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The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin

ligases have emerged as critical regulators of immune responses. MARCH proteins target

immune receptors, viral proteins as well as components in innate immune response

for polyubiquitination and degradations via distinct routes. This review summarizes the

current progress about MARCH proteins and their regulation on immune responses.
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INTRODUCTION

Ubiquitination is one of the most common post-translational modifications, which plays a key
role in regulating stability, localization, protein-protein interaction, and other properties of the
substrates. Protein ubiquitination is carried in a multiple step process by the concerted action of
E1 ubiquitin-activating enzyme, E2 conjugating enzyme, and E3 ubiquitin ligase. In the final step,
the ubiquitin is ligated to a primary amine (i.e., that of lysine, cysteine, serine, threonine or the
N-terminus) of substrate proteins by an E3 ligase. In most cases, E3 ubiquitin ligases dictate the
specificity of substrates, therefore, are heavily studied.

Based on the structural properties, the E3 ubiquitin ligases are classified into three major types,
including the really interesting new gene (RING), the homologous to the E6-AP carboxyl terminus
(HECT), and the RING-between-RING (RBR) types of E3 ligases. The RING E3 ligases contain a
characteristic RING finger domain, in which eight cysteine and histidine residues coordinate two
Zn atoms in the interior of the protein (1).

Membrane-associated RING-CH-type finger (MARCH) proteins are a subfamily of the RING-
type E3 ubiquitin ligases (2). MARCH proteins contain a C4HC3-type RING domain that has
minor difference with the classic C3HC4-type RING domain in the identities of the fourth
and fifth coordinating residues and the length of the peptide segments between the two (3).
The MARCH proteins are originally identified as the mammalian structural homologs of the
viral immunosuppressive membrane ubiquitin ligases K3 and K5 of Kaposi’s sarcoma-associated
herpesvirus (KSHV) (4, 5). K3 and K5 of gamma-2 herpesviruses and poxviruses, contained an
N-terminal RING-CH domain followed by transmembrane domains, are found to down-regulate
the surface expression of major histocompatibility complex I (MHC-I) (6–9). The first identified
MARCH protein is c-MIR (now called MARCH8), which was identified by blast searches of the
human genome databases (4). c-MIR is a functional homolog of herpesvirus proteins MIR1 and
MIR2 and has similar substrate specificity (4). Further bioinformatics studies identified 10 more
mammalian MARCH family members, which all possess RING-CH domains with E3 ubiquitin
ligase activity.

Recent studies have demonstrated that MARCH proteins are critical regulators of immune
responses, which act by catalyzing polyubiquitination of various immune receptors or certain
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organelle membrane-associated components involved in innate
immune responses (3, 10). This review summarizes recent
advances in our understanding of properties of MARCH proteins
and their emerging roles in regulation of immune responses.

PROPERTIES OF THE MARCH E3 LIGASE
FAMILY MEMBERS

Structures of MARCH Proteins
The most prominent properties of the MARCH family are the
RING-CH domain and the transmembrane domains. Except
for MARCH7 and MARCH10, the majority of 11 mammalian
MARCH proteins share a similar structure, including an
N-terminal RING-CH finger and two or more TM domains
(Figure 1). MARCH7 and MARCH10 have no recognizable
TM spans, with their RING-CH domains located at the
C-terminus (3). Therefore, MARCH7 and MARCH10 represent
two non-canonical members of theMARCH family. Phylogenetic

analysis suggests that the TM-containing MARCH proteins can
be classified into several sub-groups, including MARCH1/8,

MARCH2/3, MARCH4/9/11, MARCH5, and MARCH6 sub-
groups (Figure 1).

Some MARCH proteins harbor other functional domains,

such as C-terminal PDZ-binding domains that mediate protein

interactions, and tyrosine-based YXX8 (where X and 8

represent any amino acid and hydrophobic residues, respectively)

motifs that are involved in endocytosis (Figure 1). MARCH11

mutant lack of the PDZ-binding domain does not interact
with the PDZ-containing protein Veli3, suggesting that its
PDZ-binding domain is crucial for its interaction with Veli3,
which is important for its transport and subcellular localization
(11). MARCH4, 9, and 11 possess an N-terminal proline rich
domain that mediates protein interactions. MARCH7 contains
an N-terminal disordered serine-rich region, which possesses

FIGURE 1 | Structures of MARCH proteins. The domain organization for MARCH family members is shown. RING-CH, RING-CH finger domain; TM, transmembrane

domain; PDZ, PDZ-binding domain; Pro rich, proline rich domain; Ser rich, serine rich domain; Tyr-based motif, tyrosine-based motif; Poly-Ser motif, poly-serine motif.

The phylogenetic tree of MARCH proteins was generated with Clustal Omega alignment using the protein sequences in the Uniprot database.

high sequence similarity to serine/arginine-rich (SR) proteins
and contains RNA recognition motifs. MARCH7 is localized
on nuclear speckles, a site of the pre-mRNA processing and
mRNA export, suggesting a potential role of MARCH7 in these
processes (12, 13).

Subcellular Localizations of MARCH
Proteins
MARCH proteins are located in distinct cellular compartments,
including the endosomes, lysosomes, endoplasmic reticulum
(ER), Golgi apparatus, cytosol and plasma membrane. The
localizations of MARCH proteins have direct effects on their
functions. MARCH1, 2, 3, 8, and 9 are mostly located at
the endosomes, lysosomes and plasma membrane (4, 14–22).
Increasing evidences have shown that the localization of the
MARCH proteins are important for their roles in regulation of
immune receptors. For examples, a study using a chimeric CD86
protein has shown that CD86 is ubiquitinated by MARCH8
at the plasma membrane and followed by being internalized
from the plasma membrane (23). MARCH1 is localized on
LAMP-1-positive late endosomes/lysosomes, which is consistent
with the finding that MARCH1 mediates ubiquitination and
lysosome-dependent degradation of MHC class II molecules
(24, 25). MARCH3 and MARCH8 regulate interleukin-1 (IL-1)
receptor complex-mediated signaling (26). MARCH4 is located
on the Golgi apparatus (15). MARCH5 is a mitochondrial outer
membrane protein, which regulates mitochondrial morphology
and immune response (27, 28). MARCH6 is an ER-resident
ubiquitin ligase involved in ER-associated degradation (ERAD)
(18). MARCH10 is localized in the cytosol (29). MARCH11 is
localized on the multi-vesicular bodies (MVBs) and trans-Golgi
network (TGN) (11). The PDZ-binding domain of the MARCH
proteins plays a role in dictating their subcellular localizations.
Mutations of the PDZ-binding domain of MARCH2 and 3 lead
to their retention at the ER (16, 17).
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Expression of MARCH Proteins
Most MARCH proteins are ubiquitously expressed in various
tissues (Table 1), whereas MARCH1 is strictly expressed in the
secondary lymphoid tissues and MARCH11 is mostly expressed
in the testis (11, 15, 39). It has been reported that MARCH1-3,
5, 7–9 are highly expressed in immune cells, such as T cells, B
cells, monocytes, macrophages and dentritic cells (DCs) (4, 25,
27, 30–32, 39, 44, 45, 49), implying for their potential roles in
immune regulation.

Several studies have shown that the expression of MARCH
proteins is regulated upon cellular stimulation. For examples,
expression of MARCH1 is up-regulated following TNFα, IL-
1β, and TGFβ stimulation (54). The transcription of MARCH1
gene is induced by IL-10 and LPS in monocytes or DCs,
while its expression is decreased during maturation of DCs,
indicating that MARCH1 plays important roles in regulating
antigen presentation and DC maturation (22, 25, 31, 33,
34, 55). The transcription of MARCH9 gene is increased in
human DCs upon Toll-like receptor (TLR) 3 or 4 activation
(22). The transcription of MARCH2 gene is markedly induced
upon human immunodeficiency virus 1 (HIV-1) infection, and
MARCH2-deficiency increases HIV-1 infection in Jurkat and
293T cells (36). These studies suggest that MARCH2 plays
unique inhibitory roles in HIV-1 infection. The transcription
of MARCH3 gene is dramatically induced by LPS and TLR8
agonist in monocytes (56). Notably, it has been demonstrated
that MARCH1 is highly expressed in human hepatocellular
carcinoma (HCC) cells (55), MARCH5 is up-regulated in
ovarian cancer tissues (28), and MARCH8 is highly expressed
in esophageal tumors and associated with tumor aggression (50).
These studies suggest that certain MARCH proteins may involve
in tumorigenesis.

Post-translational Modifications (PTMs) of
MARCH Proteins
Several studies have shown that MARCH proteins are tightly
and delicately regulated by PTMs. The stability of several
MARCH proteins is strictly regulated by ubiquitination. For
examples, MARCH1 keeps a low protein level in antigen
presentation cells (APCs) of human andmice by its TM-mediated
dimerization, leading to autoubiquitination and degradation
(57). However, it has been demonstrated that both wild-type
and catalytically inactive MARCH1 are ubiquitinated in HeLa
cells, suggesting that MARCH1 can be ubiquitinated by as
yet unidentified E3 ligases (58). The stability of MARCH5-8,
and 10 is tightly regulated by their RING-CH finger-mediated
atutoubiquitination (4, 12, 15, 18, 27, 29). USP19 has been shown
to remove K48-linked polyubiquitin moieties of MARCH6,
which protects it from proteasome-dependent degradation (59).
USP7 and USP9X deubiquitinate MARCH7, which promotes its
stability (12).

The activity of MARCH ligases is regulated by
phosphorylation. For example, MARCH3 is kept inactive
by TYRO3-mediated phosphorylation in unstimulated cells.
Upon IL-1β stimulation, CDC25A dephosphorylates MARCH3,
which in turn activates MARCH3 and causes K48-linked

polyubiquitination and degradation of IL-1 receptor type I
(IL-1RI), leading to inhibition of IL-1β-triggered signaling (26).

IMMUNE REGULATION BY MARCH
PROTEINS

Regulation of MHCs by MARCH Proteins
MHCs are a set of cell-surface antigen-presenting proteins, which
bind to pathogen-derived antigens and subsequently present
them on the cell surface for recognition by the T cells (60). MHCs
are important for the acquired immune system to recognize
foreign molecules in vertebrates.

The expression and turnover of MHC-I on the surface of DCs
is essential for their ability to activate CD8+ T cells (61). It has
been demonstrated that several MARCH proteins can down-
regulate MHC-I. Overexpression of MARCH9 causes increased
endocytosis of MHC-I, and mediates polyubiquitination of
MHC-I HLA-2.1 at its C-terminal lysine residues, leading to
its lysosomal degradation (15, 22). Notably, knockdown of
MARCH9 impairs the translocation of MHC-I from TGN
to endosomes (22), indicating that MARCH9 plays a critical
role in coordinating MHC-I access to endosomes and MHC-
I-mediated antigen presentation. MARCH4 monoubiquitinates
MHC-I, leading to endocytosis of MHC-I from cell surface and
degradation (15).

MHC-II is essential for development and activation of CD4+

T cells (62). The expression of MHC-II is a prominent feature
of professional APCs, and its cell surface expression is strictly
regulated to efficiently control antigen presentation through
endocytosis and subsequent lysosomal degradation (63). Several
MARCH proteins regulate antigen presentation of MHC-II to
CD4+ T cells and DC maturation (64). MARCH8-transgenic
mice display impaired functions in antigen presentation and
development of regulatory T cells (Tregs), and are resistant to
the onset of experimental autoimmune encephalomyelitis (EAE)
(53). MARCH8 mediates polyubiquitination of the β-chain
of MHC-II at K225, leading to its lysosome-dependent
degradation (53). Interestingly, it has been shown that
Salmonella effector SteD inhibits antigen presentation and
T cell activation by targeting MARCH8, which promotes
MHC-II polyubiquitination and surface down-regulation
(65). It has been reported that March8−/− mice display
increased cell-surface MHC-II expression in thymic epithelial
cells (TECs) and autoimmune regulator medullary (AIRE)−

TECs. MARCH8-mediated polyubiquitination of MHC-II is
regulated by CD83, which promotes MHC-II expression by
impairing the interaction between MHC-II and MARCH1
(33, 52). Similar to MARCH8, MARCH1 has been identified
as another physiological E3 ligase for MHC-II in mouse
knockout studies (25, 30, 31, 66–68). In immature DCs, MHC-
II undergoes sustaining polyubiquitination by MARCH1,
leading to its down-regulation of cell-surface expression (25).
During DC maturation, polyubiquitination of MHC-II is
reduced and subsequently MHC-II accumulates at the cell
surface (25). Further studies demonstrate that MHC-II is
less polyubiquitinated and more stably expressed on the cell
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TABLE 1 | Key features of MARCH proteins.

Name Localization Expression Function References

MARCH1 (RNF171) Lysosome endosome Secondary lymphoid

B cell

monocyte

immature DC

DC maturation

Antigen presentation

Insulin resistance

(14, 15, 22, 25, 30–35)

MARCH2 (RNF172) ER

Endosome lysosome

Plasma membrane

Ubiquitous Immune response

autophagy

Endosomal trafficking

(15–17, 36–38)

MARCH3 (RNF173) Endosome lysosome

Plasma membrane

Ubiquitous Inflammation (15, 17, 26)

MARCH4 (RNF174) Golgi Lung

Brain

Placenta

Immune regulation (15)

MARCH5 (RNF153, MITOL) Mitochondria Ubiquitous Mitochondrial

morphology

ESC pluripotency

Innate immunity

(27, 28, 39–42)

MARCH6 (RNF176, TEB4) ER Ubiquitous ERAD (18, 43)

MARCH7 (RNF177, AXOT) Cytoplasm

Nucleus

Plasma membrane

Ubiquitous Inflammation

T cell development

Antigen presentation

(12, 44–48)

MARCH8 (RNF178, c-MIR) Endosome lysosome

Plasma

membrane nucleus

Ubiquitous Inflammation

T cell development

Antigen presentation

(4, 15, 19, 49–53)

MARCH9 (RNF179) TGN

Lysosome

Lung

Lymph node

Spleen

T, B, DC

Immune regulation (20–22, 39)

MARCH10 (RNF190) Cytoplasm Ubiquitous Spermatogenesis (29, 39)

MARCH11 (RNF226) MVB

TGN

Testis Spermatogenesis (11)

surface in the mature DCs and B cells in March1−/− compared
with wild-type mice, resulting in enhanced antigen-presenting
ability (68–70). Since MARCH1 plays crucial roles in regulating
expression of cell-surface MHC-II, itself is tightly regulated at
different DC maturation stages. These findings suggest that
MARCH-mediated regulation of MHC molecules is important
for immune regulation.

Regulation of the IL-1 Receptor Complex
by MARCH3 and 8
The proinflammatory cytokine IL-1 is a central regulator in
the initiation of inflammatory and immune responses. It also
plays critical roles in the pathogenesis of different diseases,
such as cancer, rheumatoid arthritis, neurodegenerative diseases,
and atherosclerosis (71, 72). IL-1 consists of two separate
ligands, IL-1α and IL-1β (73). Precursor IL-1α (pro-IL-1α) is
biologically active, and is cleaved by calpain to generate mature
IL-1α. Both forms of IL-1α are present mostly in the cell,
unless released after cell death. In addition to binding to the
cell-surface receptors, precursor IL-1α can translocate to the
nucleus and affect transcription (74). By contrast, pro-IL-1β
is biologically inactive and is cleaved by caspase-1 to produce
an active protein (75). Although IL-1α and IL-1β share similar
biological effects, IL-1β is more abundantly expressed during the
early phase of inflammation response and is a major effector
of inflammation (76). IL-1β signals through engagement of a

membrane-bound receptor complex consisting of two subunits:
IL-1RI and IL-1 receptor accessory protein (IL-1RAcP). Binding
of IL-1β to IL-1RI initiates a ligand-induced conformational
change of IL-1R1 that facilitates its recruitment of IL-1RAcP
via Toll/interleukin-1 receptor (TIR)-TIR domain interaction,
leading to the formation of an activated receptor complex. The
receptor complex recruits the adaptor protein MyD88. MyD88
further recruits IRAK1, IRAK4, and TRAF6 to the receptor
complex, where TRAF6 catalyzes K63-linked autoubiquitination
to further recruit the TAK1-TAB2-TAB3 complex, leading
to activation of the transcription factors NF-κB and AP-
1, induction of downstream effector genes and inflammatory
responses (77–85).

IL-1β-triggered signaling is tightly regulated to avoid
excessive inflammatory response. Recent studies have shown
that MARCH3 and 8 play important roles in terminating
IL-1β-triggered inflammatory response (Figure 2). MARCH3-
deficiency potentiates IL-1β-induced transcription of
inflammatory genes in BMDMs, monocytes and primary
mouse lung fibroblasts (MLFs). MARCH3-deficiency also
increases the levels of serum inflammatory cytokines, as well as
susceptibility to inflammatory death triggered by IL-1β injection
or Listeria monocytogenes infection. Mechanistic studies
indicate that MARCH3 is kept in inactive state by TYRO3-
mediated phosphorylation. Upon IL-1β stimulation, MARCH3
is dephosphorylated by CDC25A, which in turn promotes its
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FIGURE 2 | MARCH3- and 8-mediated negative regulation of IL-1β-triggered signaling. In the early phase of IL-1β stimulation, MARCH3 is kept in inactive state by the

tyrosine-protein kinase receptor TYRO3-mediated phosphorylation. In the late phase of IL-1β stimulation, MARCH3 is dephosphorylated by cell division cycle 25A

(CDC25A), which in turn promotes its E3 ligase activity, leading to K48-linked polyubiquitination of IL-1 receptor type I (IL-1RI) at K409 and its lysosomal degradation.

MARCH8 mediates K48-linked polyubiquitination of IL-1 receptor accessory protein (IL-1RAcP) at K512 and its proteasomal degradation upon IL-1β stimulation,

leading to attenuation of IL-1β-triggered inflammatory response.

E3 ligase activity, leading to K48-linked polyubiquitination of
IL-1RI at K409 and its lysosomal degradation (26). Another
study has demonstrated that MARCH8 mediates K48-linked
polyubiquitination of IL-1RAcP at K512 but not IL-1RI after
IL-1β stimulation, leading to attenuation of IL-1β-triggered
inflammatory response (51). These observations suggest that
distinct members of the MARCH family mediate degradation of
different components of the IL-1 receptor complex upon ligand
stimulation, which ensures precise control of inflammatory
response to avoid self-damage.

Regulation of Other Immune Receptors by
MARCH Proteins
MARCH proteins can also regulate stability of other cell-surface
immune relevant receptors, such as cluster of differentiation 86
(CD86, also known as B7-2), TNF-related apoptosis inducing
ligand receptor 1 (TRAIL-R1; also known as DR4), intercellular
adhesion molecule 1 (ICAM-1, also known as CD54), Mult1,
Fcγ Receptor IIb (FcγRIIb), and cystic fibrosis transmembrane
conductance regulator (CFTR).

Regulation of CD86 by MARCH1 and 8
CD86 is an essential immune regulator expressed on APCs
and provides costimulatory signals for T cell activation and
survival (86, 87). It has been shown that MARCH8 mediates

polyubiquitination of CD86 at its C-terminus, leading to its
rapid endocytosis and lysosome-dependent degradation (4). It
has also been shown that MARCH1 mediates polyubiquitination
of CD86 at K267 and its degradation (34). Consequently, CD86
is more stably expressed on the cell surface of March1−/− DCs
(34), indicating that MARCH1-mediated polyubiquitination
of CD86 is a crucial mechanism in regulating antigen
presentation by DCs.

Regulation of TRAIL-R1 by MARCH8
Binding of TRAIL to TRAIL-R1 induces apoptosis in cancer cells,
which contributes to immunosurveillance (88, 89). MARCH8
targets TRAIL-R1 at K273 for polyubiquitination, which causes
its lysosome-dependent degradation in breast cancer cells,
leading to the inhibition of TRAIL-R1-mediated apoptosis
signaling (90).

Regulation of ICAM-1 by MARCH9
ICAM-1 is an immune receptor that contains binding
sites for a large amounts of immune-associated ligands.
ICAM-1 plays important roles in facilitating transendothelial
migration of activated lymphocytes across vascular endothelia
in processes such as inflammatory responses (91, 92). It
has been demonstrated that overexpression of MARCH9
mediates polyubiquitination of ICAM-1 for lysosome-dependent
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degradation (20). MARCH9 attenuates the oncogenic effects of
ICAM-1, leading to the inhibition of migration and invasion
in lung adenocarcinoma (LAC) cells (93). Interestingly,
MARCH9 down-regulation in LAC correlates with poor clinical
outcomes (93).

Regulation of Mult1 by MARCH4 and 9
Stimulation of immune cells through NKG2D receptor has
been shown to involve in immune responses to infection and
malignancy (94). Expression of the self-encoded ligands for
NKG2D is tightly regulated to prevent autoimmune disorders.
It has been reported that MARCH4 and 9 down-regulate cell-
surface expression of Mult1 which is a ligand for NKG2D
receptor, and prevents cells from being targeted for lysis by NK
cells (95).

Regulation of FcγRIIb by MARCH3
FcγRIIb is an FcγR inhibitor that inhibits FcγR-mediated
response to antibody-coated tumor cells. Regulation of FcγRIIb
expression is crucial in tumor immunotherapy and autoimmune
diseases (96, 97). It has been shown that MARCH3 is required
for LPS-induced polyubiquitination and down-regulation of
FcγRIIb (56). Notably, the ubiquitination of FcγRIIb precedes
LPS-induced up-regulation of MARCH3 (56), suggesting that
LPS had an earlier effect on MARCH3 activity.

Regulation of CFTR by MARCH2
CFTR is a plasma membrane cAMP-regulated chloride channel
(98). Defective CFTR triggers aggresome formation and lung
inflammation in cystic fibrosis (CF) by ROS-TG2-BECN1-
mediated inhibition of autophagy (99, 100). CFTR also plays
crucial roles in the progression and metastasis of cancer
(101, 102). It has been reported that MARCH2 mediates
polyubiquitination and degradation of CFTR, leading to
attenuation of CFTR-mediated autophagy in tumor cells.
MARCH2 interacts with CFTR via its PDZ-binding domain (37).
These studies suggest that MARCH2 is a negative regulator of
CFTR-mediated autophagy.

Regulation of Innate Immune Response by
MARCH Proteins
It has been well-established that viral RNAs act as classic
pathogen-associated molecular patterns (PAMPs), which are
sensed by endosomal TLRs and cytosolic RIG-I-like receptors
(RLRs) (103–106). Recognition of viral RNAs by these receptors
links them to downstream adapter proteins, including TRIF,
MyD88, and VISA (also calledMAVS, IPS-1, and Cardif), leading
to activation of the kinases TBK1 and IKKβ. These kinases
phosphorylate and activate the transcription factors IRF3 and
NF-κB, respectively, which cooperatively induce transcription
of a set of antiviral genes including type I interferons (IFNs)
(83, 107–119).

Several studies have demonstrated that MARCH proteins
are involved in regulation of innate antiviral responses.
MARCH5 catalyzes K63-linked polyubiquitination of TANK,
which potentiates TLR7-mediated NF-κB activation (40). The
protein level of VISA is tightly regulated to ensure its proper

activation and timely termination of innate antiviral response.
At the late phase of viral infection, VISA is phosphorylated
at T54 by protein kinase A (PKA), which primes it for K48-
linked polyubiquitination and degradation by MARCH5, leading
to attenuation of innate immune response (120). The inactive
rhomboid protease iRhom2 mediates proteasome-dependent
degradation of MARCH5, resulting in the inhibition of virus-
triggered degradation of VISA, which ensures proper level of
VISA for innate antiviral response (121). These studies suggest
thatMARCH5 plays critical roles in temporal regulation of innate
antiviral response.

MARCH proteins can regulate cellular antiviral response
by targeting viral proteins. MARCH2 is induced upon HIV
infection, which inhibits HIV-1 replication by mediating
degradation of viral envelope proteins (36). It has also
been shown that MARCH8 targets cell-surface envelope
glycoproteins of HIV-1 for degradation, resulting in the
inhibition of HIV-1 infection (49). MARCH8 catalyzes
K63-linked polyubiquitination of hepatitis C virus (HCV)
nonstructural 2 protein (NS2) and promotes viral assembly and
envelopment (122). It has also been shown that MARCH8 is
required for infection with Flaviviridae family members, such
as HCV, dengue, and Zika viruses (122). These studies suggest
that certain MARCH proteins can be potential host targets for
antiviral strategies.

It has been shown that MARCH1-deficiency inhibits
TLR3/4-mediated transcription of Tnfa gene in splenocytes
(123). However, another study has shown that MARCH1-
deficiency causes increased LPS-triggered production of
proinflammatory cytokines, higher NK cell activation, as
well as more susceptible to LPS-induced inflammatory
death (124). Whether MARCH1 regulates TLR4-mediated
inflammatory responses in a cell specific manner needs to be
further investigated.

Functions of the Non-canonical MARCH
Proteins
MARCH7 and MARCH10 are the two non-canonical MARCH
family members. While it is unknown for the functions
of MARCH10, studies have demonstrated that MARCH7
regulates leukemia inhibitory factor (LIF) secretion and
inflammasome activation. In response to ConA, CD4+ T
lymphocytes release LIF, which plays important roles in immune
tolerance (125, 126). It has been shown that MARCH7-
deficiency potentiates T cell proliferation and T cell-derived
LIF secretion upon mitogen stimulation (46), suggesting that
MARCH7 plays critical roles in immune tolerance. However, the
mechanisms of MARCH7-mediated regulation of LIF secretion
remains unclear.

NLRP3 inflammasome is composed of NLRP3, ASC and
caspase-1, which is assembled in response to damage-associated
molecular patterns (DAMPs) and PAMPs (127). It has been
shown that MARCH7 mediates polyubiquitination of NLRP3
for degradation, leading to the inhibition of NLRP3-dependent
inflammation triggered by dopamine D1 receptor (DRD1)-
cAMP axis (47).
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CONCLUDING REMARKS

The MARCH family of E3 ubiquitin ligases is unique in that
they are mostly localized at plasma and/or organelle membranes.
Most of the MARCH proteins are abundantly expressed in
immune cells. This position them well in regulating immune
receptors. In recent years, various studies have demonstrated
that MARCH proteins target certain immune receptors for K48-
linked polyubiquitination and degradation via distinct routes. In
certain cases, MARCH proteins can also target the substrates for
K63-linked polyubiquitination. In addition to immune receptors,
certain MARCH proteins are also involved in regulation of viral
proteins as well as components in innate immune responses.
Therefore, the functions of MARCH proteins are not limited
to immune receptors. Although considerable progress has been
made for the functions and mechanisms of MARCH proteins,
many outstanding questions remain. For examples, how are
substrate specificities of MARCH proteins determined? Why are
different subunits of a receptor complex targeted by distinct
members of the MARCH family? One example is that the IL-
1R complex components IL-1RI and IL-1RAcP are targeted by
MARCH3 and 8 respectively. Whether do MARCH proteins
play redundant functions in regulation of certain receptors? For
examples, whether do MARCH1, 8 and 9 play redundant roles
in down-regulation of MHC-II? Whether are other immune
receptors regulated by MARCH proteins? How is the activity
of MARCH proteins regulated by upstream signaling events?

In addition to MARCH3, are other MARCH proteins regulated
by phosphorylation or other post-translational modifications?
Finally, we still know little about the pathological relevance of
MARCH proteins in human. Further investigations into these
outstanding questions would contribute to our understanding of
the roles and mechanisms of MARCH proteins in physiological
and pathological processes.
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