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Abstract: Radiation injury to the lung is the result of acute and chronic free radical formation,
and there are currently few effective means of mitigating such injury. Studies in rodents
indicate that superoxide dismutase mimetics may be effective in this regard; however, studies
in humans or large animals are lacking. We hypothesized that post-exposure treatment with
the lipophilic mitochondrial superoxide dismutase mimetic, MnTnHex-2-PyP5+ (hexyl), would
reduce radiation-induced pneumonitis and fibrosis in the lungs of nonhuman primates. Rhesus
monkeys (Macaca mulatta) received 10 Gy whole thorax irradiation, 10 Gy + hexyl treatment, sham
irradiation, or sham irradiation + hexyl. Hexyl was given twice daily, subcutaneously, at 0.05 mg/kg,
for 2 months. Animals were monitored daily, and respiratory rates, pulse oximetry, hematology and
serum chemistry panels were performed weekly. Computed tomography scans were performed at 0,
2, and 4 months after irradiation. Supportive fluid therapy, corticosteroids, analgesics, and antibiotics
were given as needed. All animals were humanely euthanized 4.5 months after irradiation, and
pathologic assessments were made. Multifocal, progressive lung lesions were seen at 2 and 4 months
in both irradiated groups. Hexyl treatment delayed the onset of radiation-induced lung lesions,
reduced elevations of respiratory rate, and reduced pathologic increases in lung weight. No adverse
effects of hexyl treatment were found. These results demonstrate (1) development of a nonhuman
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primate model of radiation-induced lung injury, (2) a significant mitigating effect of hexyl treatment
on lung pathology in this model, and (3) no evidence for toxicity of hexyl at the dose studied.

Keywords: superoxide dismutase mimetic; MnTnHex-2-PyP5+; irradiation; Macaca mulatta; lung injury

1. Introduction

Radiation-induced pulmonary injury causes substantial morbidity and mortality in both
accidentally and therapeutically exposed individuals. Single-dose exposures of greater than 9 Gy in
human patients induce a subacute inflammatory response (radiation pneumonitis) approximately
2–3 months after exposure, and a more chronic, irreversible syndrome of pulmonary interstitial fibrosis
occurring months to years after exposure [1,2]. Among patients receiving fractionated radiotherapy
for malignancies of the thorax, the likelihood of lung injury is increased by irradiation of the inferior
thorax and by a higher mean dose for normal lungs [3]. The standard of treatment for radiation
pneumonitis is high-dose corticosteroids [4]. There is currently no treatment for radiation-induced
fibrosis. As mortality due to the hematopoietic syndrome has diminished due to bone marrow
transplant and cytokine therapy, pulmonary injury has emerged as an increasingly relevant syndrome.
Some survivors of the Chernobyl accident were successfully treated for acute hematopoietic syndrome,
only to succumb to pulmonary disease [5].

Based on impressive therapeutic efficacy in different cellular and animal models of oxidative
stress injury [6–34], high lipophilicity [6,29,35], high mitochondrial accumulation [6,36] and good
safety/toxicity profile [6,7,9,35], the potent superoxide dismutase (SOD) mimetic and redox-active drug,
manganese (III) meso-tetrakis (N-hexylpyridinium-2-yl) porphyrin, MnTnHex-2-PyP5+ (hexyl), was
chosen as a mitigator in this nonhuman primate (NHP) model of pulmonary radiation injury (Figure 1).
In a rat model of lung radiation injury, we have shown previously that MnTnHex-2-PyP5+ was
superior to its ethyl analogs, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+

(compound name: AEOL10113, BMX-010), as it mitigated radiation-induced lung injury when given
at a 120-fold lower dose of 0.05 mg/kg/day for 2 weeks starting at 2 h after irradiation [27,28].
The reason for such dramatic difference in efficacy lies in the more than four orders of magnitude
higher lipophilicity of hexyl relative to MnTE-2-PyP5+ [6,35,37,38], which, in turn, controls its
higher biodistribution and mitochondrial accumulation; both analogs have very similar SOD-like
activity [6,37]. The lipophilicity of hexyl is the highest within the class of water-soluble cationic
N-alkylpyridylporphyrins presently explored [6,29,38]. Therefore, MnTnHex-2-PyP5+ distributes
in all tissues thus far studied to higher levels than MnTE-2-PyP5+ [7,35,39], and is thus up
to 120-fold more efficacious in different animal and cellular models, such as SOD-deficient
Escherichia coli and Saccharomyces cerevisiae, yeast, pain, cerebral palsy, stroke, subarachnoid
hemorrhage, ischemia/reperfusion models and ataxia telangiectasia (Figure 1) [6–34,37,40]. Such high
efficacy allows for ~16-fold larger therapeutic window of MnTnHex-2-PyP5+ than of MnTE-2-PyP5+

(see details further below in Introduction) [6,9,35]. In addition to normal tissue radioprotection,
the radiosensitization of brain, melanoma and breast tumors with hexyl was also demonstrated in
mouse models [6,8]. Hexyl and its analogs accumulate in mitochondria [6,15,37] and there mimic
the superoxide dismutase isoform, MnSOD [6,15,18,23,40,41]. High lipophilicity allows hexyl to
accumulate in both heart and brain mitochondria; while MnTE-2-PyP5+ was found in brain [7,35,36,39]
it was not found in brain mitochondria [6,29,36]. Hexyl readily crosses the blood–brain barrier [7,29,36]
and is the only cationic Mn porphyrin that suppresses infarct volume in a rodent middle cerebral
artery occlusion stroke model when given subcutaneously [13,16,29]. Such studies point to the critical
role of bioavailability in the therapeutic effects of Mn porphyrins.
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Figure 1. Structure and therapeutic effects of manganese (III) meso-tetrakis (N-hexylpyridinium-2-yl) 
porphyrin, MnTnHex-2-PyP5+ (hexyl). The therapeutic efficacy of hexyl was observed at the level of 
normal tissue injury and cancer. Hexyl protected normal tissue from oxidative stress injury, including 
radiation, at extremely low levels of 0.05 mg/kg. Yet, it did not protect cancer; moreover, it sensitized 
cancer towards radiation and chemotherapy. The therapeutic effects are detailed in text and detailed 
in text and summarized in the references [6–34,37,40,42]. SAH—Subarachnoid Hemorrhage; I/R—
Ischemia/Reperfusion; AT—Ataxia Telangiectasia; ALS—Amyotrophic Laterial Sclerosis; TSHP—t-
butylhydroperoxide. 
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porphyrin-based SOD mimics (such as MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+) modify protein 
cysteines of transcription factors [44–46], MAPK, and protein phosphatases 2A through their S-
glutathionylation, thereby modifying their activities [45,47]. We have provided the evidence and the 
mechanistic basis that the SOD-like potency of Mn porphyrins is proportional to their ability to S-
glutathionylate cysteines of proteins [6,29,47].  

MnTnHex-2-PyP5+ exhibited therapeutic potential as a broadly applicable mitigator of oxidative 
stress injury and radioprotector of normal tissue, while demonstrating anticancer effects (Figure 1 
and references therein). Its high lipophilicity allows it to cross the blood–brain barrier and accumulate 
in mitochondria [6,7,36]. Its impact on the radioprotection of lungs in a rat model was thoroughly 
explored [27,28]. MnTnHex-2-PyP5+ inhibited the hypoxia inducible factor 1-alpha (HIF-1α) pathway 
and its gene, vascular endothelial growth factor (VEGF), reduced oxidative stress and suppressed 
levels of transforming growth factor beta-1 (TGF-β1) [27,28]. Such data suggests that hexyl has the 
potential to suppress fibrotic processes. A prolonged dosing regimen is required as fibrosis is a late 
lung injury event. The inhibition of HIF-1α might have occurred via inhibition of NF-κB, which 
controls HIF-1α and is a major protein affected by Mn porphyrins (see above). In addition to lessening 
the normal tissue injuries, MnTnHex-2-PyP5+ is also an anticancer agent. It suppressed tumor growth, 

Figure 1. Structure and therapeutic effects of manganese (III) meso-tetrakis (N-hexylpyridinium-2-yl)
porphyrin, MnTnHex-2-PyP5+ (hexyl). The therapeutic efficacy of hexyl was observed at the
level of normal tissue injury and cancer. Hexyl protected normal tissue from oxidative stress
injury, including radiation, at extremely low levels of 0.05 mg/kg. Yet, it did not protect cancer;
moreover, it sensitized cancer towards radiation and chemotherapy. The therapeutic effects are
detailed in text and summarized in references [6–34,37,40,42]. SAH—Subarachnoid Hemorrhage;
I/R—Ischemia/Reperfusion; AT—Ataxia Telangiectasia; ALS—Amyotrophic Laterial Sclerosis;
TSHP—t-butylhydroperoxide.

While MnTnHex-2-PyP5+ is a potent SOD mimetic, most recent studies point to its role and role
of its porphyrin analogs (MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+) in the modification of the activity
of transcription factors including nuclear factor kappa B (NF-κB) and nuclear factor E2-related factor 2
(Nrf2) [22,43–46] and different mitogen-activated protein kinases, such as extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), protein kinase B (AKT) and p38 mitogen-activated
protein kinase (p38-MAPK) [8,45,47]. Several studies provided evidence that this and other potent
cationic porphyrin-based SOD mimics (such as MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+) modify
protein cysteines of transcription factors [44–46], MAPK, and protein phosphatase 2A through their
S-glutathionylation, thereby modifying their activities [45,47]. We have provided the evidence and
the mechanistic basis that the SOD-like potency of Mn porphyrins is proportional to their ability to
S-glutathionylate cysteines of proteins [6,29,47].

MnTnHex-2-PyP5+ exhibited therapeutic potential as a broadly applicable mitigator of oxidative
stress injury and radioprotector of normal tissue, while demonstrating anticancer effects (Figure 1 and
references therein). Its high lipophilicity allows it to cross the blood–brain barrier and accumulate
in mitochondria [6,7,36]. Its impact on the radioprotection of lungs in a rat model was thoroughly
explored [27,28]. MnTnHex-2-PyP5+ inhibited the hypoxia inducible factor 1-alpha (HIF-1α) pathway
and its gene, vascular endothelial growth factor (VEGF), reduced oxidative stress and suppressed levels
of transforming growth factor beta-1 (TGF-β1) [27,28]. Such data suggests that hexyl has the potential
to suppress fibrotic processes. A prolonged dosing regimen is required as fibrosis is a late lung injury
event. The inhibition of HIF-1α might have occurred via inhibition of NF-κB, which controls HIF-1α
and is a major protein affected by Mn porphyrins (see above). In addition to lessening the normal
tissue injuries, MnTnHex-2-PyP5+ is also an anticancer agent. It suppressed tumor growth, acting
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as a tumor radio- and chemo-sensitizer in a patient-derived glioblastoma multiforme subcutaneous
xenograft mouse model [6]. MnTnHex-2-PyP5+ also acted as a tumor radiosensitizer in 4T1 mouse
breast and B16 mouse melanoma sc flank models [8].

In rodent safety/toxicity studies, the toxicity dose (TD50), of MnTnHex-2-PyP5+ was determined
to be 12.5 mg/kg [9]. That dose causes shivers and hypotonia which is, in part, due to the blood
pressure drop. Given its efficacy at a very low 0.05 mg/kg dose, MnTnHex-2-PyP5+ (12.5/0.05 = 250)
has a 16.3-fold (250/15.3) wider therapeutic window than clinically tested MnTE-2-PyP5+. The TD50

of 91.5 mg/kg and efficacy dose of 6 mg/kg (91.5/6 = 15.3) were determined for MnTE-2-PyP5+

in a parallel study [9]. In a mouse study, at the end of twice sc daily injections of 0.5–2.5 mg/kg
for 4 weeks, we have seen the acute degeneration of hippocampal neurons, mild subcutaneous
inflammation, degeneration and regeneration of subcutaneous muscles, and pigment accumulation
in Kupffer cells of mice [7,35]. However, all mice recovered with no overt pathological changes four
weeks after the injections of MnTnHex-2-PyP5+ ceased [7,35].

The purpose of this study was to evaluate the efficacy and safety of MnTnHex-2-PyP5+ in a novel
nonhuman primate model of radiation induced lung injury. MnTnHex-2-PyP5+ accumulates in lungs
to a high level [35], and the mitigation of rat pulmonary radiation injury at 0.05 mg/kg/day justified
the dosing schedule used in this study.

The high clinical prospects of the whole class of cationic Mn porphyrins is best evidenced
in several ongoing clinical trials on two analogs of MnTnHex-2-PyP5+. Mn(III) meso-tetrakis(N-n-
butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BMX-001), is presently being tested as
a radioprotector of normal tissue with glioma, head and neck, and anal cancer patients (National Institutes
of Health Clinical Trial numbers NCT02655601, NCT02990468 and NCT03386500). MnTE-2-PyP5+

(AEOL10113) is also in clinical development. Aeolus Pharmaceuticals is initiating Phase I trials on the
di-imidazolyl analog, MnTDE-2-ImP5+ (AEOL10150) as a pulmonary radioprotector [48,49]. Such clinical
development further justifies the exploration of the therapeutic effects of Mn porphyrins and the studies
of their mechanism of action.

The primate model developed for this study was chosen because the respiratory system of
nonhuman primates (NHP) is anatomically and physiologically more similar to human beings than
that of rodents; respiratory branching patterns are more complex in primates [50]. The resident
inflammatory cell population also differs, with rodent lungs containing larger numbers of mast cells
with the potential to release histamine and other inflammatory mediators. Primates also provide
a large animal model, which allows more precise modeling and measurement of organ dosimetry.
The relative sensitivity of mice, in particular, to pulmonary irradiation varies widely [51]. While
rodent models allow a degree of genetic manipulation not possible in other species, NHP are a critical
element of the late-stage translational application of promising interventions, particularly those that
have a mechanism of action that may be primate specific. NHP provides the closest approximation in
this regard with respect to the Food and Drug Administration’s Animal Rule, for approval of novel
agents which cannot be tested in human subjects [52]. They are also sufficiently long-lived and robust,
to allow longitudinal assessment of an array of clinical outcomes, resulting in better pathophysiologic
characterization of disease progression than is possible in rodent models.

2. Materials and Methods

2.1. Animals

Sixteen juvenile, Chinese-origin, male, rhesus macaques, weighing 3.3–5.7 (mean 3.9) kg, were
obtained from a commercial vendor (AlphaGenesis, Yemassee, SC, USA). Animals were pre-screened
to exclude simian retrovirus infection and tuberculosis, including quarantine under Centers for Disease
Control guidelines. Animals were socially housed in pairs. All animal procedures were performed in
accordance with the Guide for the Care and Use of Laboratory Animals [53] and followed protocols for
avoidance of pain and discomfort and the assurance of environmental enrichment and psychological
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well-being, approved by the Wake Forest School of Medicine (WFSM) (Office for Protection from
Research Risks #A-3391-01) Institutional Animal Care and Use Committee. WFSM is accredited by
the Association for the Assessment and Accreditation of Laboratory Animal Care International and
operates in compliance with the Animal Welfare Act.

2.2. Irradiation and Drug Treatment

Animals were randomized to treatment group based on body weight. Treatment groups included
10 Gy whole thorax irradiation (WTI)/sham drug treatment (10 Gy, n = 5), 10 Gy WTI with hexyl
treatment (10 Gy + hexyl 0.05 mg/kg twice daily subcutaneously, n = 5), sham irradiation/sham
drug treatment (Control, n = 3), and sham WTI with hexyl (Hexyl, n = 3). Hexyl was synthesized as
previously described [54]. Each NHP to be irradiated was anesthetized with ketamine (5–15 mg/kg,
subcutaneously) and dexmedetomidine (0.0075–0.015 mg/kg, subcutaneously) and placed supine with
arms extended overhead and lightly restrained to prevent motion. A single fraction dose of 10 Gy was
delivered, calculated for each beam at the midline (xiphoid process, nominal depth 4.5 cm), using high
energy, 6 megavolt (MV) X rays from a clinical linear accelerator (Varian Medical Systems, Palo Alto,
CA, USA). This dose was delivered using a pair of isocentric, equally weighted, parallel-opposed
anterior and posterior beams with an asymmetric field size of 10 × 12.5 cm2 and nominal dose rate of
200 cGy/min. The anterior beam included a 1-cm flexible slab of tissue-equivalent material on the
anterior chest to ensure dose build-up to the anterior lung surface, and a 15-degree physical wedge
with the thick end oriented to the superior, as a missing tissue compensator to provide better dose
homogeneity at the midline of the mediastinum due to the slope of the anterior surface along the
sagittal mid-plane. The central axis was placed through the xyphoid, and the irradiation geometry was
confirmed for the anterior beam, which was then irradiated (5 Gy). Using isocentric gantry rotation,
the opposed posterior field was set, confirmed and then irradiated (5 Gy). Dose calculations were
performed for each beam, with the dose specified at the midline, assuming water-equivalency and
without inhomogeneity corrections. Dose inhomogeneity in the lungs for 6 MV X rays is estimated
to be a maximum of +10%, found along the greatest anterior–posterior lung diameter, compared
to the midplane dose of 10 Gy in the mediastinum. The radiation field superior–inferior borders
ranged from the thoracic inlet to 4 cm below the xyphoid process. The radiation field left–right
borders flashed beyond the external skin surface of the thorax. Thus, the irradiated region included
both lungs (superior to 4 cm below the xyphoid) and the contents of the thorax, including the heart
and mediastinum and adjacent portions of the trachea, esophagus, and superior aspects of the liver
and stomach.

Animals were given hexyl subcutaneously, twice daily, at a dose of 0.05 mg/kg/dose
(0.1 mg/kg/day), for two months after irradiation. Treatment was initated two hours after irradiation
by subcutaneous injection. After the initial loading dose, steady state concentrations were administered
by subcutaneous implantation of an osmotic pump (Alzet, Durect Corporation, Cupertino, CA, USA).
For this procedure, animals were sedated with ketamine, anesthetized with isoflurane, and pumps were
placed in the subcutaneous tissues of the upper back using the aseptic surgical technique. Animals
not treated with hexyl were given a sham implant or injection containing normal saline. Due to
concerns regarding implant surgeries as a complicating factor for interpreting white blood cell counts,
at week 6, all pumps were removed and hexyl was again given by twice-daily subcutaneous injection,
on alternating sides in the subcutaneous tissue of the torso (to approximate the same physiological site
as the injection pump), until the end of the 8-week dosing period.

2.3. Clinical Assessments

Animals were observed daily throughout the study. Respiratory rate and effort were evaluated
daily. Treatment-induced morbidity was monitored and documented using a modification of the
Children’s Clinical Oncology Group toxicity criteria, customized for nonhuman primates [55]. Animals
were lightly sedated with ketamine, weekly, for physical examination and blood collection for complete
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blood counts and serum chemistries (albumin, bicarbonate, globulin, total protein, electrolytes,
triglycerides, bilirubin, hepatic and pancreatic enzymes, blood urea nitrogen, creatinine, creatine
kinase, glucose, triglycerides, and cholesterol). Respiratory rates and oxygenation by pulse oximetry
(Cardell Veterinary Monitor 9403, Midmark Corp, Versailles, OH, USA) were documented weekly.
Normal respiratory rate was considered to be 50 breaths per minute (bpm). The most relevant
thresholds for treatment or humane euthanasia were as follows: animals with respiratory rate (RR)
>80 bpm were treated with corticosteroids (prednisone, 1 mg/kg/day, tapered). Animals with elevated
neutrophil counts were treated with broad spectrum antibiotics (enrofloxacin 5 mg/kg and penicillin,
20,000–60,000 U/kg/day, for 5–8 days). Treatment decisions were made by a veterinary clinician (GD)
blinded to treatment group. Animals with RR >100 bpm were euthanized. Veterinary consultation
was provided for all animals showing signs of illness, and supportive fluid therapy, corticosteroids,
analgesics, antibiotics, and other symptomatic care were given, as needed, based on clinical signs and
clinical pathology findings.

2.4. Computed Tomography Imaging

All animals were evaluated by computed tomography (CT) imaging prior to irradiation, two
months after irradiation, and 4 months after irradiation. Images were acquired on a 16-slice Siemens
Biography computed tomography unit, without contrast, at a slice thickness of 0.5 cm, using a pediatric
protocol. For this procedure, animals were sedated with ketamine and medetomidine, an endotracheal
tube was placed, and anesthesia was induced and maintained with isoflurane. The lungs were fully
inflated by manual pressure to the rebreathing bag for a brief breath-hold (approximately 10–20 s)
during the scan to avoid motion artifacts. Regions of increased density in the lung were measured
from image segmentations performed using Mimics v12.11 software (Materialise, Ann Arbor, MI,
USA). A semiautomated method was used to isolate the volumes of air, normal lung tissue, and
abnormally dense tissue within the lungs. Automatic thresholding, region growing, morphology, and
Boolean operations were utilized, along with manual editing, to create masks representing each volume.
Segmentations were performed by a single observer, blinded to treatment group. Three-dimensional
reconstruction and volumetric calculations were used to determine the proportion of the lung occupied
by air, normal lung tissue, and abnormally dense tissue [56–59].

2.5. Pathology

After 19 weeks of observation, all animals were humanely euthanized by intravenous pentobarbital
overdose after sedation by intramuscular injection of ketamine. A complete necropsy examination was
done for each animal, including gross and histologic examination of all major organ systems, organ
weight measurements, and documentation of all abnormalities. Fixed and frozen tissue samples from
right and left cranial, middle, and caudal lung lobes were collected. For tissues spanning the border
of the radiation field (e.g., trachea, esophagus, skin, and spinal cord), tissues from within and outside
the field were examined. Tissues for histology were fixed in 10% neutral buffered formalin, trimmed
and embedded in paraffin, sectioned at a 5 micron thickness, and stained with hematoxylin and eosin.
Lung sections were also stained with Masson’s Trichrome stain for the identification of fibrosis, and by
immunohistochemistry using the human alveolar macrophage marker, HAM56 (Dako, Carpinteria, CA,
USA). Histologic examination of the lungs was done by an experienced veterinary pathologist (DLP),
blinded to treatment group, and the distribution and amount of qualitative changes were estimated.
Additionally, the histologic percentage of the lung parenchyma consisting of macrophages (% positive
for the HAM56 macrophage marker by immunohistochemistry), and fibrosis (% section area positive
using Masson’s Trichrome stain) were measured on six sections from each animal (one per major lung
lobe). Entire sections were measured using computer assisted color image analysis (Image Pro Plus,
v. 5.1, Media Cybernetics, Silver Spring, MD, USA).
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2.6. Statistical Considerations.

The study was analyzed as a 2 × 2 factorial design with irradiation and hexyl treatment as the
independent variables. Dependent variables included respiratory rate, neutrophil count, body weight,
lung weight, presence or absence of CT abnormalities, percentage of abnormally dense lung in CT
images, and percentage area of macrophages and fibrosis in histologic sections. Parametric methods
were used for analysis. For longitudinal data, change from baseline was analyzed, and a multivariate
model with repeated measures was used. Fisher’s exact test was used to test differences between
groups in days to treatment. The R statistical environment [R] was used for conducting these analyses.

3. Results

3.1. Clinical Observations

During the course of the study, mean respiratory rates increased gradually in irradiated animals,
reaching statistical significance by 4 months post-irradiation (p < 0.009, Welch two-sample t-test)
(Figure 2A). Mean oxygenated hemoglobin measurements by pulse oximetry did not change over
the course of the study (Figure 2B), suggesting successful compensation by an increased respiratory
rate. Irradiated animals were more often treated with antibiotics or corticosteroids, and were treated
sooner, more often, and for more total days than non-irradiated animals. The mean number of days to
corticosteroid treatment was significantly prolonged for 10 Gy + hexyl-treated animals compared to
10 Gy alone (Table 1). One animal at 4 months crossed the predetermined respiratory rate threshold
of 100 bpm, and euthanasia was elected slightly in advance of the remaining animals. No overt
respiratory distress or cyanosis was seen in any animal. There were no significant treatment-related
changes in body weight during the study (data not shown).
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Figure 2. Clinical assessments of pulmonary injury. (A) Respiratory rates; irradiated groups differ
from non-irradiated animals (p = 0.008); * indicates individual time point differences at p < 0.05 (t-test).
(B) Oxyhemoglobin saturation. Groups do not differ. Error bars are SEM (standard error of the mean).

Table 1. Patterns of antibiotic and corticosteroid treatment; median and range.

Group Control Hexyl 10 Gy 10 Gy + Hexyl Significance *

Number of animals given antibiotics 2/3 2/3 4/5 5/5 nsd

Days to first antibiotic treatment 26
(26–26)

45
(41–48)

31
(26–47)

36
(26–77) nsd

Number of antibiotic treatments 2
(0–3)

1
(0–1)

3
(0–5)

2
(1–4) nsd

Total days of antibiotic treatment 11
(0–17)

5
(0–5)

18
(0–31)

12
(5–27) nsd

Number of animals given prednisone 1/3 0/3 5/5 5/5 nsd
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Table 1. Cont.

Group Control Hexyl 10 Gy 10 Gy + Hexyl Significance *

Days to first prednisone treatment 47
(47–47) NA 51

(26–77)
90

(51–103) p < 0.05

Number of prednisone treatments 1
(NA) 0 2

(1–3)
1

(1–4) nsd

Total days of prednisone treatment 9
(NA) 0 10

(5–14)
7

(4–21) nsd

* Fisher’s exact test; nsd = no significant difference; NA: not applicable.

3.2. Clinical Pathology

Elevations in total white blood cell (WBC) count were seen in both groups of irradiated animals,
regardless of the presence of hexyl; this change was greater in irradiated animals that did not receive
hexyl and reached a peak at about 6 weeks post-irradiation, followed by a decline (Figure 3A).
This finding was interpreted as reflecting radiation-induced pneumonitis and consisted primarily of
a neutrophilic response (Figure 3B). Lymphocyte counts were higher in the control group at baseline,
and this difference persisted throughout the study. Declines in lymphocyte counts were seen in all
animals, corresponding to the dates of monthly anesthesia for imaging or osmotic pump implantation
(Figure 3C); this was interpreted as a transient stress response. In the final month of the study,
eosinophil counts rose markedly in both irradiated groups (Figure 3D). No treatment-related changes
were seen in any clinical chemistry parameters (Supplemental Table S1).
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Figure 3. White blood cell changes. (A) Overall white blood cell count; (B) neutrophil count;
(C) lymphocyte count; and (D) eosinophil count. White blood cell counts (primarily neutrophils)
were elevated in irradiated animals 6 weeks after irradiation, coincident with the onset of clinical signs
and computed tomography (CT) abnormalities. Lymphocyte counts were highest in non-irradiated
hexyl-only animals, and decreased each month after sedation for physical examination. Eosinophil
counts were elevated in months 3–5. Error bars are SEM; * = mean differs from control group (p < 0.05)
(t-test).
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3.3. CT Imaging

Imaging abnormalities, defined as abnormal radio-opacities exceeding 1% of the lung volume,
were seen two months after irradiation in 2/5 animals given irradiation alone. Abnormalities were seen
in all irradiated animals at 4 months. These consisted of multifocal, irregular, randomly distributed
areas of increased radio-opacity in all lung lobes, which progressed in severity during the course of
the study (Figures 4 and 5). The mean volumetric percentage of the lungs occupied by abnormally
high density increased; it was minimal at two months and higher at 4 months in irradiated animals
treated with hexyl (Figure 4D); this difference was not statistically significant. However, at the 4 month
assessment, CT density correlated with elevated respiratory rate (r = 0.629, p < 0.009) (Figure 5B).
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Figure 4. Computed tomography assessments of pulmonary injury. (A–C) Sequential images from
a single animal from the irradiation-only group before irradiation (A), 2 months after irradiation (B),
and 4 months after irradiation (C). (D) Percentage of injured lung by treatment group over the course
of the study. Control and hexyl-alone groups are not shown (all values were <1%). CT abnormalities
were seen at 2 and 4 months post-irradiation. The CT density area appears to be lower in hexyl-treated
animals, particularly at 2 months, but there is no statistically significant difference.
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Figure 5. Three-dimensional reconstruction of pulmonary injury in the same animal illustrated in
Figure 4 at two and four months after irradiation. The normal lung is green, the partially inflated lung
is blue, and the fibrotic/consolidated lung is red (A), the dot plot of CT density and respiratory rate at
4 months post-irradiation with linear regression line (r = 0.6289) (B).
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3.4. Pathology Findings

Gross abnormalities were limited to animals exposed to radiation, and consisted of increased
lung weights, abnormally firm lung consistency on palpation, and multifocal to diffuse, gray to tan
discoloration of the pulmonary parenchyma, involving up to approximately 90% of the lung parenchyma.
Lung weights in irradiated animals were 77% higher than non-irradiated controls (p < 0.0001). These
effects were somewhat mitigated by hexyl treatment; irradiated animals treated with hexyl had a 32%
lower mean lung weight than those treated with radiation alone (p = 0.02; Figure 6).

Histologically, affected regions of the lung in irradiated animals contained four major changes: (1)
interstitial and intra-alveolar infiltration of the lung parenchyma by macrophages and other inflammatory
cells, (2) accumulation of proteinaceous fluid in alveolar spaces, (3) hyperplasia and hypertrophy of
alveolar lining cells, leading to the replacement of the normal thin oxygen exchange layer of type I
pneumocytes with a thicker layer of cuboidal Type II cells, and (4) fibrosis of the pulmonary interstitium.
These changes and their distribution are illustrated in Figure 7. Notably, the inflammatory, exudative, and
hyperplastic changes were diminished in irradiated animals treated with hexyl (Figure 7D), compared to
animals given irradiation alone (Figure 7B); this is reflected in the statistically significant difference in lung
weights (Figure 6). In contrast, the overall extent of fibrotic changes was not altered by hexyl treatment.
Histomorphometric measurements of the proportion of the lung tissue composed of macrophages
(HAM56 immunostaining) and fibrous connective tissue (Masson’s Trichrome stain) are shown in Figure 8.
While there was a trend towards reduced levels of macrophages by hexyl/10 Gy vs. 10 Gy, statistical
significance was not reached. Within lung regions considered fibrotic, the proportion of the tissue occupied
by collagen was 14%, compared to 3–5% in non-fibrotic lungs (p = 0.0011; data not shown).
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Figure 7. Histologic appearance of lung tissue in (A) sham-irradiated, saline-treated controls,
(B) irradiated animals with no hexyl treatment, (C) sham-irradiated animals given hexyl treatment,
and (D) irradiated animals given hexyl. Trichrome stain. (E) Higher-magnification photograph
demonstrating specific histopathologic findings. Scale bars: A–D, 100 µm; E, 50 µm.
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Figure 8. Pulmonary histomorphometry. (A) The main effect of radiation was significant (p < 0.001) for
macrophages expressed as % area of the lung staining for human alveolar macrophage 56 (HAM56)
antigen. (B) Pulmonary fibrosis was not statistically increased during the course of this experiment.

4. Discussion

Herein we described the effect of hexyl in a NHP model of radiation-induced lung injury,
including an irradiation strategy that that reliably produces pneumonitis and fibrosis within a period
of 2–4 months. This model allows longitudinal evaluation of the indicators of disease progression,
including clinical evaluations, respiratory rate, oxyhemoglobin saturation, lung density, clinical
pathology markers. A clinical and pathologic pattern of disease progression similar to the human
disease was documented.

The major finding in this study was a statistically significant mitigating effect by hexyl treatment
on the progression of radiation pneumonitis, as indicated by lung weight, which we attribute to
diminished intrapulmonary inflammation and edema. The time course of this effect is interesting in
that little or no increase in CT density was seen in hexyl-treated animals at the 2-month time point,
whereas most hexyl-treated animals showed some pneumonitis and fibrosis at the final 4-month CT
scan, and at 5 months at necropsy. Since treatment was discontinued at 2 months, it is possible that
progressive pulmonary disease was, for that time, arrested by hexyl treatment, followed by progressive
pneumonitis and fibrosis, beginning after treatment ended. Hexyl cleared from the mouse lungs within
10 days; the t1/2 of the elimination of hexyl from the lungs after intraperitoneal injection was 58 h [35].
The mouse and monkey pharmacokinetics are similar (unpublished). We may thus safely assume that
hexyl was absent in the lungs post 2 months of injections which would have, therefore, precluded the
continuation of its radioprotective effects (observed during 2 months of dosing) and impact on fibrosis.
Recently Oberley-Deegan’s team reported the effect of an analogous compound, MnTE-2-PyP5+, on the
inhibition of a radiation-induced activation of mouse primary prostate fibroblasts via the TGF-β
pathway [60]. TGF-β pathway was affected by hexyl and its analog, ethyl, in a mouse/rodent study
(see Section 1. Introduction) [27,28]. Insight into the changes in the redox environments of lungs
over 4 months of study is essential, as it would allow us to understand events at the molecular level,
i.e., discuss the effects of hexyl on the redox-sensitive proteins, low molecular weight antioxidants
(such as glutathione and ascorbate) and enzymes. Alternatively, hexyl treatment may have simply
shifted the curve for progressive pneumonitis to the right, producing a delay but not an absolute
prevention of the disease.
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Due to slow clearance from all tissues [35], less frequent weekly dosing (post tissue loading)
maintained throughout the study may prolong the beneficial effects obtained at 2 months post-radiation.
Such dosing has been now adopted for the clinical trials on cancer patients for radioprotection of
normal tissue with a similarly lipophilic and SOD-active, MnTnBuOE-2-PyP5+ [29,33,61,62]. Further
work, with longer treatment, less frequent dosing and follow-up will be required to understand how
to improve the mitigation of pulmonary injury.

Our findings in untreated NHP are consistent with those of Garofalo et al. [63], namely in regard to
progressive pneumonitis and pulmonary fibrosis, affecting all irradiated animals by four months after
radiation exposure at 10 Gy. This group showed efficacy of high dose dexamethasone (1 mg/kg/day,
tapered) in reducing respiratory rate, which we did not see in our study. This could be related to our
choice of corticosteroid (prednisone), which has a shorter duration of activity than dexamethasone.
The mean time to corticosteroid therapy was much longer in their work (116 days) relative to our
median days to treatment (51 days), despite the use of a similar respiratory rate trigger of 80 breaths per
minute; this may reflect the age difference in animals. Our juvenile animals had a baseline respiratory
rate of around 50 breaths per minute, whereas the older animals had a lower baseline rate of around
35 breaths per minute [64]. Age could also play a role in radiation sensitivity generally; adolescent rats
develop pneumonitis more rapidly than adult animals [65].

The lack of demonstrable benefit for pulmonary fibrosis is disappointing, and may indicate that
an additional divergent pathogenetic pathway is involved in fibrosis. Statistical power may have been
hampered by high individual variation in responses, the multifocal nature of the fibrosis, and the
limited number of animals. We have shown that ongoing oxidative damage and inflammation are
important in the pathogenesis of progressive pulmonary disease in rodents, and have also documented
involvement of the TGF-beta pathway in radiation-induced pulmonary fibrosis in the rat model [27].
Gene expression studies of the response of primate lungs to ozone-induced oxidative injury also show
not only an inflammatory response, with elevations of interleukins 6, 8 and 10, but also a matrix
remodeling response, including 3- to 5-fold elevations of matrix metalloproteinase I, metallothionein,
and tenascin [66]. Involvement of TGF beta and matrix remodeling pathways may provide additional
preventive or therapeutic targets, in addition to oxidative damage pathways. The observation of
climbing eosinophil counts in irradiated groups is another interesting finding; eosinophilia was not
a prominent feature of the tissue response in the lung, but further studies of lesion progression,
for example, focused on hypersensitivity responses or mast cells would be helpful.

Importantly, in this study, we saw no evidence of toxicity of the hexyl compound, at a therapeutic
dose, in a NHP model more closely related to human beings than the rodents studied previously. This
drug has also shown efficacy at very low doses in numerous animal models, such as the rat renal
ischemia model, the rabbit cerebral palsy model, chronic morphine tolerance, stroke, subarachnoid
hemorrhage and tumor radiosensitization [6–29]. The efficacy of MnTnHex-2-PyP5+ at a low dose
(1/120th of the dose used with a hydrophilic MnTE-2-PyP5+ analog) is due to its highest lipophilicity
within the class of water-soluble cationic N-alkylpyridylporphyrins [6,29]. Moreover, due to its
lipophilic character and pentacationic charge, this compound crosses the blood–brain barrier, localizes
in the hippocampus and other brain parts and accumulates in mitochondria (both brain and heart
mitochondria) relative to the cytosol [35,36,40].

Future studies need to address the pharmacokinetics of Mn porphyrin in NHP, explore the impact
of the magnitude of the dose and frequency and the duration of dosing and compare MnTnHex-2-PyP5+

to another similarly lipophilic and potent SOD-mimic, MnTnBuOE-2-PyP5+.

5. Conclusions

Data reviewed herein show that lipophilic superoxide dismutase mimetics are effective mitigators
of a range of disease processes that involve oxidative injury. New data presented here demonstrate
the development of a NHP model of radiation-induced lung injury in a large animal model with
high genetic and phenotypic similarity to human beings. Findings indicate potential for mitigation of
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radiation-induced lung injury by MnTnHex-2-PyP5+. The beneficial effect on lung weight but lack of
clear effect on anticipated histologic markers suggests that inflammation and fibrosis may not represent
the entire picture, and that further mechanistic studies are needed.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3921/7/3/40/s1.
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30. Batinić-Haberle, I.; Spasojević, I.; Stevens, R.D.; Hambright, P.; Fridovich, I. Manganese(III)
meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of
O2/-dismutation. Dalton Trans. 2002, 13, 2689–2696. [CrossRef]

31. Li, A.M.; Martins, J.; Tovmasyan, A.; Valentine, J.S.; Batinic-Haberle, I.; Spasojevic, I.; Gralla, E.B.
Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds
in Saccharomyces cerevisiae. Redox Biol. 2014, 3, 1–6. [CrossRef] [PubMed]

32. Tovmasyan, A.; Reboucas, J.S.; Benov, L. Simple biological systems for assessing the activity of superoxide
dismutase mimics. Antioxid. Redox Signal. 2014, 20, 2416–2436. [CrossRef] [PubMed]

33. Rajic, Z.; Tovmasyan, A.; Spasojevic, I.; Sheng, H.; Lu, M.; Li, A.M.; Gralla, E.B.; Warner, D.S.; Benov, L.;
Batinic-Haberle, I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb
potency and lipophilicity with low toxicity. Free Radic. Biol. Med. 2012, 52, 1828–1834. [CrossRef] [PubMed]

34. Fernandes, A.S.; Gaspar, J.; Cabral, M.F.; Rueff, J.; Castro, M.; Batinic-Haberle, I.; Costa, J.; Oliveira, N.G.
Protective role of ortho-substituted Mn(III) N-alkylpyridylporphyrins against the oxidative injury induced
by tert-butylhydroperoxide. Free Radic. Res. 2010, 44, 430–440. [CrossRef] [PubMed]

35. Weitner, T.; Kos, I.; Sheng, H.; Tovmasyan, A.; Reboucas, J.S.; Fan, P.; Warner, D.S.; Vujaskovic, Z.;
Batinic-Haberle, I.; Spasojevic, I. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn
porphyrin-based SOD mimics, MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+). Free Radic. Biol. Med. 2013, 58,
73–80. [CrossRef] [PubMed]

36. Spasojevic, I.; Weitner, T.; Tovmasyan, A.; Sheng, H.; Miriyala, S.; Leu, D.; Rajic, Z.; Warner, D.S.;
Clair, D.S.; Huang, T.-T.; et al. Pharmacokinetics, Brain Hippocampus and Cortex, and
Mitochondrial Accumulation of a New Generation of Lipophilic Redox-Active Therapeutic, Mn(III) Meso
Tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+, in Comparison with its Ethyl
and N-hexyl Analogs, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic. Biol. Med. 2013, 65, S132.

37. Batinic-Haberle, I.; Reboucas, J.S.; Spasojevic, I. Superoxide dismutase mimics: Chemistry, pharmacology,
and therapeutic potential. Antioxid. Redox Signal. 2010, 13, 877–918. [CrossRef] [PubMed]

38. Batinic-Haberle, I.; Tovmasyan, A. Superoxide dismutase mimics and other redox-active therapeutics.
In Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease; Armstrong, D.,
Stratton, R.D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 415–470.

39. Spasojevic, I.; Chen, Y.; Noel, T.J.; Fan, P.; Zhang, L.; Reboucas, J.S.; St Clair, D.K.; Batinic-Haberle, I.
Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and
major organs of B6C3F1 mice. Free Radic. Biol. Med. 2008, 45, 943–949. [CrossRef] [PubMed]

40. Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I.
Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta 2012, 1822, 794–814.
[CrossRef] [PubMed]

41. Bakthavatchalu, V.; Dey, S.; Xu, Y.; Noel, T.; Jungsuwadee, P.; Holley, A.K.; Dhar, S.K.; Batinic-Haberle, I.;
St Clair, D.K. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against
UV-induced inactivation. Oncogene 2012, 31, 2129–2139. [CrossRef] [PubMed]

42. Batinic-Haberle, I.; Rajic, Z.; Tovmasyan, A.; Reboucas, J.S.; Ye, X.; Leong, K.W.; Dewhirst, M.W.;
Vujaskovic, Z.; Benov, L.; Spasojevic, I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins,
recognized as SOD mimics. Free Radic. Biol. Med. 2011, 51, 1035–1053. [CrossRef] [PubMed]

43. Jaramillo, M.C.; Briehl, M.M.; Batinic-Haberle, I.; Tome, M.E. Manganese (III) meso-tetrakis
N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate
bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic. Biol. Med. 2015, 83,
89–100. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.058
http://www.ncbi.nlm.nih.gov/pubmed/18082148
http://dx.doi.org/10.1016/j.redox.2013.12.017
http://www.ncbi.nlm.nih.gov/pubmed/24624330
http://dx.doi.org/10.1039/b201057g
http://dx.doi.org/10.1016/j.redox.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462059
http://dx.doi.org/10.1089/ars.2013.5576
http://www.ncbi.nlm.nih.gov/pubmed/23964890
http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22336516
http://dx.doi.org/10.3109/10715760903555844
http://www.ncbi.nlm.nih.gov/pubmed/20102317
http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23328731
http://dx.doi.org/10.1089/ars.2009.2876
http://www.ncbi.nlm.nih.gov/pubmed/20095865
http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.015
http://www.ncbi.nlm.nih.gov/pubmed/18598757
http://dx.doi.org/10.1016/j.bbadis.2011.12.002
http://www.ncbi.nlm.nih.gov/pubmed/22198225
http://dx.doi.org/10.1038/onc.2011.407
http://www.ncbi.nlm.nih.gov/pubmed/21909133
http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.046
http://www.ncbi.nlm.nih.gov/pubmed/21616142
http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.031
http://www.ncbi.nlm.nih.gov/pubmed/25725417


Antioxidants 2018, 7, 40 16 of 17

44. Jaramillo, M.C.; Briehl, M.M.; Crapo, J.D.; Batinic-Haberle, I.; Tome, M.E. Manganese porphyrin,
MnTE-2-PyP5+, Acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells.
Free Radic. Biol. Med. 2012, 52, 1272–1284. [CrossRef] [PubMed]

45. Tovmasyan, A.; Go, Y.-M.; Jones, D.; Spasojevic, I.; Batinic-Haberle, I. Redox Proteomics of 4T1 Breast Cancer
Cell after Treatment with MnTE-2-PyP5+/Ascorbate System. Free Radic. Biol. Med. 2016, 100, S112–S113.
[CrossRef]

46. Zhao, Y.; Carroll, D.W.; You, Y.; Chaiswing, L.; Wen, R.; Batinic-Haberle, I.; Bondada, S.; Liang, Y.; St Clair, D.K.
A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function.
Redox Biol. 2017, 12, 129–138. [CrossRef] [PubMed]

47. Tovmasyan, A.; Bueno-Janice, J.C.; Jaramillo, J.; Sampaio, R.S.; Reboucas, J.S.; Kyui, N.; Benov, L.; Deng, B.;
Huang, T.T.; Tome, M.E.; et al. Radiation-mediated tumor growth inhibition is significantly enhanced with
redox-active compounds that cycle with ascorbate. Antioxid. Redox Signal. 2018. [CrossRef] [PubMed]

48. Batinic-Haberle, I.; Spasojevic, I.; Stevens, R.D.; Hambright, P.; Neta, P.; Okado-Matsumoto, A.;
Fridovich, I. New class of potent catalysts of O2•-dismutation. Mn(III) ortho-methoxyethylpyridyl- and
di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans. 2004, 1696–1702. [CrossRef] [PubMed]

49. Singh, V.K.; Romaine, P.L.; Seed, T.M. Medical countermeasures for radiation exposure and related injuries:
Characterization of medicines, FDA-approval status and inclusion into the strategic national stockpile.
Health Phys. 2015, 108, 607–630. [CrossRef] [PubMed]

50. Plopper, C.G.; Hyde, D.M. The non-human primate as a model for studying COPD and asthma.
Pulm. Pharmacol. Ther. 2008, 21, 755–766. [CrossRef] [PubMed]

51. Jackson, I.L.; Vujaskovic, Z.; Down, J.D. A further comparison of pathologies after thoracic irradiation
among different mouse strains: Finding the best preclinical model for evaluating therapies directed against
radiation-induced lung damage. Radiat. Res. 2011, 175, 510–518. [CrossRef] [PubMed]

52. Food and Drug Administration. New drug and biological drug products; evidence needed to demonstrate
effectiveness of new drugs when human efficacy studies are not ethical or feasible. Final rule. Fed. Regist.
2002, 67, 37988–37998.

53. Guide for the Care and Use of Laboratory Animals; Committee for the Revision of the Guide for the Care and
Use of Laboratory Animals: Washington, DC, USA, 2011.

54. Tovmasyan, A.; Weitner, T.; Sheng, H.; Lu, M.; Rajic, Z.; Warner, D.S.; Spasojevic, I.; Reboucas, J.S.;
Benov, L.; Batinic-Haberle, I. Differential coordination demands in Fe versus Mn water-soluble cationic
metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg. Chem.
2013, 52, 5677–5691. [CrossRef] [PubMed]

55. Uckun, F.M.; Yanishevski, Y.; Tumer, N.; Waurzyniak, B.; Messinger, Y.; Chelstrom, L.M.; Lisowski, E.A.;
Ek, O.; Zeren, T.; Wendorf, H.; et al. Pharmacokinetic features, immunogenicity, and toxicity of
B43(anti-CD19)-pokeweed antiviral protein immunotoxin in cynomolgus monkeys. Clin. Cancer Res. 1997, 3,
325–337. [PubMed]

56. Becher, R.D.; Colonna, A.L.; Enniss, T.M.; Weaver, A.A.; Crane, D.K.; Martin, R.S.; Mowery, N.T.; Miller, P.R.;
Stitzel, J.D.; Hoth, J.J. An innovative approach to predict the development of adult respiratory distress
syndrome in patients with blunt trauma. J. Trauma Acute Care Surg. 2012, 73, 1229–1235. [CrossRef]
[PubMed]

57. Daly, M.; Miller, P.R.; Carr, J.J.; Gayzik, F.S.; Hoth, J.J.; Meredith, J.W.; Stitzel, J.D. Traumatic pulmonary
pathology measured with computed tomography and a semiautomated analytic method. Clin. Imaging 2008,
32, 346–354. [CrossRef] [PubMed]

58. Danelson, K.A.; Chiles, C.; Thompson, A.B.; Donadino, K.; Weaver, A.A.; Stitzel, J.D. Correlating the extent
of pulmonary contusion to vehicle crash parameters in near-side impacts. Ann. Adv. Automot. Med. 2011, 55,
217–230. [PubMed]

59. Weaver, A.A.; Danelson, K.A.; Armstrong, E.G.; Hoth, J.J.; Stitzel, J.D. Investigation of pulmonary
contusion extent and its correlation to crash, occupant, and injury characteristics in motor vehicle crashes.
Accid. Anal. Prev. 2013, 50, 223–233. [CrossRef] [PubMed]

60. Chatterjee, A.; Kosmacek, E.A.; Oberley-Deegan, R.E. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects
against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1
Signaling Pathway. Radiat. Res. 2017, 187, 367–381. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.001
http://www.ncbi.nlm.nih.gov/pubmed/22330065
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.290
http://dx.doi.org/10.1016/j.redox.2017.02.005
http://www.ncbi.nlm.nih.gov/pubmed/28231483
http://dx.doi.org/10.1089/ars.2017.7218
http://www.ncbi.nlm.nih.gov/pubmed/29390861
http://dx.doi.org/10.1039/B400818A
http://www.ncbi.nlm.nih.gov/pubmed/15252564
http://dx.doi.org/10.1097/HP.0000000000000279
http://www.ncbi.nlm.nih.gov/pubmed/25905522
http://dx.doi.org/10.1016/j.pupt.2008.01.008
http://www.ncbi.nlm.nih.gov/pubmed/18339566
http://dx.doi.org/10.1667/RR2421.1
http://www.ncbi.nlm.nih.gov/pubmed/21338245
http://dx.doi.org/10.1021/ic3012519
http://www.ncbi.nlm.nih.gov/pubmed/23646875
http://www.ncbi.nlm.nih.gov/pubmed/9815689
http://dx.doi.org/10.1097/TA.0b013e31825b2124
http://www.ncbi.nlm.nih.gov/pubmed/22914080
http://dx.doi.org/10.1016/j.clinimag.2008.02.026
http://www.ncbi.nlm.nih.gov/pubmed/18760721
http://www.ncbi.nlm.nih.gov/pubmed/22105398
http://dx.doi.org/10.1016/j.aap.2012.04.013
http://www.ncbi.nlm.nih.gov/pubmed/22575308
http://dx.doi.org/10.1667/RR14623.1
http://www.ncbi.nlm.nih.gov/pubmed/28225655


Antioxidants 2018, 7, 40 17 of 17

61. Ashcraft, K.A.; Boss, M.K.; Tovmasyan, A.; Roy Choudhury, K.; Fontanella, A.N.; Young, K.H.; Palmer, G.M.;
Birer, S.R.; Landon, C.D.; Park, W.; et al. Novel Manganese-Porphyrin Superoxide Dismutase-Mimetic
Widens the Therapeutic Margin in a Preclinical Head and Neck Cancer Model. Int. J. Radiat. Oncol. Biol. Phys.
2015, 93, 892–900. [CrossRef] [PubMed]

62. Weitzel, D.H.; Tovmasyan, A.; Ashcraft, K.A.; Rajic, Z.; Weitner, T.; Liu, C.; Li, W.; Buckley, A.F.;
Prasad, M.R.; Young, K.H.; et al. Radioprotection of the brain white matter by Mn(III)
n-Butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol. Cancer Ther.
2015, 14, 70–79. [CrossRef] [PubMed]

63. MacVittie, T.J.; Bennett, A.; Booth, C.; Garofalo, M.; Tudor, G.; Ward, A.; Shea-Donohue, T.; Gelfond, D.;
McFarland, E.; Jackson, W., 3rd; et al. The prolonged gastrointestinal syndrome in rhesus macaques:
The relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute,
potentially lethal, partial-body irradiation. Health Phys. 2012, 103, 427–453. [CrossRef] [PubMed]

64. Garofalo, M.C.; Ward, A.A.; Farese, A.M.; Bennett, A.; Taylor-Howell, C.; Cui, W.; Gibbs, A.; Prado, K.L.;
Macvittie, T.J. A pilot study in rhesus macaques to assess the treatment efficacy of a small molecular
weight catalytic metalloporphyrin antioxidant (aeol 10150) in mitigating radiation-induced lung damage.
Health Phys. 2014, 106, 73–83. [CrossRef] [PubMed]

65. Mahmood, J.; Jelveh, S.; Zaidi, A.; Doctrow, S.R.; Hill, R.P. Mitigation of radiation-induced lung injury with
EUK-207 and genistein: Effects in adolescent rats. Radiat. Res. 2013, 179, 125–134. [CrossRef] [PubMed]

66. Hicks, A.; Kourteva, G.; Hilton, H.; Li, H.; Lin, T.A.; Liao, W.; Li, Y.; Wei, X.; March, T.; Benson, J.; et al.
Cellular and molecular characterization of ozone-induced pulmonary inflammation in the Cynomolgus
monkey. Inflammation 2010, 33, 144–156. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijrobp.2015.07.2283
http://www.ncbi.nlm.nih.gov/pubmed/26530759
http://dx.doi.org/10.1158/1535-7163.MCT-14-0343
http://www.ncbi.nlm.nih.gov/pubmed/25319393
http://dx.doi.org/10.1097/HP.0b013e318266eb4c
http://www.ncbi.nlm.nih.gov/pubmed/22929471
http://dx.doi.org/10.1097/HP.0b013e3182a4d967
http://www.ncbi.nlm.nih.gov/pubmed/24276551
http://dx.doi.org/10.1667/RR2954.1
http://www.ncbi.nlm.nih.gov/pubmed/23237541
http://dx.doi.org/10.1007/s10753-009-9168-5
http://www.ncbi.nlm.nih.gov/pubmed/19941046
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals 
	Irradiation and Drug Treatment 
	Clinical Assessments 
	Computed Tomography Imaging 
	Pathology 
	Statistical Considerations. 

	Results 
	Clinical Observations 
	Clinical Pathology 
	CT Imaging 
	Pathology Findings 

	Discussion 
	Conclusions 
	References

