 93.2

Table 7: Comparison with the different methods on TG-dataset by
10-fold cross validation.

Methods References Overall
accuracy (%)

Paliwal et al. [29] 77.0
Paliwal et al. [30] 73.3
Dehzangi et al. [31] 73.8
HMMFold [32] 93.8
Saini et al. [33] 74.5
NiRecor [57] 84.6
Lyons et al. [21] 85.6
proFold (the proposed method) This paper 94.3

of proFold is obvious when the dataset with more fold classes
is tested.

3.2. Performance of the Proposed Ensemble Classifier. In the
field of protein fold classification, many researchers used
ensemble learningmethods [11, 18, 22, 23, 34–36, 38, 46, 51, 54,
79, 82–89]. The specific process of those ensemble strategies
is as follows. (1) Integrate all features. (2) Select several basic
classifiers for training. (3) Propose an ensemble classifier
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Table 8: The accuracy of 5-fold cross validation on the features
extracted from DD-dataset using 10 basic classifiers.

Feature groups Basic classifiers Fivefold CV accuracy (%)

DSSP

LMT 43.0
RandomForest∗ 51.3

LibSVM 46.4
SimpleLogistic 43.0
RotationForest 49.7

SMO 36.4
NaiveBayes 43.4
RandomTree 32.8

FT 42.4
SimpleCart 37.7

AAsCPC

LMT 32.5
RandomForest∗ 35.4

LibSVM 34.4
SimpleLogistic 32.5
RotationForest 27.7

SMO 34.4
NaiveBayes 28.3
RandomTree 11.6

FT 34.4
SimpleCart 20.6

PSSM

LMT 56.3
RandomForest 53.7

LibSVM 57.2
SimpleLogistic 55.9
RotationForest∗ 56.1

SMO 30.2
NaiveBayes 42.4
RandomTree 29.6

FT 49.5
SimpleCart 33.4

FunD

LMT 42.1
RandomForest 43.1

LibSVM 21.2
SimpleLogistic 43.1
RotationForest 41.8

SMO 38.9
NaiveBayes 38.3
RandomTree 39.9

FT∗ 44.1
SimpleCart 34.7

∗The basic classifier of each feature group with the highest accuracy.

according to the classification result probability of each basic
classifier. In this study, we find that the redundancies of the
features will influence the performance of those methods.
Therefore, we propose a novel ensemble strategy.

We took experiments on DD-dataset. Firstly, extract four
feature groupswhich have been tested in 10 basic classifiers by
cross validation. The detailed information of the test results
is listed in Table 8. We can see from Table 8 that the best

Table 9: Comparisonwith the different ensemble strategies on three
datasets.

Datasets
The accuracy of

traditional ensemble
strategy (%)

The accuracy of this
paper ensemble strategy

(%)
DD 72.5 76.2
EDD 89.9 93.2
TG 91.7 94.3

classifier is RandomForest using the DSSP feature group and
AAsCPP feature group.The best classifiers are RotaionForest
and FT when PSSM and FunD features are implemented,
respectively. Secondly, train the four feature groups with
corresponding basic classifiers and get four models. Finally,
test themodels on DD-dataset.The overall accuracy is 76.2%.
Ourmethod improves the accuracy effectively comparedwith
other existing ensemble learning methods.

In order to compare our ensemble strategy with the
traditional ensemble strategy, we took experiments on the
four feature groups with traditional ensemble strategy. (1)
Integrate the four feature groups. (2) Train the models with
RandomForest, RotationForest, and FT respectively. (3) Test
the models on DD-dataset, EDD-dataset, and TG-dataset.
The classification accuracy of our ensemble strategy has
increased by 3% to 4%, as shown in Table 9. The result
showed that our ensemble strategy has a better classification
performance.

3.3. Accuracy Improvements with the DSSP Feature. In order
to evaluate the influence on importing the DSSP feature, we
calculated the classification accuracy of each fold class with
and without the DSSP feature, respectively, using the DD-
dataset.The accuracies are shown in Table 10. From the table,
we can see that the accuracies of some fold classes, such as
Fold number 2, number 4, number 6, number 12, number
23, and number 26, have increased obviously after importing
the DSSP feature. The overall accuracy has increased from
71.3% to 76.2%. For example, the protein chain 1FAPB in DD-
dataset was incorrectly classified into Fold number 5 before
importing the DSSP feature, and it was reclassified into Fold
number 4 correctly after importing the DSSP feature. The
results showed that the DSSP feature has a significant effect
on protein structure classification.

As we know that PDB files contain protein 3D structure
information, we started from the PDB file of the protein
in this study. The DSSP feature is extracted from the 3D
structure in PDB and the 3D structure of a protein is more
stable.Thus it explains why the DSSP feature has a significant
effect on the protein structure classification.

4. Conclusion

In this study, we proposed a novel method called proFold.
ProFold is an ensemble classifier combining the protein
structural and functional information. In terms of feature
extraction, we imported the DSSP feature into protein fold
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Table 10:The accuracy of each fold class with and without the DSSP
feature.

Fold number The accuracy without
the DSSP feature

The accuracy with the
DSSP feature

1 100.0 100.0
2∗ 88.9 100.0
3∗ 55.0 60.0
4∗ 62.5 87.5
5 88.9 88.9
6∗ 66.7 77.8
7∗ 77.3 84.1
8 66.7 66.7
9 92.3 92.3
10 66.7 66.7
11 50.0 50.0
12∗ 47.4 68.4
13 100.0 100.0
14 50.0 50.0
15 100.0 100.0
16∗ 91.7 93.8
17∗ 83.3 91.7
18∗ 38.5 46.2
19 85.2 85.2
20 50.0 50.0
21 87.5 87.5
22 58.3 58.3
23∗ 57.1 71.4
24 100.0 100.0
25 25.0 25.0
26∗ 44.4 59.3
27∗ 92.6 96.3
Overall 71.3 76.2
∗The fold class of which the accuracy has increased significantly after
importing the DSSP feature.

classification for the first time. Experiments showed that the
classification accuracy will increase by about 5% using the
DD-dataset by importing theDSSP feature. In terms of classi-
fication method, we proposed a novel ensemble classifier and
improved the classification accuracy with this method. The
classification accuracies of proFold on DD-, EDD-, and TG-
dataset are 76.2%, 93.2%, and 94.3%, respectively, which are
higher than the existing similar methods.The results showed
that proFold is a relatively better classifier.
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