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A radiomics model combined with XGBoost may improve the 
accuracy of distinguishing between mediastinal cysts and tumors: 
a multicenter validation analysis
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Background: Mediastinal cysts (MCs) can be misdiagnosed as mediastinal tumors (MTs) such as thymomas 
on the basis of radiological examinations, including computerized tomography (CT) and magnetic resonance 
imaging (MRI). Our study aimed to determine the utility of a radiomics model combined with eXtreme 
Gradient Boosting (XGBoost) for diagnosing anterior mediastinal masses. 
Methods: Patients with anterior mediastinal lesions admitted to Shanghai Pulmonary Hospital between 
October 2014 and January 2018 were enrolled in the study. Mediastinal lesions were sketched on each CT 
image frame using OsiriX workstation. The study involved a total of 592 patients (289 male/303 female; 
age range, 18–83 years) with anterior mediastinal lesions (322 MCs and 270 MTs). Previously collected 
training data was used to build an XGBoost model to classify MCs and MTs, and a prospectively collected 
training dataset and external data from Huashan Hospital were used for validation. The SHapley Additive 
exPlanations (SHAP) method was used to help understand the complex model.
Results: The XGBoost model was established using 107 selected radiomic features, and an accuracy of 0.972 
[95% confidence interval (CI): 0.948–0.995] was achieved compared to 0.820 for radiologists. For lesions 
smaller than 2 cm, XGBoost model accuracy reduced slightly to 0.835, while the accuracy of radiologists was 
only 0.667. The model accuracy also achieved 0.910 when validated using an independent external dataset 
containing 87 cases. SHAP analysis suggested the 90% percentile Hounsfield unit value as a promising 
diagnostic parameter.
Conclusions: Our combined radiomics and XGBoost model significantly increased the accuracy of 
distinguishing between MCs and MTs compared to the level of accuracy obtained by radiologists. 
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Introduction

Mediastinal cysts (MCs) are rare, usually benign lesions 
which mainly occur during embryonic development. 
They consist of 3 main subtypes: bronchogenic cysts, 
pleuropericardial cysts, and enteric or duplication cysts  
(1-3). MCs are generally asymptomatic, unless compressive 
symptoms develop due to a large tumor size (4,5). MCs 
convert to malignancies in very few cases; therefore, in 
affected patients, surveillance could be an alternative to 
surgical resection (6). Some study suggested potential 
clinical model for the prediction of MCs (7,8), however, 
it is difficult to differentiate between nonneoplastic MCs 
and more aggressive mediastinal tumors (MTs) such as 
thymomas or thymic carcinomas, especially in cases of half-
solid and soft-tissue-like lesions (9,10).

Chest radiography is routinely used for the detection 
and diagnosis of mediastinal lesions and usually shows 
a well-delimited, homogeneous, spherical mediastinal 
image (11,12). With fluid intensity signals on T1 and T2 
sequences, magnetic resonance imaging (MRI) provides 
a better definition of cysts (13,14) and offers superior 
visualization of invasion to neighboring structures than that 
afforded by computed tomography (CT) (15). A previous 
study showed that the rate of correct first-choice diagnosis 
of MCs using CT, MRI, and both methods was 61%, 
56%, and 67%, respectively, indicating considerable scope 
for improvement (16). Mediastinal fine-needle aspiration 
cytology is a fairly specific technique for the diagnosis of 
mediastinal masses in patients for whom invasive diagnostic 
surgery is not feasible (17,18). However, it is not routinely 
recommended due to the potential risks of damage to 
adjacent organs. Thus, in clinical practice, differentiating 
MCs remains challenging due to their particular location.

With the rapid development of radiomics, high-order 
image features are being used to describe the textural 
characteristics of mediastinal lesions on medical images. By 
combining image-filtering and feature-extraction methods, 
it is possible to extract a large number of high-order 
radiomic features from CT images. Studies have shown 
significant radiomic parameters correlating to thymic tumor 
histology, such as skewness, kurtosis, and entropy (19). 
However, due to the similar appearances of MCs and MTs 
on CT images, even traditional machine learning models 
have difficulties in achieving satisfactory discriminatory 
performance. 

Ensemble learning is often used to integrate multiple 

machine learning models for better prediction of complex 
medical images with a very large number of image features. 
Each model in ensemble learning uses a part of the entire 
feature set, and this approach is usually better than a 
single model in terms of model performance and model 
generalizability. Our study aimed to explore a novel model 
using radiomics combined with eXtreme Gradient Boosting 
(XGBoost), an advanced type of boosting algorithm 
belonging to the ensemble learning family, for the diagnosis 
of anterior mediastinal masses, thus providing a prediction 
tool for invasive medical decisions. We present the following 
article in accordance with the STARD reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-5999).

Methods

Patient eligibility

Patients with anterior mediastinal lesions admitted to 
Shanghai Pulmonary Hospital between October 2014 and 
January 2017 were enrolled in the study. Only patients 
diagnosed by radiologists using Digital Imaging and 
Communications in Medicine (DICOM) data retrieved 
from Shanghai Pulmonary Hospital were included, and 
no missing data was found. Consecutive patients with 
pathological examination from surgical resection were 
included. All cases and patient information were collected 
as a training set to develop the diagnostic model. Cases 
between January 2017 and September 2018 were collected 
prospectively as a test dataset. A total of 592 patients  
(289 male/303 female) with anterior mediastinal lesions 
were enrolled in the study (age range, 18–83 years). Fifty-
six patients (9.5%) complained of compression symptoms. 
Another dataset comprising patient information of  
87 patients with anterior mediastinal lesions from Huashan 
Hospital of Shanghai Fudan University Medical College 
between January 2017 and April 2019 was collected for 
model validation. All procedures performed in this study 
involving human participants were in accordance with the 
Declaration of Helsinki (as revised in 2013).

Patients’ personal information was anonymized before 
being used for data analysis. This study protocol was 
approved by the institutional review board of Shanghai 
Pulmonary Hospital (L20-379, Shanghai, China). Patients’ 
written informed consent was waived by the institutional 
review board because of the retrospective nature of the 
study.

https://dx.doi.org/10.21037/atm-21-5999
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Image acquisition

All patients in Shanghai Pulmonary Hospital underwent 
nonenhanced and arterial-phase enhanced CT examinations 
with the Definition AS CT scanner (Siemens Healthineers, 
Erlangen, Germany). The entire chest of the patients was 
scanned, and all scans were obtained with patients in the 
supine position. For the purpose of the scan, nonionic 
contrast material was injected through the antecubital vein 
at a rate of 3.5 mL/s [1.5 mL/kg of body weight, a total 
of 90 to 120 mL, iohexol 300 mgI/mL (Omnipaque, GE 
Healthcare, Waukesha, WI, USA)]. The arterial phase scans 
were obtained at 30 s after injection of the contrast medium. 
The imaging parameters for CT were as follows: helical 
mode at a tube voltage of 120 kVp, tube current of 300 mA, 
collimation thickness of 5 mm, reconstruction thickness of 
0.625 mm, rotation speed of 0.6 s, and helical pitch of 1.375. 
At Huashan Hospital, a Siemens CT scanner and Philips 
CT scanner (Eindhoven, the Netherlands) were used with 
similar parameters.

Radiological and pathological examinations

DICOM data were independently reviewed by a radiologist 
who was different from the one who prepared the original 
clinical report for the patient. For the pathological 
examination, surgically resected specimens were fixed 
in formalin, embedded in paraffin, sectioned with a 

microtome, and stained with hematoxylin and eosin 
(H&E). All available tumor slides stained with H&E were 
independently reviewed by 2 different pathologists who 
were blinded to the clinical outcomes. 

Region of interest (ROI) delineation and radiomic feature 
extraction

A three-dimensional (3D) morphology of the mediastinal 
lesions was sketched by the aforementioned radiology 
expert based on two-dimensional (2D) contours on each 
frame of the CT images using the OsiriX medical image 
workstation. Indeterminate cases were settled by a third 
radiology expert. Based on the precise contour information 
obtained, a specific 3D ROI was reconstructed for each 
mediastinal lesion (Figure 1). The images were filtered, 
and from the ROIs of the filtered images, different types of 
radiomic features were determined, including histograms, 
morphological features, and various high-order textural 
features. 

Machine learning framework 

The training dataset was used to build an XGBoost model to 
classify MCs and MTs in the test dataset. Ten fivefold cross-
validation experiments were performed using the training 
data, with each repetition based on random ordering of the 

415 cases from SPH (2014–2017) 
training set

XGBoost model generation

AUC (whole cohort/lesions <2 cm)

Compare with human physicians

SHAP for visualized explanation

177 cases from SPH (2017–2018)
training set

XGBoost model trained by 
SPH

87 external cases from HSH 
for validation

Figure 1 Flow chart of patient eligibility and study design. SPH, Shanghai Pulmonary Hospital; HSH, Huashan Hospital; SHAP, SHapley 
Additive exPlanations; AUC, area under the receiver operating characteristic curve.
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training set. For each fivefold cross-validation, one-fifth of 
the samples were reserved as validation samples, and the 
remaining samples were used for training. The XGBoost 
model was fitted to each training sample to classify MT 
lesions on the CT images of the corresponding validation 
samples.

When building the XGBoost model, a large number 
of radiomic features were extracted. Among these, some 
features may have been unrelated to the prediction results 
or been interdependent, which could have led to the 
following consequences: (I) long processing time, and (II) 
low generalizability. Therefore, feature selection was needed 
to eliminate irrelevant or redundant features. Feature 
selection refers to the collection of a subset of features from 
all original features to reduce run time and train a better 
model.

For tree-based models, a statistical metric called 
‘information gain’ is usually used to evaluate the ability 
of a feature to classify the data samples. The greater 
the information gain, the more powerful the feature for 
distinguishing different types of data samples. In the 
cross-validation experiments, the XGBoost model was 
independently trained, and the importance of all radiomic 
features was determined based on their information gain, 
followed by selection of the top 50% important features. 
Thereafter, the intersection of the selected important 
features was considered from 10 random divisions of data 
and a stable subset was obtained as the result of feature 
selection.

Visualization of the prediction

An XGBoost model often contains tens or hundreds of 
boosting trees, which highly reduces the interpretability of 
the model. To understand the inherent causality of model 
complexity, SHapley Additive exPlanations (SHAP) was 
used to analyze the relationship between the features and 
output in the XGBoost ‘black box’. SHAP analysis evaluated 
the SHAP value of each feature of the training sample, 
which represented the sensitivity of that feature to changes 
in model output. By linearly decomposing the prediction 
result into the effect of each feature, the importance of 
features could be calculated and the role of different 
features in the model could be visualized.

Statistical analysis

Finally, to evaluate the performance of the XGBoost model, 

the predicted result was compared with the pathologically 
confirmed lesion category. The accuracy of the model 
classification was noted, and the receiver operating 
characteristic (ROC) curve of the prediction results was 
plotted. The ROC curve described the relationship between 
the sensitivity and specificity of the classification when the 
model had different decision cut-offs. If the model was 
more robust and accurate, the area under the ROC curve 
(AUC) would be closer to the unit. We thus performed  
2 sets of experiments. First, we evaluated the results of the 
cross-validation experiments. The accuracy and AUC were 
used to measure the prediction of the XGBoost model, 
and the confidence intervals (CIs) of the analysis were also 
determined. Next, we obtained an additional data set of 
87 images from another hospital, which was used as an 
independent test set to evaluate the model. The accuracy 
and AUC were also used to measure the generalizability of 
the model. 

In addition, we reported the analysis results of the 
radiologists by comparing them with the ROC curve of the 
prediction results with the XGBoost model.

Results

Detailed patient characteristics and features extracting

Our study included 322 MC cases (101 thymic cysts, 6 
pericardial cysts, 144 bronchogenic cysts, and 71 other 
cysts, such as mixed type), and 270 MTs (237 thymomas, 
including 23 type A, 125 type B, and 89 type AB; and 33 
thymic carcinomas) (Table 1). A total of 415 cases (~70%) 
were analyzed for the training data set, and 177 cases (~30%) 
were accumulated for the internal training set (Figure 2).

We extracted 934 features for each image via image 
filtering and radiomics analysis. In the fivefold cross-
validation experiments, we obtained the 107 most important 
features by intersecting the top 500 features from all 934 
radiomic features from 10 random divisions of the dataset. 
Twenty examples of these features are shown in Figure 3A,3B. 
The top 5 most important features were the 90th percentile 
Hounsfield unit (HU) value, the average HU value, the 
median HU value, the energy value (proportional to the 
square of the HU value), and the minimum value for area 
after filtering by the Laplacian of Gaussian operator.

Repeatability test

To evaluate the variability of manual segmentation of 
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Table 1 Shanghai Pulmonary Hospital patient characteristics

Variable Value

Gender, n (%)

Male 289 (48.8)

Female 303 (51.2)

Median age [range], years 58 [18–83]

MC, n (%)

Simple cyst 174 (54.0)

Pericardial cyst 4 (1.2)

Bronchogenic cyst 144 (44.7)

MT, n (%)

Low-risk 146 (54.1)

High-risk 124 (45.9)

Median diameter [range], cm 3.1 [0.7–22]

Diameter <2 cm, n (%)

Yes 134 (22.6)

Symptoms, n (%)

Yes 56 (9.5)

Low-risk: type A, AB, B1 thymoma; high-risk: type B2 thymoma 
and thymic carcinoma (type C). MC, mediastinal cyst; MT, 
mediastinal tumor.

mediastinal lesions, 37 patients’ CT images were randomly 
selected and the lesion boundaries were manually delineated 
for a second time. The Dice coefficient reached 0.963, 
which represented high repeatability (low interobserver 
variability) between the 2 results of the same volumetric 
image.

XGBoost classification model construction and validation

The XGBoost classification model was established using 107 
selected radiomics features. In the fivefold cross-validation 
experiments, the XGBoost model achieved an accuracy of 
0.960 on the training set and 0.924 on the test set. Figure 4A 
shows the ROC (yellow curve) of the XGBoost model, and 
the shaded area corresponds to the 95% CI, with an AUC 
of 0.972 (95% CI: 0.948–0.995). The asterisk in Figure 4A 
indicates that the accuracy rate of radiologists was 0.820 
when reading only the CT image to determine whether the 
lesion was an MC or an MT. The reading of the radiologists 
was below the lower limit of the 95% CI for the prediction 
results of the model.

For lesions smaller than 2 cm, the accuracy of XGBoost 
reduced slightly. Figure 4B shows the corresponding ROC 
curve (yellow), with an AUC of 0.835 (95% CI: 0.543–
1.000). The accuracy of radiologists was 0.667 (indicated by 
the asterisk). The reading of the radiologists was within the 
lower limit of the 95% CI for the prediction results of the 
model.

We tested the model on an independent external data set 
containing 87 CT volumetric images from another hospital, 
and the AUC of the ROC curve was 0.910 (Figure 4C).

Visualization by SHAP

In addition to accuracies and AUCs, we used SHAP analysis 
to visualize the features used in the XGBoost model. 
Feature distribution was based on the classification results 
for the first 20 features (Figure 3B). Each row represents 
a feature, the horizontal axis of the table represents the 
SHAP values, and each dot represents a data sample. A 
redder color indicates a larger value of the feature itself, 
and a bluer color indicates a smaller value. The top-ranked 
features show significant differences in SHAP values for 
different lesion categories. For example, the 90th percentile 
of the HU value (tumor, 73.3±21.0, 95% CI: 70.8–75.8 vs. 
cyst, 40.1±20.4, 95% CI: 37.9–42.4) is the most important 
feature, and the blue dots are mainly gathered in the right 
portion of the axis, while the red dots mainly appear in the 
left portion.

Simple clinical classification model

We constructed a simple ‘clinical’ classification model based 
on logistic regression using the 90% percentile HU value, 
the presence or absence of symptoms, and tumor size. The 
accuracy of the model was 0.823 (AUC =0.894), slightly 
higher than the accuracy of 0.820 by radiologists. To further 
test the robustness of the 90% percentile HU value, we 
removed the symptoms and the tumor size features from 
the model. The accuracy of the model based solely on the 
90% percentile HU value reached 0.809 (AUC =0.880), 
which indicated that the feature showed high accuracy and 
excellent robustness in the classification of mediastinal 
lesions in our experiment.

Discussion

To date, this study involved the largest cohort in a radiomics 
study of mediastinal lesion differentiation strengthened 
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by multicenter validation. A previous study reported that 
MCs were correctly diagnosed by CT in 83% (10/12) of 
cases (20), similar to our study (87%), indicating that CT 
accuracy has been insufficient for a considerable number 
of patients. The combination of radiomics with XGBoost 
dramatically increased the accuracy to 97.2% in our 

internal dataset and 91% in the external dataset validation, 
indicating the exceptional stability of this novel diagnostic 
tool. We chose XGBoost as the primary classification model 
for this study due to the ‘black box’ nature of machine 
learning, which showed better interpretability than other 
machine learning methods. The datasets of the 2 different 

I. ROI delineation

III. Feature selection IV. Machine learning

II. Feature extraction

2D ROI                3D ROI

All radiomic features Selected features

Intersection

Final

XGboost model MC or MT?

107

Feature 
selection

934 500

Statistics                       Shape                       Texture

Figure 2 Schematic of the radiomics quantification workflow demonstrating feature extraction from thymic lesions from pretreatment CT 
images, including ROI delineation, feature extraction, feature selection, and machine learning. CT, computed tomography; ROI, region of 
interest; MC, mediastinal cyst; MT, mediastinal tumor.

Feature 0
Feature 1

Feature 17
Feature 8

Feature 105
Feature 20
Feature 2

Feature 97
Feature 33
Feature 90
Feature 40
Feature 84
Feature 91
Feature 6

Feature 58
Feature 36
Feature 22
Feature 68
Feature 71
Feature 19

Mean (|SHAP value|) (average impact on model 

output magnitude)

0              0.2            0.4            0.6             0.8             1.0

–1.5   –1.0  –0.5    0.0    0.5    1.0    1.5     2.0

SHAP value (impact on model output)

Feature value

Low

High

aoriginal image without filtering  b3D LoG filtering with a sigma of 1 mm   c3D LoG filtering with a sigma of 3 mm

90 Percentilea

Meana

Mediana

Energya

Total Energya

Root Mean Squareda

Minimumb

GLRLM_Short Run High Gray Level Emphasisb

GLDM_Large Dependence Low Gray Level Emphasisb

GLRLM_Short Run High Gray Level Emphasisc

GLDM_Large Dependence Low Gray Level Emphasisc

10 Percentilea

GLRLM_High Gray Level Run Emphasisc

GLRLM_Gray Level Variancec
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GLDM_High Gray Level Emphasisc

GLCM_Sum Averagec

GLCM_Joint Averagec
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A B

Figure 3 Features and distributions of SHAP values. (A) Relative importance of features: feature 0 is the 90th percentile value of the 
HU value inside the lesion; feature 1 is the mean of the HU values inside the lesion. (B) The distribution of SHAP values for the top 20 
important radiomic features. SHAP, SHapley Additive exPlanations; HU, Hounsfield unit.
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hospitals showed discrepancies in feature distribution due 
to differences in CT scanner and radiological parameters. 
We used adaptive instance normalization (21) to align the 
features of the 2 types of data so that the original model 
could be applied to CT images from other institutions, 
indicating that it had good potential to further improve the 
prediction value after training with big data. We believe 
a better accuracy might be achieved if the model could 
be trained using data from more institutions. The model 
suggested in this study had the best performance up to date, 
and the most important part is the feedback of the model to 
human radiologists, who may understand the logic behind 
the radiomics textures.

A precise preoperative differential diagnosis can facilitate 
the decision to perform surgery and also help identify the 
appropriate excision preoperatively, thereby indicating the 
optimal surgical approach. Cysts may only require removal 
around the border without extensive clearance, for which 

video-assisted thoracic surgery (VATS) would be sufficient, 
while thymomas should be removed thoroughly along with 
thymic fat tissues to reduce tumor recurrence or myasthenia 
gravis, which necessitates extensive thymectomy in the first 
attempt. Therefore, the combination of CT with our novel 
prediction model could greatly improve diagnostic accuracy, 
optimize the operative workload, and reduce the time and 
cost required for unnecessary MRI or positron emission 
tomography (PET)-CT detection.

An extraordinarily low accuracy for the diagnosis of 
lesions less than 2 cm exists in clinical practice. However, 
this problem was resolved by the model, which made us 
curious about the internal mechanisms. SHAP analysis 
was performed to show a series of diagnostic texture 
features, and the 90th percentile HU value ranked as the top 
radiological characteristic, which explained precisely the 
difficulty for radiologists in accurately diagnosing lesions 
less than 2 cm. For example, 10 points can be selected 
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Figure 4 ROC curve of the models. (A) ROC curve of the model trained by data from the same hospital. (B) ROC curve of the model 
for lesions under 2 cm. (C) ROC curve for classification of the data from Huashan Hospital: (I) the bold polyline is the original ROC 
curve; (II) the orange curve is the smoothed ROC curve; and (III) the blue shaded regions represent the 95% CI. The blue asterisk shows 
the performance of radiologists in distinguishing MCs and MTs. ROC, receiver operating characteristic; CI, confidence interval; MC, 
mediastinal cyst; MT, mediastinal tumor.
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randomly for HU measurement, and solid lesions should be 
considered if the 90th percentile is greater than 42.4. The 
average HU value, which is commonly used by physicians, is 
not as reliable as the 90th percentile, as indicated by machine 
learning. Therefore, radiologists need to read multipoint 
CT HU values carefully when judging small lesions. We felt 
that the visualizations from machine learning could provide 
a window into artificial intelligence, allowing clinicians to 
understand the internal logic underlying the high accuracy 
of the machine. We developed an easy ‘clinical’ model using 
the 90% percentile HU value, the presence or absence of 
symptoms, and tumor size. The model showed excellent 
performance and could be introduced into clinical practice.

Due to the relatively stable morphology and clear 
boundaries of MCs and MTs, the interobserver variability 
of manual segmentation was low, as was suggested in the 
results of repeatability. A mediastinal window was used 
for drawing the boundary of the tumor, and the influence 
of thymus tissue around the lesion could be avoided. In 
this study, we focused on the texture characteristics of the 
tumor, and so we did not include the lesion shape or its 
relationship with adjacent tissues into the machine learning 
calculation. Nevertheless, we believe that lesion shape 
has some value for differential diagnosis of the nature of 
lesions, and this should be addressed in future research. In 
addition, the ROIs in our study were manually delineated 
by radiologists. In future studies, we will use deep learning 
methods with computer vision to train an automated model 
to delineate the lesion ROI, allowing automatic delineation 
and recognition of thymic lesions, which will facilitate the 
transformation of this method into a real-world product of 
clinical value. 

Although the proposed method yielded more accurate 
results, several limitations warrant further investigation. 
First, due to the inherent bias of the black box nature of 
radiomics, our findings still need to be verified prospectively 
by large-sample and multicenter data. However, our model 
was trained using collected data before 2018 and tested with 
cases collected subsequently, and so it could be considered 
a prospective observational study. Second, the proposed 
model did not show equal accuracy for data from another 
hospital (the accuracy reduced from 0.97 to 0.91 but was 
still higher than that obtained by radiologists). We will 
further explore more advanced feature alignment methods, 
such as deep learning-based generative models, to improve 
the classification accuracy from multicenter datasets. After 
developing automatic depiction tools, clinicians may have a 

feasible desktop tool for diagnostic assistance. In addition to 
identifying cysts and tumors, we will further identify low-
risk and high-risk subtypes of thymoma, as well as anterior 
MCs and type B1 and B2 thymomas, so as to expand the 
application scenarios of the model. The number of patient 
samples in this study is too small, and a large sample study 
should be added for verification.

In conclusion, our study showed that radiomics combined 
with XGBoost may have significantly increased diagnostic 
accuracy for distinguishing MC from MT compared to 
the accuracy obtained by radiologists. We believe that this 
novel diagnostic model may optimize the surgical strategy 
for mediastinal lesions, especially those within 2 cm in size.
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retrospective nature of the study. 
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