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Although many diseases in which reactive oxygen species (ROS)
and free radicals are involved in their pathogenesis are known,
and antioxidants that effectively capture ROS have been
identified and developed, there are only a few diseases for which
antioxidants have been used for treatment. Here, we discuss on
the following four concepts regarding the development of
applications for disease treatment by regulating ROS, free
radicals, and lipid oxidation with the findings of our research and
previous reports. Concept 1) Utilization of antioxidants for disease
treatment. In particular, the importance of the timing of starting
antioxidant will be discussed. Concept 2) Therapeutic strategies
using ROS and free radicals. Methods of inducing ferroptosis,
which has been advocated as an iron-dependent cell death, are
mentioned. Concept 3) Treatment with drugs that inhibit the
synthesis of lipid mediators. In addition to the reduction of
inflammatory lipid mediators by inhibiting cyclooxygenase and
leukotriene synthesis, we will introduce the possibility of disease
treatment with lipoxygenase inhibitors. Concept 4) Disease
treatment by inducing the production of useful lipid mediators for
disease control. We describe the treatment of inflammatory
diseases utilizing pro-resolving mediators and propose potential
compounds that activate lipoxygenase to produce these beneficial
mediators.

Key Words: antioxidant, fetal treatment, ferroptosis, specialized
pro-resolving mediator, stress

R eactive oxygen species (ROS) damage cells by oxidative
modifying biomolecules (lipids, proteins, nucleic acids,

etc.), resulting in disease triggers. The diseases listed in Table 1
as diseases in which ROS is involved in those pathologies have
been confirmed using animal model experiments and clinical
samples. On the other hand, antioxidant enzymes and antioxi‐
dants exist as molecules that protect biomolecules from damage
caused by ROS. Although the involvement of ROS in the patho‐
physiology and development of the disease has been investigated
and the usefulness of antioxidants has been demonstrated by
animal experiments, antioxidants are not used as therapeutic
agents in actual clinical practice. In Japan, antioxidants have
been used as therapeutic agents in actual clinical practice only for
non-alcoholic steatohepatitis (NASH) and cerebral infarction.(1,2)

The progression of NASH has been reported to be suppressed
by the administration of vitamin E (a fat-soluble vitamin with
antioxidant activity), and vitamin E is listed as a therapeutic
agent in the therapeutic criteria.(3) Edaravone, an antioxidant, is
administered intravenously for the purpose of protecting the

brain from neuronal cell death caused by ROS generated by
injury due to cerebral infarction and ischemia-reperfusion injury
after resumption of blood flow. In Japan, edaravone is adminis‐
tered to about half of the cases with acute cerebral infarction, and
the effect of improving neurological symptoms has been
confirmed, but the effect is limited.(4) Recently, edaravone has
been approved for use in amyotrophic lateral sclerosis,(5) and the
therapeutic effect will be reported in the future.
Although it has been demonstrated that ROS is involved in the

pathophysiology of many diseases, and various antioxidants that
can suppress the toxicity of ROS by efficiently capturing ROS
are known, antioxidants are not widely used in actual clinical
practice. Niki(6) explained this problem with the following six
possible reasons. #1. Oxidative events are the result of diseases,
not the cause. #2. Multiple antioxidants with different functions
are required because multiple oxidants with different reactivity
and selectivity contribute to the etiology. #3. Healthy subjects
who already have sufficient antioxidants may have limited
beneficial effects by supplemented antioxidants. #4. Appropriate
antioxidant selection, dosage, and duration of supplementation
are necessary. #5. Choice of clinical trials and endpoints to be
included in the meta-analysis. #6. Oxidative stress may be pivotal
for the onset of the disease, but it may become less important at
the later stages of the disease.
This manuscript describes four concepts regarding application

to disease treatment by controlling ROS, free radicals, and lipid
oxidation. The first section of this article refers to the use of
antioxidants as disease prophylaxis, based on the findings we
have previously reported in experiments with Down syndrome
model mice. In addition, the second section explains the concept
of utilizing ROS itself for treatment. Lipid oxidation products
produced via lipid oxidation enzymes have a pharmacological
action as a lipid mediator. We describe how to apply suppression
or activation of lipid mediator production to the treatment of
disease.

Disease Treatment by Suppressing Oxidative Stress by
Antioxidants

Antioxidants used in clinical practice. Antioxidants and
antioxidant enzymes are classified into the following three
types according to their action:(6,41,42) a) preventive antioxidants;
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compounds that exert antioxidant action by suppressing radical
generation such as catalase, peroxidase, and superoxide dismu‐
tase (SOD), b) radical-scavenging antioxidants; antioxidants that
act by capturing generated radicals and suppress chain initiation
such as vitamin E, vitamin C, polyphenols, carotenoids, uric acid,
and ubiquinol, c) repair and de novo enzymes; compounds that
repairs and regenerates damaged molecules such as phospholi‐
pase, protease, and DNA repair enzymes. Among these antioxi‐
dants, this section specifically discusses the clinical application
of radical scavengers.
Among the clinical drugs used in Japan, compounds having an

antioxidant activity include vitamin E, vitamin C (hemostatic
drug), glutathione (GSH) (liver protection agent), probucol
(hyperlipidemic drug), edaravone (treatment for cerebral infarc‐
tion), rebamipide (protective drug for gastric mucosa),
polaprezinc (medicine for gastric ulcer), and pravastatin
(medicine for hyperlipidemia). Among these drugs, vitamin E
and edaravone are used for their antioxidant properties.

Non-alcoholic fatty liver disease (NAFLD). NAFLD is a
pathological condition that can be said to be the expression form
of metabolic syndrome in the liver. The prevalence rate of
NAFLD is 20–40% in Europe and the United States, 12–30%
in Asian countries, and 9–30% in Japan, and the number of
patients is extremely large worldwide. In a narrow sense,
NAFLD is classified into NASH, which is a progressive liver
disease, and non-alcoholic fatty liver (NAFL), which has a good
prognosis. The “two-hit hypothesis” has long been proposed as
the pathological mechanism of NASH/NAFLD.(43) According to
this theory, fatty acids and triglycerides accumulate in the liver
(1st hit), making the liver susceptible to external stimuli. In this
state, factors that damage hepatocytes such as oxidative stress,
lipid peroxidation, and insulin resistance are added as the 2nd
hit, and as a result, hepatocyte necrosis and apoptosis progress
with inflammation of the liver parenchyma. On the other hand, in
recent years, “multiple parallel hits” hypothesis has also been
proposed.(44) It is hypothesized that inflammation induced in the
liver by many factors such as cytokines derived from adipose
tissue and intestinal tract, and alterations in gut microbial
functions occurs at the same time as or prior to fatty degeneration
and promote NAFLD. In both theories, oxidative stress is
involved as a trigger for inflammation and fibrosis in the liver.
Therefore, vitamin E is administered as an antioxidant to patients
with NAFLD/NASH. In a pilot study, vitamin E was reported to
improve e blood biochemical examinations in pediatric NASH
patients in the United States.(1) Subsequently, the effect of
vitamin E on NASH was confirmed from various institution.(45)

The current guideline by the American Association for the Study
of Liver Disease (AASLD) has recommended the use of vitamin
E in patients with biopsy-proven NASH and without diabetes.(46)

Cerebral infarction. Many patients with cerebral infarction
are left with impaired intelligence or physical function as a
prognostic symptom. Neurological symptoms such as motor
paralysis due to cerebral infarction cannot be expected to

improve in the chronic phase, so treatment in the acute phase is
important. If blood flow is reperfused at an ischemic region in
the brain at an early stage after the onset, recovery of brain func‐
tion is expected, but if ischemia continues for several hours or
more, irreversible neuronal damage occurs. Around the central
core of ischemia that has fallen into irreversible changes, there is
a region called “penumbra” that survives after ischemia. In this
region, cell death is known to occur even if blood flow resumes,
which is called “delayed neuronal cell death”. Various factors are
thought to contribute to this neuronal damage, including the
release of excitatory amino acids, the influx of Ca2+ into nerve
cells, and the production of free radicals. In the ischemic condi‐
tion, the production of free radicals increases due to the enhance‐
ment of the arachidonic acid metabolic system, and the peroxida‐
tion of unsaturated fatty acids in the cell membrane causes
membrane damage, resulting in worsening of cerebral ischemic
injury.(47) The treatment options for the acute phase of cerebral
infarction are 1) reperfusion therapy before irreversible brain
damage occurs, and 2) brain protection therapy to minimize
nerve cell death. Edaravone, which has radical scavenging and
lipid peroxidation inhibitory properties, has been developed and
used clinically as a drug exhibiting this brain protective effect.(48)

Animal studies have also demonstrated that edaravone rapidly
crosses the blood-brain barrier.(49) However, according to the
results of the YAMATO study, a multicenter prospective random‐
ized controlled trial conducted by Aoki et al.(50), edaravone
administered before or simultaneously with tissue plasminogen
activator (tPA) in the acute phase of cerebral infarction did not
significantly improve the early resumption rate or functional
prognosis compared with edaravone administration after tPA.
These results clarified that the effect of edaravone has a limited
on the sequelae of cerebral infarction. On the other hand, the
PROTECT 4.5 study conducted in Japan reported an improved
incidence of sequelae and symptomatic intracranial hemorrhage
when edaravone and tPA were administered within 4.5 h after the
onset of cerebral infarction.(2) It is suggested that edaravone
cannot restore nerve cells that have already been damaged to irre‐
versible levels by free radicals generated by ischemia. In order to
protect neurons from damage caused by cerebral infarction by
using antioxidants, it is considered necessary to start administra‐
tion of antioxidants very early in the onset of ischemia.

Down syndrome. There is no consensus on the effects of
antioxidants on Down syndrome. Chromosome 21 is trisomy in
Down syndrome. The SOD gene is encoded in chromosome 21,
and SOD is expressed 1.5-fold in Down syndrome.(51,52) On the
other hand, the expression of catalase and glutathione peroxidase
is not increased, indicating that the degradation of hydrogen
peroxide produced via SOD is insufficient. The results suggested
that tissue injury caused by oxidative stress is related to the
pathogenesis of Down syndrome. Increased lipid oxidation
product (8-iso-prostagrandin F2α and TBARS) have been
reported in the urine of patients with Down syndrome.(53)

Following these reports, several clinical studies on the adminis‐

Table 1. Diseases involving reactive oxygen species and free radicals

Brain/neurological disorders cerebral infarction,(4) diabetic neuropathy,(7) Alzheimer’s disease/dementia,(8–11) Parkinson’s disease(12,13)

Respiratory diseases pneumonia/infections,(14) smoking,(15) bronchial asthma,(16) chronic obstructive pulmonary disease(17)

Cardiovascular diseases myocardial infarction,(18) arteriosclerosis,(19) ischemia-reperfusion injury,(18) heart failure,(20) cardiomyopathy(21)

Gastrointestinal disorders gastric ulcer,(22) non-alcoholic steatohepatitis,(3) inflammatory bowel disease/ulcerative colitis(23)

Endocrine disorders diabetes,(24) hyperlipidemia(25)

Urologic diseases chronic nephritis, diabetic nephropathy,(26) nephrotic syndrome(27)

Ophthalmic disorders cataract,(28) glaucoma,(29) age-related macular degeneration,(30) diabetic retinopathy,(24)

retinopathy of prematurity,(31) dry eye(32)

Other diseases cancer,(33) atopic dermatitis,(34) sunlight dermatitis,(35) chronic granulomatosis,(36) rheumatoid arthritis,(37)

systemic lupus erythematosus,(37) chronic fatigue syndrome,(38) aging,(39) stains/wrinkles(40)
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tration of antioxidants to patients with Down syndrome were
conducted.(54) Ellis et al.(54) administered antioxidants (selenium,
vitamin E, vitamin C, vitamin A, and folic acid) to infants with
Down syndrome around 4 months of age, but developmental
index after 18 months was not improved. Since chromosomal
trisomy is associated with the pathology of Down syndrome, it is
presumed that this pathology affects cells after fertilization. In
fact, lipid oxidation product (8-isoprostane) in amniotic fluid at
16 weeks gestation were 9 times higher in pregnant women who
were pregnant with Down syndrome fetuses than in pregnant
women who are pregnant with normal fetuses.(55) Analysis using
the fetal brains at 18–20 weeks gestation also showed that lipid
oxidation products were significantly higher in the brains of
Down syndrome fetuses than in normal fetal brains.(56) These
results suggest that excessive ROS are generated from the fetal
period in Down syndrome.
Therefore, we investigated whether administration of α-

tocopherol, the most active form of vitamin E, from the fetal
period of Down syndrome affects brain development in Ts65Dn
mice, a mouse model of Down syndrome.(57) Female Ts65Dn
mice were fed an α-tocopherol-supplemented diet from
premating until the newborns were weaned (Fig. 1). As a result,
α-tocopherol is administered transplacentally to fetal mice
and via breast milk to infant mice. After weaning, infant mice
were orally fed an α-tocopherol-supplemented diet, and behav‐
ioral experiments and brain tissue collection were conducted at
10 weeks of age. In the Morris water maze test, Ts65Dn mice
exhibited marked learning disabilities, but administration of α-
tocopherol from the fetal period was able to significantly
improve learning disabilities. In addition, lipid oxidation
products were increased in the hippocampus of Ts65Dn mice,
and the number of neurons in the hippocampal dentate gyrus was
decreased in the tissue section. α-Tocopherol reduced lipid perox‐
idation products in the hippocampus and recovered the decreased
number of neurons in the hippocampal dentate gyrus. These
results suggest that the administration of α-tocopherol from the
fetal period may have a therapeutic effect on the intellectual
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α-Tocopherol Ts65Dn mouse
fetus

Pregnant Ts65Dn mouse

Breastfeeding infant
Ts65Dn mice
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After delivery

Fig. 1. Fetal treatment with antioxidants in Down syndrome model
mice.

disability of Down syndrome. Since the results of our study were
obtained using model mice, careful clinical researches are
required to determine the effect of α-tocopherol administration
from the fetal period on human Down syndrome.

In recent years, there is a concept of fetal treatment in which
drugs are administered to pregnant women to exert an effect on
the fetus. For example, corticosteroids are administered for
congenital cystic adenomatous malformation and antiarrhythmic
agents are administered for fetal tachyarrhythmia. There is a
possibility of fetal treatment by administration of antioxidants for
Down syndrome. The effects of fetal treatment with epigallocate‐
chine gallate,(58) the vasoactive intestinal peptides NAPVSIPQ/
SALLRSIPA,(59) the selective serotonin re-uptake inhibitor
fluoxetine,(60) and apigenin have been investigated in experiments
using Down syndrome model mice.(61) Among these compounds,
epigallocatechine gallate is a compound having an antioxidant
effect. Careful consideration is required for the clinical applica‐
tion of fetal treatment for Down syndrome using vitamin E and
these antioxidants.
The report that edaravone is effective for cerebral infarction at

an extremely early stage and our results using Down syndrome
model mice suggest that starting antioxidants at a very early
stage before the progression of ROS-related pathologies may
increase the effectiveness of antioxidants. In general, antioxi‐
dants are known to be effective when administered prophylacti‐
cally. Antioxidants have the function of capturing ROS and radi‐
cals, but they are not effective in recovering damaged cells and
restoring normal functions. On the other hand, the reason why it
is effective to start the administration of vitamin E after the onset
of NAFLD is considered to be due to the high regenerative
capacity of hepatocytes. It is speculated that even if damaged
hepatocytes die, the regeneration of hepatocytes is promoted by
capturing ROS generated in the newly regenerated hepatocytes
by antioxidants.

In order to start administration of antioxidants before the onset
of the disease, it is necessary to develop methods to predict the
risk of disease onset. In the case of Down syndrome, prenatal
diagnosis allows diagnosis at the fetal stage. However, in the case
of diseases associated with oxidative stress, such as Alzheimer’s
disease and diabetes, markers that predict disease onset are
needed to determine when to start antioxidant administration.

Disease Treatment by Inducing Production of ROS and
Radical Oxidation

Excessive production of ROS causes various diseases, while
ROS is effectively utilized for immune function and infection
protection. Neutrophils that phagocytose pathogens produce
superoxide (O2

•−) via NADPH oxidase, and hydrogen peroxide
(H2O2) is generated non-enzymatically from O2

•−.(62) Furthermore,
hypochlorous acid (HOCl) is produced from H2O2 and chloride
ion (Cl−) by a reaction catalyzed by myeloperoxidase.(62) HOCl is
not a radical but one of the ROS. Congenital abnormalities of
NADPH oxidase lead to dysregulation of the immune response,
resulting in chronic granulomatous disease with a prolonged
excessive inflammatory response.(36)

Molecular mechanism of ferroptosis and ferroptosis-
inducing compounds. Recently, the idea of treating cancer by
inducing the production of ROS and radicals has begun to
emerge. Various regulatory mechanisms other than apoptosis
have been shown to exist in necrosis-like cell death, which has
been considered to be unregulated cell death.(63) Ferroptosis was
found by Dixon et al.(64) as a novel regulated cell death through
the study of Erastin, which was identified in a therapeutic drug
screening of for Ras mutation-positive cancer. In ferroptosis, a
chain reaction of intracellular iron-mediated phospholipid peroxi‐
dation induces cytotoxicity and cell death. Various intracellular
networks that regulate ferroptosis have been reported, indicating
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that cell death has a complicated and sophisticated mechanism.(65)

The main pathways regulating ferroptosis are as follows: 1) the
reduction of phospholipid peroxidation product by glutathione
peroxidase 4 (GPX4) and GSH, which is GPX4 substrate,(66)

2) the amount of free iron unbound to intracellular proteins,(65)

3) the amount of polyunsaturated fatty acid (PUFA)-containing
phospholipids,(67) and 4) the reduced state of CoQ10, which func‐
tions as a coenzyme in the mitochondrial electron transfer
system.(68) System xC

− exchanges intracellular GSH for extra‐
cellular cystine at a 1:1 molar ratio.(69) After being transferred to
cells, cystine is quickly reduced to cysteine and then used for
GSH synthesis. GSH is an important antioxidant and free radical
scavenger. GPX4 is a peroxide-degrading enzyme and GSH is an
essential cofactor for its activation. Ferroptosis is induced by
inhibition of GPX4 and depletion of glutathione; but antioxidants
such as vitamin E, CoQ10, and selenium act suppressively on
ferroptosis. It has also been reported that GPX4 and vitamin E
cooperate to prevent the degeneration of hepatocytes and
hematopoietic stem cells due to ferroptosis.(70,71) Ferroptosis is
attracting attention as a new therapeutic strategy for malignant
tumors. The cancer cell types for which the effectiveness of
induction of ferroptosis has been verified in cell experiments or
animal experiments are as follows: breast cancer, head and neck
cancer, acute myeloid leukemia, pancreatic cancer, ovarian
cancer, hepatocellular carcinoma, osteosarcoma, prostate adeno‐
carcinoma, B cell lymphoma, renal cell carcinomas, non-small
cell lung cancer, and glioblastoma.(72) In order to induce ferrop‐
tosis, it was investigated that induction of GSH depletion via
inhibition of cystine uptake by Erastin and its derivatives,(64,73,74)

sulfasalazine,(75) glutamate,(76) and sorafenib.(73) Ferroptosis is
also induced through GPX4 inhibition by (1S,3R)-RSL3,(66)

ML162.(77,78) Table 2 lists compounds having a ferroptosis-
inducing effect reported previously.

The effect of suppressing the reproduction of Plasmodium
malaria by inducing vitamin E depletion. Induction of
ferroptosis by suppression of GPX4 and GSH has been investi‐
gated,(66,77,78,81–83) but depletion of vitamin E (tocopherols and
tocotorienols) may also be effective in inducing ferroptosis.
Because vitamin E is a nutrient abundant in foods, it is generally
considered difficult to induce vitamin E depletion, and it is diffi‐

cult to clinically utilize vitamin E depletion to induce ferroptosis.
On the other hand, we had reported that probucol, a thera‐

peutic agent for hyperlipidemia, can suppress circulating blood
vitamin E levels in mice, thereby preventing death of mice after
malaria infection.(91) Probucol can inhibit vitamin E secretion
from the liver to the circulation by inhibiting ATP binding
cassette transporter A1 (ABCA1).(92) It has been reported that
mice genetically depleted of vitamin E acquire resistance to
malaria infection.(93) Plasmodium malaria is known to lack some
of the important antioxidant enzymes such as GPX and cata‐
lase.(94) In addition, Plasmodium malaria should be exposed to
ROS because this parasite parasitizes in iron-rich red blood cells.
Reducing circulating vitamin E in the host mouse may have
increased the oxidative stress generated in the malaria parasite
and inhibited the reproduction of plasmodium malaria. In other
words, the reduction of vitamin E due to probucol induced
ferroptosis to malaria parasites in erythrocytes.
Furthermore, artemisinin, used as a first-line antimalarial

drug, has an endoperoxide in the molecule and is known as a
compound that induces ferroptosis.(85) In our experiments,
the combined administration of probucol and artemisinin
(dehydroartemisinin) showed a remarkable synergistic effect.(91,95)

Probucol is also known as an antioxidant compound,(96) but its
antioxidant activity is weaker than that of vitamin E.(97) It was
speculated that probucol could not suppress the lipid oxidation
caused by decreased vitamin E in plasma. The effect of probucol
was also confirmed in monkeys,(98) especially a reduction of
vitamin E content and an increase in lipid peroxidation products
were shown in erythrocytes. Furthermore, it has been shown that
the reduction of vitamin E and the increase in lipid oxidation in
plasma and erythrocytes due to probucol administration were
restored to the initial levels by withdrawal of probucol.(91)

Probucol can be used to temporarily make the condition more
susceptible to ferroptosis.

Induction of vitamin E depletion by probucol administration
may provide a new tool for anticancer therapeutic strategies
utilizing induction of ferroptosis. Combination therapy of the
ferroptosis-inducing compound shown in Table 2 and the
probucol that can induce vitamin E depletion may synergistically
induce ferroptosis.

Table 2. Ferroptosis inducers

Targets Compound Inducing mechanisms of ferroptosis References

System xc
− Erastin, Erastin2 Inhibits system xc

−, Erastin 2 is a potent Erastin analog (64,73,74)

Sulfasalazine Inhibits system xc
−, prodrug of 5-acetylsalicylic acid (75)

Lanperisone Inhibits the absorption of cyctine and depletes GSH (79)

5-Octyl D-Glutamate Increases intracellular glutamate (76)

Sorafenib Inhibits the absorption of cyctine and depletes GSH (73)

Metformin Inhibits system xc
− expression (80)

GPX4 (1S,3R)-RSL3 Inhibits GPX4 by directly binding to active site (66)

ML-162, ML-210 Inhibits GPX4 stronger than (1S,3R)-RSL3 (77,78)

FIN56 Promotes degradation of GPX4 (81)

GSH Acetaminophen Parent compound of NAPQI, which lowers intracellular glutathione levels (82)

N-acetyl-4-bezoquinone Imine (NAPQ1) Conjugates with GSH during metabolic process (82)

L-Buthionine-(S,R)-Sulfoximine (BSO) Depletes GSH by inhibiting the enzyme of GSH synthesis (83)

Cisplatin Reduces GSH (84)

Others Artemisinin, Artesunate Generates ROS upon cleavage of their endoperoxide bridge (85)

Siramesine, Lapatinib Inhibits the iron transport system (86)

Ferumoxytol Produces ROS (87)

Salinomycin (ironomycin) Induces a rapid degradation of the iron storage protein ferritin (88)

Fenugreek (trigonelline) Inhibits NRF2 (89)

Chlorido[N,N'-Disalicylidene-1,2-
Phenylenediamine]iron(III)

Complex containing Fe3+ (90)
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Disease Treatment by Suppressing Lipid Mediators
Pproduced by Enzymatic Oxidative Reactions

Lipid mediators involving lipid oxidases. Lipids are
known to be oxidized by ROS as well as oxidatively modified by
enzymes, and some of the lipid oxidation products produced by
these lipid oxidases have pharmacological functions as lipid
mediators. Arachidonic acid (AA), an omega-6 (n-6) PUFA, is
oxidatively modified by cyclooxygenase (COX) to produce
prostaglandins (PGs) and thromboxanes (TXs) (Fig. 2A). 5-
Lipoxygenase (5-LOX) produces leukotrienes (LTs) from AA
(Fig. 2A). These processes are called the arachidonic acid

cascade, and PGs, TXs, and LTs act primarily as lipid mediators
that induce inflammatory responses. On the other hand, lipoxins
(LXs) are produced from AA by enzymatic oxidation of 15-LOX
and 5-LOX (Fig. 2A). LOXs metabolizes eicosapentaenoic acid
(EPA), an omega-3 (n-3) PUFA, into E-series resolvins (Rvs)
(Fig. 2B), and docosahexaenoic acid (DHA) into maresins
(MaRs), D-series Rvs, and protectins (PDs) (Fig. 2C). LXs, Rvs,
MaRs, and PDs involves in the resolution of inflammation and
infection are termed specialized pro-resolving mediators.(99) LXs
inhibit allergic responses.(100) Rvs are involved in the elimination
of infection and restoration of injured tissue.(101) MaRs are related
to wound healing and neuropathic pain reduction.(102,103) PDs
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have anti-apoptotic,(104) neuroprotective,(105) and antiviral func‐
tion.(106) 12-LOX produces hepoxilins (Hxs) and trioxilins (TrXs)
from AA (Fig. 2A), and the biological roles of Hxs and TrXs are
involved in the regulation of insulin secretion and lipid
metabolism.(107)

Inhibitors of lipid mediator synthesis. In 1971, Vane
et al.(108) discovered that acetylsalicylic acid and indomethacin
suppress the PGs synthesis and are known to inhibit the enzy‐
matic activity of COX. Furthermore, the development of PGs
synthesis inhibitors with reduced side effects has been promoted.
These drugs are used as non-steroidal anti-inflammatory drugs
(NSAIDs) to treat rheumatoid arthritis and to suppress inflamma‐
tory reactions such as acute pain and fever. Because LTs are
associated with bronchial asthma and allergies, inhibitors of LTs
have been developed. Inhibitors (pranlukast and montelukast)
that antagonize LTs (LTC4, LTD4, and LTE4), which have
cysteine residues in their structures, are currently used as thera‐
peutic agents for bronchial asthma and bronchitis caused by
respiratory syncytial virus.(109) Inhibitors of 5-LOX (such as
zileuton), which is involved in the production of precursors
[5-hydroperoxyeicosatetraenoic acid (5-HpETE)] during LT
biosynthesis, are also under development. Although 5-LOX
inhibitors have been studied, there are no clinically applicable
inhibitors for 12-LOX and 15-LOX, whose physiological func‐
tions are not well understood. 20-Hydroxyeicosatetraenoic acid
(20-HETE) is produced from arachidonic acid by the enzymatic
reaction of cytochrome P450 (CYP450) (Fig. 2A). 20-HETE is
known to induce cancer cell proliferation and neovascularization
through animal experiments, and studies on the anticancer
activity of a CYP450 selective inhibitor (HET0016) have been
reported.(110)

Stress induces 12-LOX activity, and inhibition of 12-LOX
improves behavioral disorders. We reported that 12-HETE
was significantly increased in the plasma of mice by exposure to
the water immersion restraint (WIR) stress, which is used in the
experiments of stress-induced gastric ulcer.(111) In mice, 12/15-
LOX, which has both 12-LOX and 15-LOX activity, is expressed
in leukocytes.(112) Exposure of WIR stress to mice lacking 12/15-
LOX in leukocytes did not increase 12-HETE in plasma. These
results suggest that 12/15-LOX is involved in stress-induced
production of 12-HETE. To analyze the physiological function of
12-HETE in stress, a tail suspension test was performed immedi‐
ately after exposure to WIR stress. Wild-type mice exposed to
WIR stress showed a marked elongation in struggling time,
whereas 12/15-LOX-deficient mice did not. Increased struggling
time is similar to panic behavior in stressful situations. In addi‐
tion, administration of 12-HpETE (a primary metabolite derived
from arachidonic acid via enzymatic oxidation of 12/15-LOX) to
stress-exposed 12/15-LOX-deficient mice extended the strug‐
gling time. Analysis of monoamines in brain tissue showed that
12-HETE is involved in noradrenaline secretion in the hypotha‐
lamus and cerebral cortex. These results suggest that 12-HETE
produced by stress-induced activation of 12/15-LOX releases

noradrenaline in brain tissue, resulting in panic disorder-like
behavior.
Furthermore, 2-week oral pre-administration of tocotrienols,

which has been reported to have an inhibitory effect on 12/15-
LOX, suppressed the increase in 12-HETE production due to
WIR stress and improved stress-induced panic disorder-like
behavior. There was also a report that tocotrienols showed signif‐
icant improvement in composite memory and verbal memory in
Japanese adult subjects (around 55 years of age) when taken
simultaneously with astaxanthin, and this report indicated that
tocotrienols are safe for human administration.(113) These results
shed light on the elucidation of the physiological function of 12-
HETE, whose function has not been elucidated, and suggest that
suppressing 12-LOX enzyme activity may be possible to control
stress-induced behavioral disorders. Further research is needed
on the association of 12-HETE in stress states and stress-related
disorders [post-traumatic stress disorder (PTSD) and panic
disorder].

Disease Treatment Strategies by Inducing the
Production of Lipid Mediators

While the previous chapter mentioned the therapeutic method
using inhibitors of enzymes that promotes the production of lipid
mediator, this chapter discusses the therapeutic application of
anti-inflammatory lipid mediators themselves and promoting the
activity of the enzymes that synthesize the mediators. Since LXs,
Rvs, MaRs, and PDs have anti-inflammatory functions, their
effects on inflammatory bowel disease, respiratory infections,
allergic inflammation, etc. have been verified in animal experi‐
ments, and many studies have been reported as shown in Table 3.
Each of these pro-resolving mediators is known to exert their
effects by binding to one or more receptors (G-protein-coupled
receptors).(114) Because these mediators are strong endogenous
ligands and have shown great potential in preclinical animal
studies, there is interest in developing stable analogs that prevent
metabolic inactivation.(114)

We have found a compound that activate an enzyme involved
in the production of lipid mediators. The soy isoflavone daidzein
was found to induce 5-LOX activation to produce 5-HETE.(142)

Furthermore, 5-HETE which was increased in MDCK cells by
daidzein administration, inhibited influenza virus replication in
the cells.(142) Morita et al.(106) reported that PD1 generated from
DHA by the enzymatic activity of 15-LOX inhibited influenza
virus proliferation, and in our results, similar activity was
observed with 5-HETE produced from arachidonic acid via 5-
LOX. As mentioned previously, several inhibitors against 5-LOX
have been developed so far. The enzymatic activity of 5-LOX
is known to be induced by inflammation and allergy reaction,
however, to the best of our knowledge, no exogenous compounds
that can activate 5-LOX activity have been reported. Because 5-
HETE and PD1 are unstable and easily metabolized compounds,
their use in treatment of influenza infection is considered diffi‐

Table 3. Diseases for which the therapeutic efficacy of pro-resolving mediators is being investigated by animal experiments

Mediators Diseases (reference)

Lipoxins ischemic stroke,(115) Alzheimer’s disease,(116) multiple sclerosis,(117) gram-negative bacterial pneumonia,(118)

pneumococcal pneumonia,(119) allergic rhinitis and asthma,(100) hyperalgesia,(120) periodontitis(121)

Resolvin E1 Alzheimer’s disease,(116) myocardial infarction,(122) depression,(123) asthma,(124) inflammatory bowel disease,(125)

herpes simplex virus-induced ocular inflammation,(126) psoriatic dermatitis,(127) contact hypersensitivity of skin(128)

Resolvin D1 depression,(129) emphysema,(130) E. coli-induced pneumonia,(118) pneumococcal pneumonia,(119) non-alcoholic steatohepatitis,(131)

kidney stones,(132) diabetic wounds,(133) oral squamous cell carcinoma(134)

Maresin Alzheimer’s disease,(135) cerebral ischemia/reperfusion injury,(136) asthma,(137) inflammatory bowel disease,(130)

diabetic nephropathy,(138) skin inflammation by UVB(139)

Protectins epilepsy,(140) influenza infection,(106) kidney stones,(132) wound healing(141)
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cult. On the other hand, if the mechanism of 5-LOX activation by
daidzein is elucidated and compounds that accelerates the
production of lipid mediators via induction of LOX activity are
developed, they may become new therapeutic agents for
influenza. However, activation of 5-LOX also leads to an
increase in LTs, which may result in worsening allergic symp‐
toms. When 5-LOX activators are used to treat disease, combina‐
tion use of LT synthase inhibitors may be required. Further
studies are needed on the method of utilizing the lipid oxidase
inducer.

Conclusion

The essential points of each concept are summarized below.
1)　Utilization of antioxidants for disease treatment; when

antioxidants are administered to treating diseases in which ROS
or free radicals are involved in the disease pathology, the target
organ of the disease must be in a regenerable or repairable state.
In order to start the administration of antioxidants prophylacti‐
cally at the very early stage of disease, markers that predict the
disease need to be developed. Alternatively, if the patient is at
high risk of disease, such as age-related diseases, prophylactic
administration of antioxidants is a good situation.

2)　Treatment strategy using ROS and free radicals; methods
of treating cancer with drugs that induce ferroptosis are being
developed, and the ferroptosis inducers have the ability to inhibit
the antioxidant enzyme GPX4 and to induce GSH depletion.
Combination use of drugs that can reduce α-tocopherol may
enhance the effects of ferroptosis inducers.

3)　Treatment with drugs that inhibit the synthesis of lipid
mediators; in addition to the conventional treatment of inflamma‐
tory diseases with COX inhibitors and asthma treatment with LT
synthetase inhibitors, there is potential for the treatment of cancer
by CYP inhibition and stress-related diseases by 12-LOX inhibi‐
tion.

4)　Disease treatment by inducing the production of lipid
mediators useful in disease control, including pro-resolving
mediators; the development of compounds that induce the activa‐
tion of lipid mediator synthases such as LOXs may lead to new
disease treatment strategies.
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