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Summary: This article presents a review of recent major advances in precision oncology and the future implica-
tions of these advances, specifying the iterative progress achieved from the end of 2022 through 2023. We 
discuss the different classes of precision oncology drugs and associated biomarkers as well as the improvements 
in clinical trial design that have enabled the efficient testing of these drugs.

IN FOCUS

INTRODUCTION
The scope of precision oncology continues to expand as 

drugs with new mechanisms of action enable therapeutic 
intervention on a wider array of targets in broader, biomarker-
selected patient populations. By virtue of the advances in our 
understanding of specific mutation-based clinical implications 
and the epistatic relationship between co-occurring muta-
tions, as well as the role that the immune environment plays in 
therapy selection, the long-standing paradigm of matching a 
single gene to a single treatment is rapidly evolving.

This review, as the second installment in the Precision Oncol-
ogy Year in Review series (1), uses OncoKB to offer a lens into 
the advances in precision oncology in 2023. On the basis of 
OncoKB, as of November 2023, twelve treatments were approved 
by the FDA for unique biomarker-selected indications, and six 
biomarker- and indication-specific treatments were listed in the 
National Comprehensive Cancer Network (NCCN) guidelines 
in the past year. In addition, compelling clinical evidence for 
two precision oncology therapies led to their inclusion as level 
3 investigational agents in OncoKB (Table 1). Here we discuss 
the growing array of targetable molecular alterations as well as 
the proteomic and immunologic biomarkers that are increas-
ingly guiding patient matching to novel classes of medications, 
including antibody–drug conjugates (ADC) and proteolysis-
targeting chimeras (PROTAC)/protein degraders, and how the 
distinct biology of individual mutant alleles has contributed to 
drug development efforts.

CHIPPING AWAY AT THE UNDRUGGABLE
Over the past couple of years, novel approaches to drug 

design have resulted in new precision oncology therapies 
that are proving to be successful in addressing an increas-

ing number of previously undruggable targets in the clinic. 
Epitomizing the cumulative results of these developments is 
our current emerging ability to target KRAS-mutant cancer, 
initiated with the success of selective KRASG12C inhibitors.

The KRASG12C inhibitors sotorasib and adagrasib, both of 
which trap KRASG12C in its inactive GDP-bound state, previ-
ously received accelerated approval for KRASG12C-mutant non–
small cell lung cancer (NSCLC). These inhibitors are now listed 
in the NCCN guidelines additional KRASG12C-mutant histolo-
gies, including for pancreatic and colorectal cancers (the latter 
indication’s approval is in combination with either anti-EGFR 
monoclonal antibody inhibitors cetuximab or panitumumab). 
Another more potent KRASG12C inhibitor of GDP-bound KRAS, 
divarasib, was shown to achieve an initial overall response 
rate (ORR) of 54% and progression-free survival (PFS) of 13.1 
months in patients with NSCLC treated on a phase I trial (2).

KRASG12C has a slightly increased affinity for GTP versus 
GDP, and this past year, the field pivoted to develop KRASG12C 
inhibitors that trap the oncoprotein in its activated or so-called 
“on” form. For example, FMC-376 is a covalent inhibitor of both 
the activated and inactivated forms of KRASG12C, and RMC-
6291, employs the formation of a so-called “tricomplex” between 
KRAS, cyclophilin A, and the drug to inhibit KRASG12C in its 
activated state. There has also been a pronounced emphasis 
on combining KRASG12C inhibitors with other agents this year. 
These combination strategies include supplementing KRASG12C 
inhibitor treatment with drugs that target emerging biomarkers 
such as integrin beta 4 (3) as well as with immunotherapy, chem-
otherapy or other precision oncology drugs including those that 
target known resistance alterations arising in the receptor tyros-
ine kinase (RTK) or mitogen activated protein kinase (MAPK) 
pathways. Preliminary data on the combination of the KRASG12C 
“off” inhibitor LY3537982 with pembrolizumab showed an 
ORR of 78% in NSCLC with no prior G12C inhibitor exposure 
and 25% after prior G12C inhibitor exposure (4).

Non-G12C KRAS alleles, including both mutant-selective 
and pan-KRAS inhibitors, are also being explored. For exam-
ple, KRASG12D, the most common KRAS allele pan-cancer, is 
now potentially targetable by agents including RMC-9805, a 
tricomplex inhibitor; MRTX1133, a noncovalent inhibitor; 
and ASP3082, a protein degrader. Multiallele KRAS inhibitors 
such as RMC-6236 achieved clinical responses in G12D- and 
G12V-mutant cancers in a phase I trial (5). Lastly, pan-KRAS 
inhibitors that avoid inadvertant HRAS and NRAS activation 
by KRAS wild-type cells are in preclinical development (6).

Other targets previously considered undruggable include the 
YAP transcription coactivator, the phosphorylation and subse-
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quent degradation target of the Hippo kinase cascade pathway. 
Mutation of Hippo pathway components, such as the tumor 
suppressor NF2, have been observed to arise in IDH-mutant-
low-grade gliomas, mesotheliomas, and HPV-negative head and 
neck squamous cancers. Clinical responses were observed in 
an ongoing trial testing the YAP/TEAD inhibitor VT3989 (7), 
where the TEAD family of transcription factors are known to 
bind to and potentiate YAP oncogenic activity. Additionally, new 
targets such as cyclin E1, part of the cell-cycle pathway and often 
deregulated in cancer by amplification, are also being explored 
therapeutically, including to guide patient selection for treat-
ment with the newly developed CDK2 inhibitor BLU-222.

ADVANCES IN MUTATION TARGETING
Kinases continue to represent the stronghold of the preci-

sion oncology armamentarium, with each year yielding novel 
kinase inhibitors that are characterized by improved potency, 
increased selectivity against specific kinase isoforms, or opti-
mized mutant selectivity. This year, the FDA approved quizar-
tinib, a more potent FLT3 and FLT3-ITD mutation type II 
inhibitor compared with earlier generation FLT3 inhibitors. 
Patients with acute myeloid leukemia (AML) that received 
quizartinib in addition to first-line chemotherapy achieved a 
median overall survival of 31.7 months compared with 15.1 
months in patients who received first-line chemotherapy 
alone (8). In solid tumors, RLY-4008, an isoform-selective, 
covalent FGFR2 inhibitor designed to avoid off-target side 
effects associated with FGFR1 and FGFR4 inhibition, showed 
promising results in patients with FGFR2-positive cholan-
giocarcinoma (9). Trials testing FGFR3 selective inhibitors 
(TYRA-300 and LOXO-435) were also launched this year.

In addition to selectivity for individual mutations, inhibitors 
designed to selectively target single and compound acquired 
resistance mutations arising from treatment with earlier-gen-
eration ALK/ROS continue to be developed and approved. In 
November 2023, repotrectinib, a next-generation ROS1 and TRK 
inhibitor, was FDA-approved for ROS1 fusion-positive NSCLCs. 
Importantly, this drug demonstrated potent activity against 
ROS1 and NTRK TKI resistance mutations, including solvent 
front mutations. Relevant to the ROS1 approval, repotrectinib 
inhibited ROS1 fusion-positive NSCLCs bearing ROS1G2032R that 
arises after progression on crizotinib (10) or entrectinib. Currently 
in clinical trials are the TKIs NVL-520, a ROS1 selective agent 
that also targets ROS1G2032R, as well as NVL-655, with activity 
against ALK fusion-positive NSCLCs harboring ALKG1202R/L1196M 
and ALKG1202R/T1151M compound resistance mutations. BLU-945, 
a reversible, wild-type-sparing inhibitor of EGFR+/T790M and 
EGFR+/T790M/C797S resistance mutants that maintains activ-
ity against the sensitizing mutations, especially L858R, similarly 
achieved responses in compound EGFR mutants (11).

Building on cumulative observations that pan-PI3K inhibition 
leads to hyperglycemia in treated PIK3CA-mutant patients with 
breast cancer that led to the 2019 approval of the PI3K-alpha-
selective inhibitor alpelisib in combination with fulvestrant, the 
industry continues to pivot to wild-type sparing drug design. 
This year, the mutant selective inhibitor RLY-2608 was tested as 
monotherapy and in combination with fulvestrant in a phase I 
trial and neither severe nor dose-limiting hyperglycemia second-
ary to wild-type PI3Kα inhibition were observed thus far (12). 

Relatedly, 2023 saw the approval of the pan-AKT targeted inhibi-
tor capivasertib for PIK3CA/AKT1/PTEN positive, hormone-
receptor positive and HER2-negative patients with advanced 
cancer. The biomarker-based approval of capivasertib was sur-
prising considering that published median progression free sur-
vival was 7.2 months in capivasertib/fulvestrant treated versus 3.6 
months in placebo/fulvestrant and 7.3 months in capivasertib/
fulvestrant versus 3.1 months in placebo/fulvestrant in the over-
all and AKT pathway-altered patient cohorts respectively.

In parallel with the development of newer kinase inhibi-
tors, the indications for which meaningful clinical benefit has 
been observed for established kinase inhibitors have also con-
tinued to expand. For example, alectinib, initially developed 
for ALK fusion–positive NSCLC, has now been added to the 
NCCN guidelines for ALK-positive inflammatory myofibroblas-
tic tumors. Combination dabrafenib plus trametinib, previously 
approved for BRAFV600E-mutant solid tumors, received additional 
approval in the first-line setting for low-grade pediatric gliomas 
where treated patients achieved a median PFS of 20.1 months as 
well as a decreased rate of high-grade adverse events when com-
pared with 7.4 months when treated with chemotherapy (13).

Other kinase inhibitors have been retired. Examples include 
Debio1347 for FGFR1 amplifications and mobocertinib for EGFR 
exon 20 insertions. It is notable that sponsors decided not to 
pursue confirmatory studies mandated for regulatory approval 
for several drug indications despite their documented activity. 
Infigratinib previously received accelerated approval for FGFR2-
positive cholangiocarcinoma based on a response rate of 23.1% 
(14), and the RET inhibitor pralsetinib previously showed an 
ORR of 71% among medullary thyroid cancers that had not been 
previously treated with cabozantinib and/or vandetanib (15).

Beyond kinase inhibitors, triple combination of different 
PARP inhibitors with hormone therapy abiraterone and ster-
oid prenidsone were approved in 2023 for select patients 
with prostate cancer carrying mutations in genes involved 
in homologous recombination repair (HRR). PARP inhibi-
tor olaparib or niraparib in combination with abiraterone 
and prenidsone received regulatory approval for metastatic, 
castration-resistant prostate cancer with BRCA1/2 alterations. 
Additionally, following the TALAPRO-2 study testing the 
efficacy of combination treatment with PARP inhibitor talazo-
parib and androgen receptor inhibitor enzalutamide, resulted 
in the approval of this regimen for patients with HRR muta-
tions, including in BRCA1/2, ATR, FANCA, MLH1, MRE11, 
NBN, ATM, PALB2, CDK12, CHEK2, and RAD51C. Notably, 
while the subgroup of all HRR-deficient pts shows statistical 
significance between the talazoparib + enzalutamide group 
versus placebo + enzalutamide, subgroup analysis indicates 
that this signal is likely primarily driven by BRCA2 presence 
(16). Indeed, analysis of treatment benefit in ATM- or CHEK2-
mutant subgroups showed no significant PFS differences (16).

Lastly, the precision oncology drug ivosidenib targeting 
the mutant metabolic enzyme IDH1 previously developed 
for AML and cholangiocarcinoma, was added to the NCCN 
guidelines for IDH1-mutant oligodendrogliomas. The IDH1 
inhibitor olutasidenib received approval for AML, following 
a study of IDH1 inhibitor–naïve relapsed/refractory AML, 
with an ORR of 48% and a median survival of 11.6 months 
(17). Beyond extending the range of histologies for which 
IDH1 inhibitors have been studied, IDH1/2-targeted drugs 
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such as vorasidenib, which achieved improved PFS versus 
placebo (27.7 vs. 11.1 months) in IDH1/2-mutant low-grade 
gliomas, are also being used for lower-grade tumors (18).

THE EVOLUTION OF PROTEIN TARGETING
Beyond DNA- and RNA-based targets, there has been signifi-

cant expansion in drug development for protein targets. Among 
the most robust examples of protein targeting has been the evo-
lution of therapies targeting HER2. Indications for the so-called 
naked or nonconjugated monoclonal anti-HER2 antibody tras-
tuzumab when used in combination with the small molecule 
HER2 kinase inhibitor tucatinib have expanded. Combination 
tucatinib plus trastuzumab had previously been used with 
chemotherapy for breast cancer and gained regulatory approval 
for HER2-positive/RAS wild-type colorectal cancers this year. 
Similarly, the combination of trastuzumab and pertuzumab was 
newly included in the NCCN guidelines for biliary tract cancers.

For HER2 ADC therapy, a basket trial of trastuzumab der-
uxtecan (T-DXd) demonstrated the potential tumor-agnostic 
utility of protein expression using HER2 IHC for biomarker 
selection. The drug was previously approved for HER2-posi-
tive gastric and breast cancers, and preliminary data showed 
an ORR of 37% in patients with any tumor staining IHC 2+ or 
3+ and 61% for the 3+ cohort (19).

Moving beyond HER2, a new wave of monospecific and 
bispecific ADCs have emerged, including those targeting 
receptor tyrosine kinases. For example, a number of ADCs 
and bispecifics are currently in trial for MET overexpression, 
including REGN5093-M114 and ABBV-400. A dual EGFRx-
HER3-directed ADC, BL-B01D1, showed preliminary efficacy 
across a variety of tumor types, with an ORR of 62% in patients 
with EGFR-mutant NSCLC, 46% in nasopharyngeal carci-
noma, and additional activity in small-cell lung cancer (SCLC) 
and head and neck squamous cell carcinoma (20). ABBV-011 
is an ADC designed to target SEZ6, a tumor-specific cell-
surface protein that has been found to be overexpressed in 
neuroendocrine tumors such as SCLC. Data from a phase I 
trial testing ABBV-011 in patients with relapsed or refractory 
SCLC, a patient population with limited molecularly targeted 
therapeutic options, showed an ORR of 25% (21).

Perhaps the most successful example within ADCs this year 
was the FDA approval of mirvetuximab soravtansine-gynx for 
patients with platinum-resistant ovarian, peritoneal, or fal-
lopian tube cancer. Mirvetuximab soravtansine-gynx targets 
the folate receptor, FOLR1, which is overexpressed on the cell 
surface of many epithelial-derived cancers. Together with the 
drug, the VENTANA FOLR1 RxDx Assay was approved as a 
companion diagnostic for FOLR1 biomarker testing. Folate 
receptor alpha staining of 2+ by IHC in at least 75% of viable 
cells is required for a patient to be eligible for treatment (22). 
Efforts to target folate receptor alpha have evolved from ADCs 
to the smaller sized nanoparticle–drug conjugate ELU001, the 
latter drug designed to facilitate better tumor penetration.

Beyond ADCs, protein degradation therapy is making a 
comeback. This year saw the FDA approval of a next-genera-
tion selective estrogen receptor degrader, elacestrant, and the 
introduction of novel KRAS and BRAFV600E degraders. Elaces-
trant received approval for patients with estrogen receptor 
(ER)–positive, endocrine therapy–refractory, HER2-negative 

breast cancer with an ESR1 mutation. ESR1 mutations have 
been associated with resistance to hormone therapy, due 
in part to estrogen independent signaling. Treatment with 
elacestrant notably improved PFS in ESR1 mutant and wild-
type patient cohorts, with an HR of 0.055 and 0.70, respec-
tively, in a phase III trial (23). Combination strategies, such as 
with PI3K inhibition, are currently being explored.

PROTACs/protein degraders designed to address molecular 
alterations in known oncogenes, such as KRAS and EGFR were 
also tested in 2023. A bifunctional degradation activating 
compound of BRAFV600E, CFT1946, that inhibits both the 
kinase activity of the oncoprotein as well as paradoxical MAPK 
activation by preventing oncoprotein dimerization entered 
clinical trials for patients with BRAFV600-mutant disease.

IMMUNOMODULATORY THERAPY ADVANCES
Composite biomarkers, such as tumor mutational burden 

(TMB) and microsatellite instability (MSI) status, have con-
tinued to be used to tailor immunotherapeutic approaches 
to individual cancers, leading to further drug approvals. 
For example, the checkpoint inhibitor dostarlimab received 
regulatory approval in combination with chemotherapy for 
patients with MSI-high advanced or recurrent endometrial 
cancers. Recognition of the role of genomic instability events, 
such as chromothripsis, in oncogenesis is likely to propel fur-
ther multi-omic biomarker development in the future.

Taking notes from the ADC playbook, immune-stimulating 
antibody conjugates (ISAC) have shown preliminary evidence 
of drug activity. BDC-1001 is an example of an ISAC con-
sisting of a mAb conjugated to a Toll-like receptor TLR7/8 
agonist that primes the microenvironment for immune rejec-
tion of the tumor by secretion of cytokines. By binding to a 
cell-surface protein such as HER2, ISACs are designed to elicit 
a phagocytic response and T cell–mediated antitumor immu-
nity. Preliminary activity from BDC-1001 monotherapy and 
nivolumab combination cohorts across HER2-amplified or 
HER2 protein–expressing tumors was reported (24).

In addition, T-cell receptor (TCR) and neoantigen-based 
therapies including those with HLA restriction continue to be 
explored such as TCR therapies designed to address peptide 
neoantigens produced by mutant PIK3CA, KRASG12D, and 
FLT3, among other alterations.

TRIAL DESIGN EVOLUTION
As novel classes of drugs have emerged as viable options for 

patient treatment, the complexity of biomarkers has increased, 
and clinical trial design has similarly evolved and adapted to 
accommodate this increased complexity. In the age of precision 
oncology many molecularly selected therapies now achieve 
target inhibition at doses below the maximum tolerated dose 
(MTD). Moreover, as clinical responses become more dura-
ble, long-term tolerability beyond the dose-limiting toxicity 
period has come under scrutiny. This year, the FDA announced 
the launch of Project Optimus to facilitate improved dose-
optimization strategies through multiple mechanisms, includ-
ing by randomization of patients to different dose levels (25).

In parallel with the FDA guidance on optimizing dose have 
been efforts to expedite trials to enable early access to effective 
therapies. For combinations of established precision oncology 
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drugs and novel therapies, the FDA allowed the early intro-
duction of combination therapy following a lead-in period 
of the new treatment to allow for characterization of toxicity, 
safety, pharmacodynamics, and pharmacokinetics. For exam-
ple, preclinical data demonstrated that select tumors that have 
progressed on FDA-approved targeted oncogene inhibitors 
may be resensitized by adding PF-07284892, an inhibitor of 
the SHP2 tyrosine phosphatase. While most phase I trials 
require extensive testing of novel drugs as monotherapy prior 
to allowing combinations, recognition of the need to expedite 
combination therapy enabled patients to undergo a lead-in 
period on the SHP2 monotherapy, followed by the addition of 
the approved inhibitor at progression (26).

Trial designs also must account for changes in clinical 
characteristics of the patients being treated, including the 
inevitable shift of interventions to earlier-stage disease in 
place of focusing solely on late-stage disease or progression. 
Mirroring the use of blood-based testing for minimal residual 
disease in hematologic malignancies, circulating tumor DNA 
is increasingly being studied to define which patients with 
solid tumors will gain the greatest benefit from such earlier-
stage interventions. For example, therapies are now being 
tested for patients who have no radiologic signs of disease, 
but who nonetheless have persistent molecular traces of can-
cer and who may benefit from therapeutic intervention.

Improving Access to Precision Oncology for 
All Patients

An additional trial design challenge derives from the need 
to ensure that all patients benefit from precision oncology’s 
advances. Rates of genetic counseling tend to be lower in non-
white patients, even when financial barriers are removed (27). 
Therapeutic approaches that rely on germline genetic differ-
ences may further accentuate disparities. In the immunotherapy 
space, modeling of antigen presentation contributing to HLA 
allele selection-based drug design has relied heavily on pre-
dominantly white patient populations. HLA alleles are known 
to differ between patients of different ancestries, and several 
immunologic therapies have been tailored for the HLA-A*02:01 
allele, which is most common in white populations. Thus, for 
example, recent promising data generated by clinical testing of 
TAEST16001, a NY-ESO-1–directed TCR therapy given with 
IL2, showed a 41.7% response rate among 12 patients with soft-
tissue sarcomas. Since only patients with the HLA-A*02:01 allele 
are eligible for treatment with TAEST16001, the promise of this 
drug may only be realized in a subset of patients (28). Indeed, 
in a pan-cancer study of more than 45,000 patients, those with 
African ancestry also had a lower rate of somatic actionable 
alterations (29). Extending the benefits of precision oncology to 
all patients requires identifying targetable germline and somatic 
variants across diverse populations, as well as ensuring that trial 
eligibility criteria and designs facilitate broad access.

CONCLUSION
Advances in precision oncology have enabled the develop-

ment of multiple novel therapies and combinations this year. 
These have included treatments that more selectively inhibit 
their target of interest, including allele and isoform-specific 
inhibitors, as well as drugs like elacestrant for ESR1-mutant 

hormone receptor–positive breast cancer that are designed to 
address known mechanisms of resistance to previously approved 
therapies. The armamentarium of drugs for molecular altera-
tions is also expanding, with many novel classes of therapies 
including ADCs, PROTACS/protein degraders, and TCR thera-
pies designed to address protein and peptide targets. The design 
of clinical trials that support these developments has evolved to 
enable optimized dosing for tolerability and to facilitate accrual 
of patients with earlier-stage disease. As both novel drug mecha-
nisms emerge and the biomarkers used to match patients to 
therapies evolve, cross-talk between precision oncology, molecu-
lar oncology, immuno-oncology, and proteomics is yielding 
therapeutic options for an expanded population of patients.
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