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Abstract: Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation,
progression, and metastasis greatly depend on the efficacy of mitochondria—primarily, the regulation
of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated
reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial
aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding
the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also
discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a
new trend in the development of anti-TC therapy.
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1. Introduction

Thyroid cancer (TC) is one of the most common types of endocrine malignancy
worldwide with steadily growing incidence and mortality rates during the last decades.
An increase in the number of occurred incidences could be explained by the improved
diagnostic techniques (allow to detect small-size tumours) but also because of the more
often detection of large-size tumours via palpation [1]. TC develops from two cell types
in the thyroid gland: >90% is derived from the follicular cells–epithelial cells, which are
responsible for iodine uptake and thyroid hormone biosynthesis; 3–5% is derived from
parafollicular cells, which are responsible for the biosynthesis and secretion of hormone
calcitonin (known as MTC (medullary thyroid carcinomas)) [2,3]. Furthermore, based
on the cellular morphology and histological architecture, thyroid follicular cells-derived
carcinomas could be divided into four main types: carcinomas that retain differentiated
properties are defined as DTC (differentiated thyroid carcinomas) and ATC (anaplastic
thyroid carcinoma). Subsequently, DTCs are subdivided into well-differentiated subtypes
(PTC (papillary thyroid carcinoma) and FTC (follicular thyroid carcinoma)) and the rarest
and aggressive subtypes—PDTC (poorly differentiated thyroid carcinoma) [4]. The current
view suggests that ATC is a result of mutations accumulation in ongoing WDTC, with
PDTC as an intermediate state. However, some studies support also the idea that ATC
could emerge de novo [5].
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PTC, as the most common type of differentiated thyroid carcinoma (up to 80–85%
cases), could be further classified into several variants: CV (classical variant), FV (follicular
variant), and TCV (tall cell variant). PTC has mostly been associated with mutations in
one of the MAPK (mitogen-activated protein kinase) signalling pathways: ALK (anaplastic
lymphoma kinase), NTRK (neurotrophic receptor tyrosine kinase), and RET (rearranged
during transfection) tyrosine kinase receptor, or RAS (rat sarcoma) and BRAF (rapidly
accelerated fibrosarcoma type-B). The current data suggest that one mutation is sufficient
to promote transformation [6]. FTC is a less common subtype of WDTC with 10–15% cases
of all the thyroid carcinomas, driven by RAS, BRAFV600E mutations, and PAX8/PPARγ
(Paired Box Gene 8/Peroxisome Proliferator-Activated Receptor Gamma) rearrangements.
Both PTC and FTC have a good prognosis with an overall 5-year survival of 90% and
higher, although cases of tumours recurrence, spreading, and metastases are known and
present a bad prognosis [7].

Mostly, WDTCs have a good prognosis and are treated by surgical resection in com-
bination with radiotherapy, chemotherapy, and targeted drugs (although metastasis and
recurrence could occur in 10–30% of PTC cases). However, all types of treatments are often
associated with different negative side effects [8]. Since BRAFV600E is the most prevalent
mutation driving PTC initiation and progression, it could be treated with an FDA-approved
BRAFV600E inhibitor, vemurafenib [9]. Metastatic, radioactive-iodine-refractory WDTC,
and advanced MTC could be treated with TKIs (tyrosine kinase inhibitors) (currently, there
are four that are FDA-approved). However, treatment with TKIs is extremely expensive
and associated with significant side effects [10].

PDTC and ATC are very rare and aggressive types of thyroid carcinomas with low
survival rates (1–7%) and no available treatment options [11]. Mutations of both MAPK and
PI3K (Phosphoinositide 3-Kinase Alpha) signalling pathways could be found in these types
of tumours, along with mutations in other genes, which are associated with aggressiveness
(such as TP53 (Tumour Protein P53) and EIF1AX (Eukaryotic Translation Initiation Factor 1A
Pseudogene 1) genes), mutations, and/or epigenetic modifications in the TERT (Telomerase
Reverse Transcriptase) gene promoter. In addition, alteration in the expression of genes
responsible for iodine transport and metabolism (such as NIS (Sodium/Iodide Symporter)
or SLC5A5 (Solute Carrier Family 5 Member 5)) are frequent, so the tumours could not
accumulate iodine and respond to radioactive iodine therapy, which resulted in negative
prognosis [12].

Tumorigenesis is a complex process involving the activation of oncogenes, inactivation
of tumour suppressors, and reprogramming of cell death. Mitochondria play a crucial
role in tumorigenesis via energy production, ROS (reactive oxygen species) generation,
regulation of apoptosis, and Ca2+ metabolism. In addition, mitochondria quality control
through mitophagy is associated with tumours’ growth and proliferation [13].

In this review, we focus on the recent progress in understanding the role of mitochon-
dria in the molecular mechanisms of thyroid cancer development and progression. In
addition, promising anti-TC medications (re-purposed existing drugs, natural compounds,
and TC-specific) with defined molecular effects on mitochondria will be discussed.

2. The Role of Mitochondria in Tumorigenesis

Cancer cells have an energy metabolism different from that of normal cells, which
could be explained by the high energy demand of progressing tumour cells. Intensive
investigation of the molecular carcinogenesis of thyroid cancer during the last decades
suggests that oncogenes and other tumour-related factors are targeted mainly on the
regulation of cellular energy metabolism [14]. In addition to the production of 90% of
the cellular energy, mitochondria also participate in Ca2+ metabolism, the regulation
of cellular proliferation and apoptosis, lipid metabolism and urea cycle, synthesis of
porphyrin and steroid hormone, and amino acids interconversion [15,16]. Further in this
section, we discuss functional and structural aspects of mitochondrial dysfunction in
thyroid tumorigenesis and tumour progression. The role of mutations in nuclear-encoded
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genes in thyroid cancer progression has been extensively studied [17,18]. In addition,
the role of mitochondrial DNA mutations and alterations has been explored mostly on
the rare and aggressive type of thyroid cancer—Hürthle cell carcinoma (or oxyphilic cell
carcinoma) [19,20]. Thus, those topics will be excluded from the current review.

2.1. Mitochondrial DNA Alterations in TC

In contrast to the nuclear gene mutations, the role of mitochondrial DNA alteration
in the development of thyroid cancer has not been well studied. Mitochondrial DNA
encodes only 37 genes: 22 tRNAs (transfer RNA), 13 components of the electron transport
chain, and 2 ribosomal RNAs. Some MtDNA mutations could influence mitochondria
metabolism and biogenesis, and, potentially, lead to oncocytic phenotype [21]. It is known
that thyroid tumours contain a very high number of mitochondria, and mutations in
the mitochondrial complex I of the respiratory chain are most common in parathyroid
cancer. Several recent publications support this idea. A total of 33 pathogenic mutations
were identified among Chinese PTC patients and were associated with older age and
advanced tumour stage. In particular, PTC occurrence was associated with eight SNP
(single-nucleotide polymorphisms) sites: Mt16164(A > G), Mt16266(C > T), Mt5460 (G > A),
Mt6680 (T > C), Mt9123 (G > A), Mt14587 (A > G), Mt16362 (T > C), and Mt709(G > A) [22].
Similarly, 25 mtDNA mutations were found in Chinese TC patients, and 60% of these
mtDNA mutations were in genes encoding respiratory complex subunits [23]. A recent
study on Austrian TCV patients suggests a strong statistical association between BRAFV600E

mutation and both pathogenic mtDNA mutations and loss of complex I integrity [24].
In addition to mtDNA mutations, tumour cells’ mtDNA-CN (mtDNA copy number)

was associated with somatic mutations and clinical features in Chinese parathyroid carci-
noma and adenomas patients [25]. Similarly, leukocyte mtDNA-CN was associated with an
increased level of 8-OhdG (8-Oxo-2′-deoxyguanosine), which is a biomarker for oxidative
DNA damage, and PTC and FTC types of thyroid cancer in the Chinese population. Thus,
leukocyte mtDNA-CN could correlate with oxidative DNA damage and be used as an
independent risk factor for TC [26]. These results were confirmed in another study, where
the low content of circulating cell-free mtDNA was associated with PTC among Polish
patients [27].

Other research suggests that some mtDNA haplogroups have a protective role for
thyroid cancer. The investigation of mtDNA haplogroups in a population from south-
eastern Europe suggests that haplogroup K and two mtDNA variants (Mt16224 (T > C) and
Mt16261 (C > T)) were associated with a protective role for thyroid cancer [28].

Moreover, the content of mitochondria-associated proteins could be used as a biomarker
for TC. For example, TCV has increased the expression of prohibitin, which is a protein
required for optimal mitochondrial morphology and function [24]. Different TCs were
characterised by an abnormally high abundance and chemical diversity of cardiolipins,
which is a crucial component of the inner mitochondrial membrane, where it is involved
in mitochondrial energy metabolism and required for the optimal function of numerous
enzymes [29].

In total, a strong association was found between mtDNA mutations and TC. These
mutations altogether with an examination of mtDNA content (cell-free circulation or
in leukocyte), mtDNA haplogroup, and mitochondrial proteins (such as prohibitin and
diversity of cardiolipins) could be used as an additional biomarker to prove TC and decrease
the number of unnecessary thyroid manipulations.

2.2. Mitochondrial Quality Control and Mitophagy in TC

The biogenesis of new mitochondria is balanced with mitophagy, a specialised form of
autophagy, which is regulating mitochondrial mass, quality, and proper functioning via the
selective degradation of malfunctional and/or damaged mitochondria. There are two main
types of mitophagy: receptor-mediated (orchestrated by BNIP3 (BCL2 Interacting Protein 3)
and NIX (NIP-3-Like Protein X), FUNDC1 (FUN14 Domain Containing 1), BCL2L13 (BCL2



Int. J. Mol. Sci. 2022, 23, 460 4 of 16

Like 13) and others), and Ubiquitin-mediated (PINK1 (PTEN-Induced Kinase 1) and Parkin
(Parkin E3 Ubiquitin Protein Ligase)) reviewed in [30]. It was shown that PTC cells have a
higher expression of genes associated with energy and mitochondrial-related pathways,
autophagy, and mitochondrial fusion. On the contrary, the expression of mitophagy-related
genes was decreased [31]. Mitochondrial dynamics involve coordinated cycles of fission and
fusion, which are maintaining their shape, distribution, and size. The molecular processes of
mitochondrial dynamics are governed by MFN2 (mitofusin 2), OPA1 (optic atrophy 1), FIS1
(mitochondrial fission 1), and DRP1 (dynamin-related protein 1), which are overexpressed
in tumour cells and crucial for the development of the malignant phenotype. Accordingly,
a blockade of Drp1 leads to decreased oncocytic cell migration and invasion [32].

Recently, another non-canonical p53-inducible mitochondrial quality control system
was discovered. Mieap (mitochondria-eating protein, SPATA18 gene), a p53-inducible
protein, induces the accumulation of lysosomal proteins within damaged mitochondria to
dispose of oxidised mitochondrial proteins to repair damaged mitochondria. Furthermore,
Mieap induces vacuole-like structures to degrade too damaged mitochondria. Interestingly,
the Mieap mechanism is not mediated by canonical autophagy proteins (reviewed in [33]).
TC cells have a defective expression of MIEAP, which causes an increase in the number of
abnormal mitochondria, ROS levels, mtDNA/nuclear DNA ratios, and acidification of the
cytoplasm. Apparently, in TC, impaired mitochondrial function promotes a compensatory
increase in de novo mitochondria biogenesis. On the other side, abnormal mitochondria
could not be efficiently removed by both defective mitophagy systems (canonical and
MIEAP-mediated), thus also contributing to the tumour growth and progression [34].

2.3. Mitochondrial Biogenesis and Metabolism in TC

Mitochondrial biogenesis is a complex and multistep cellular process regulated by NO
(nitric oxide) and Ca2+ via PGC-1-related co-activators (PPARG Coactivator 1 Alpha) in
human FTC [35]. Carcinogenesis in TC is associated with the abnormal proliferation of
mitochondria, which could further affect different tissues.

Recent research suggests that in PTC, elevated mitochondrial mass is combined with
low complex I and high complex II–V levels [36]. The low level of complex I could be
explained by the higher number of pathologic mutations in mtDNA, while high levels of
complexes II–V may represent some kind of compensatory effect to attenuate the complex I
deficiency. In addition, it is possible that tumour cells with reduced efficacy or the complete
absence of complex I might have some survival advantage in comparison to tumour cells
with normal complex I [36].

Mutations and SNP variants in the nuclear-encoded genes also could affect mito-
chondrial metabolism and act as a TC risk factor. Recently, among FNMTC (familial
non-medullary thyroid cancer) patients, the mutations in MYO1F (Myosin IF) gene (c.400
G > A, p.Gly134Ser) was identified. Myosins are motor proteins, use ATP energy to gen-
erate the force on actin filaments, and are known to participate in different intracellular
movements; thus, they are involved in the development of many diseases [37]. This muta-
tion was associated with the fragmented mitochondrial network, increased mitochondrial
mass, higher ROS production, and low ATP/ADP ratio [38].

Mitochondrial FAO (fatty acid oxidation) plays an important role in energy supply
during tumours’ development and progression (Figure 1) [39]. Consequently, the higher
expression of FAO-associated enzymes was identified in several types of tumours. CPT1
(carnitine palmitoyltransferase) is responsible for FA import into the mitochondria, and
the high expression of CPT1 isoform Cpt1c is induced to promote cancer cell survival in
conditions of metabolic stress [40]. PTC tissues are associated with a high level of Cpt1c
expression, and Cpt1c up-regulation promotes cancer cell growth and metastasis. Cpt1
expression is regulated by AMPK (5′AMP-Activated Protein Kinase) activity and could
be induced by metabolic stresses (such as low glucose and hypoxia). Since Cpt1c can
protect cancer cells from stress-mediated death and contribute to PTC development and
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progression, the application of Cpt1c inhibitors (alone and in combination with AMPK
agonists) could be used as a new promising way in PTC treatment [41].
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Figure 1. Mitochondrial FAO, ETC. Mutations in mtDNA lead to dysregulation in mitochondrial
FAO, ETC, resulting in decreased ATP synthesis and increased ROS production. Effective energy
generation (metabolised FA, supplied via FAO and TAC to ETC to produce ATP) is required for
tumours’ development and progression. Regulation of the key FAO- (CPT1 and ACC1) and ETC-
related genes (NOX4 and COX4) have been suggested as a promising strategy to decrease the efficacy
of mitochondrial respiration of cancer cells. FAS—fatty acid synthesis; TG—triglyceride; PDH—
pyruvate dehydrogenase; TCA—tricarboxylic acid cycle; I–V—components of mitochondrial ETC
(respiratory) chain; Q—ubiquinone, coenzyme Q; C—cytochrome c.

Recent research has demonstrated that BRAFV600E mutation is involved in lipid
metabolism regulation via association with ACC2 (Figure 1) [42]. ACC (Acetyl-CoA Car-
boxylase) is the rate-limiting enzyme, catalysing the carboxylation of acetyl-CoA, which
produces malonyl-CoA—the first reaction in de novo FAS (fatty acid synthesis). In addi-
tion, malonyl-CoA is an allosteric inhibitor of CPT1; therefore, it regulates FAO [43]. PTC
cells carrying the BRAFV600E mutation have down-regulated ACC2 expression, while the
application of BRAFV600E inhibitor vemurafenib increased ACC2 mRNA levels, de novo
lipid synthesis rates, and decreased FAO in PTC-derived cells. Unfortunately, resistance to
BRAFV600E inhibitor vemurafenib is widely reported in patients [44]; therefore, ACC2 res-
cue may be used as a promising molecular strategy to overcome resistance to vemurafenib
in PTC [42].

The growth and progression of tumour cells required O2, which could be supplied
only by blood vessels. Limited O2 availability causes hypoxic conditions, which induce
a higher expression of HIFs (hypoxia-inducible transcription factor). Mitochondrial ROS
is a crucial factor in the stabilisation of HIF family members, which is associated with a
metabolic shift from oxidative metabolism to glycolysis. NOXs (NADPH Oxidase) family
members are functioning as the catalytic subunit of the NADPH oxidase complex and
catalyse the reduction of molecular oxygen to various ROS. NOX4 is expressed at a high
level in human TC cells and is regulated by TSH (thyroid-stimulating hormone) [45]. The
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heterodimerisation of NOX4 with the p22phox can increase ROS production [46]. A recent
report suggests that NOX4 and p22phox in PTC are necessary for mitochondrial ROS
production during hypoxia. NOX4 also affect other mitochondrial functions, such as
oxygen consumption and membrane potential, thus acting as a glycolytic regulator of the
PTC metabolism and proliferation [47].

COX (cytochrome c oxidase) is the terminal complex of the mitochondrial ETC (elec-
tron transport chain); it catalyses the transfer of electrons from cytochrome c to molecular
oxygen. COX4 is the largest nuclear-encoded subunit, which is known to inhibit the enzyme
activity at high ATP concentrations [48]. Recent research has demonstrated that metastatic
MTC cells have an increased expression of COX4, which is correlated with tumour size and
lymph node metastases. Interestingly, COX4 silencing in MTC-derived cells was associated
with an inhibited MAPK pathway, decreased oxygen consumption, and ATP production,
while having no effects on WDTC cells. Similarly, potassium cyanide treatment inhibited
mitochondrial respiration and induced apoptosis in MTC-derived cells, but it had a mini-
mal effect on WDTC cells. Since metastatic MTC cells are more sensitive to COX4 silencing,
it could suggest COX4-targeted therapy as a promising tool against MTC [49].

To sum up, TC cells have a high demand for energy, which is achieved with a deep
reprogramming of mitochondrial metabolic pathways, primarily ETC and FAO. The key
enzymes in these pathways (COX4, NOX4 and CPT1, ACC2, respectively) (Figure 1) could
be used as a promising target to regulate mitochondrial functions and slow down the
proliferation of TC cells.

2.4. Mitochondria-Dependent Apoptosis in TC

Apoptosis initiation could be intrinsic (mitochondria-mediated) or extrinsic, which
is activated by extracellular ligands binding to cell-surface death receptors. Both path-
ways required the involvement and activation of specialised proteases–caspases, which
degrade proteins and kill the cell (reviewed in [50]). Additionally, a caspase-independent
apoptosis mechanism was described. In this mechanism, mitochondria-localised AIF
(apoptosis-inducing factor) protein released from damaged mitochondria moved to the
nucleus and triggered chromosomes’ condensation and DNA fragmentation, thus initiating
cell death [51]. The hippo signalling pathway, which is involved in the regulation of cell
proliferation and apoptosis, could modulate TC cells’ viability and mitochondrial functions
(Figure 2) [52]. Experiments on components of the Hippo pathway (combined overex-
pression of Mst1 (Macrophage Stimulating 1) and knock-down of Yap (Yes-Associated
Protein 1)) resulted in the suppression of cancer cell migration and proliferation, activation
of caspase-9-related apoptosis, respiratory function, ATP production, and mitochondrial
membrane potential. In addition, mitochondrial fission was improved in the JNK–MIEF1
(c-Jun N-terminal kinases/Mitochondrial Elongation Factor 1)-dependent pathway [53].

Mst2 (Macrophage Stimulating 2), another Hippo pathway component, is a serine
protease that is responsible for post-transcriptional phosphorylation, the regulation of
mitochondrial ROS production, and the differentiation of the epididymal initial segment
(via the MAPK pathway) [54,55]. Mst2 overexpression in TC cells leads to JNK pathway-
mediated ER stress, which is associated with the subsequent rise of caspase-12 activity,
increased mitochondrial oxidative stress, higher apoptotic rate, and reduced cell viability.
These data suggest that Mst2 is a novel tumour-suppressor protein, which is acting via the
JNK pathway and causes ER stress and mitochondrial damage [56].

Tafazzin is a co-activator of the Hippo pathways, which is responsible for the tran-
scription of multiple tumorigenesis genes (such as cyclin D1 and CCN2 (connective tissue
growth factor)); thus, they are involved in cancer development and progression [57]. In
addition, Tafazzin is involved in the regulation of many mitochondrial functions: respi-
ratory activity (via sustaining the levels of cardiolipin), mitochondrial oxidative stress,
and fission (reviewed in [58]). Up-regulated Tafazzin acts together with YAP to promote
the EMT (epithelial–mesenchymal transition), cell cycle transition, and immunoresistance,
thus promoting tumour growth, survival, and metastasis [52]. INF2 (inverted formin 2),
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a recently identified mediator of mitochondrial fission, is activated by the AMPK and/or
JNK signalling pathway. Furthermore, INF2 promotes F-actin assembly into a constrictions
ring to divide mitochondria into several smaller fragments [59]. Recent research shows that
Tafazzin deletion leads to apoptosis-mediated death in TC cells [60]. Investigation of the
exact molecular mechanisms suggests that Tafazzin deletion resulted in a dysregulation
of mitochondrial energy metabolism, rise in ROS production, and initiated mitochondrial
apoptosis. In addition, Tafazzin activates INF2 via the JNK signalling pathway (Figure 2).
Respectively, the blockade of JNK prevented Tafazzin-mediated INF2 activation and in-
creased the survival rate of cancer cells [60].
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Recently, the role of GRB7 (Growth Factor Receptor-Bound Protein 7) in the regulation
of cell cycle, proliferation, and mitochondrial apoptosis of TC cells via the MAPK pathway
was shown [61]. GRB7 is an adaptor protein involved in protein–protein and protein–lipid
interactions with different signalling molecules and receptor tyrosine kinases, which allow
GRB7 to participate in various signalling pathways. In particular, high GRB7 expression
was shown for many types of human cancers, where it correlates with tumours’ survival
and aggressiveness [62]. It was found that GRB7 is up-regulated in TC, while its silencing
leads to cell cycle arrest and inhibited proliferation in TC cells. Mechanically, GRB7
silencing impairs the activity and expression of mitochondrial respiratory complex, with
a subsequent decrease in ATP output, glucose uptake, and lactose production in TC. In
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addition, a low level of GRB7 leads to increased levels of caspase 3 and other pro-apoptotic
proteins, thus inducing mitochondrial apoptosis in the MAPK pathway-mediated way [61].

The primary cilium, a non-motile, microtubule-based sensory organelle, is responsible
for the reception of external mechanical and chemical stimuli from the environment and
their transduction into the cell. The primary cilia of thyroid follicular cells play a crucial
role in maintaining cell polarity and are directly linked with its malignant transforma-
tion [63]. Recent experiments on mouse models with thyrocyte-specific loss of primary
cilia (Tg-Cre;Ift88flox/flox) resulted in up-regulated apoptotic cell death in thyroid follicular
cells. Similarly, the silencing of genes, responsible for ciliogenesis (KIF3A (Kinesin Family
Member 3A) and IFT88 (Intraflagellar Transport 88)) in human TC cells lines promote the
oligomerization and overexpression of VDAC1 (Voltage-Dependent Anion Channel 1),
which is a mitochondrial outer membrane component involved in cytochrome c release,
thus stimulating mitochondria-dependent apoptosis [64].

These findings suggest that apoptosis regulation and initiation via the Hippo/Tafazzin–
JNK–INF2 axis could be considered as a promising target in the development of new
therapies against TC (Figure 2). Additionally, GRB7 and ciliogenesis-related genes could be
used as prognostic markers and therapeutic targets to stimulate apoptosis in TC.

3. Thyroid Cancer Treatment
3.1. Mitochondrial Apoptosis Targeted Drugs

In recent decades, the number of diagnosed TC cases has rapidly increased globally.
PTC, the most common subtype of TC, accounts for 80–90% of all TC cases and has the
best survival prognosis [65]. However, while commonly used surgical resection, with or
without radiotherapy and TSH suppression shows a good prognosis, those approaches
have many postoperative complications and side effects of low TSH. For ATC, the most
aggressive form of TC, the prognosis is very poor, and treatments options are very limited.
Therefore, new candidates for TC treatment with high and specific antitumor activities are
urgently required [66].

Currently, TKI (tyrosine kinase inhibitors) are the most used type of drug used to
fight TC, several TKIs are FDA-approved to treat different TC (advanced MTC, metastatic,
radioactive-iodine-refractory WDTC. However, this type of medication has significant side
effects and high price [67], often losing its efficacy due to the resistance of TC, as it was
shown for vandetanib and cabozantinib [68]. The other approach implies repurposing
existing FDA-approved drugs that were not originally designed and not tested as an anti-
cancer treatment. For example, an in vitro evaluation of an HIV protease inhibitor nelfinavir
has demonstrated effectiveness against all histological types of TC. On the molecular level,
nelfinavir downregulates the MAPK signalling pathway, inhibits proliferation, and induces
DNA damage in WDTC and ATC cells, inducing apoptosis in MTC cells [69]. Similarly,
metformin, a widely used anti-diabetes drug, has been demonstrated to inhibit RPS6KB1
(Ribosomal protein S6 kinase beta-1) protein and oxidative phosphorylation, up-regulate
AMPK, and down-regulate GPD2 (mitochondrial glycerol-3- phosphate dehydrogenase),
thus inhibiting TC growth in vitro and in vivo [70].

Mitotane, a steroidogenesis inhibitor known to inhibit key enzymes of the mitochon-
drial respiratory chain, induces ER stress and apoptosis in ACC (adrenocortical carcinoma)
cells [71]. Similarly, mitotane was effective against TC cells, where mitotane treatment
leads to DNA damage, caspase-3 cleavage, and overexpression of pro-apoptotic and ER-
stress marker genes. In addition, the mitochondrial membrane lost its potential, and the
production of ATP was decreased [72].

Niclosamide, a derivative of salicylamide, is an oral anthelminthic drug with nearly
50 years of history. Recently, it was recognised that niclosamide has wide and diverse
activities that could be used to induce apoptosis, interfere with cancer-driving signalling
cascades, and inhibit the metastasis of different tumour cell types [73]. In PTC and ATC cell
lines, niclosamide was shown to inhibit cell proliferation and induce apoptosis. Mechani-
cally, Bax and caspase-3 were activated, while mitochondrial membrane potential and Bcl-2
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were inhibited, suggesting apoptosis induction via the mitochondria-mediated pathway. In
addition, matrix metalloproteinases 2 and 9 were down-regulated, and tissue inhibitor of
metalloproteinase 2 was up-regulated, thus providing an inhibitory effect on cancer cells
metastasis [74].

Mortalin (Heat Shock 70kDa Protein 9) is a heat shock protein detected in different
subcellular compartments and involved in cell proliferation, stress response, and mainte-
nance of the mitochondria. In addition, mortalin is often overexpressed in different types
of cancers, where it facilitates tumour cell proliferation and survival [75]. PTC, FTC, and
ATC are also associated with up-regulated mortalin, and mortalin depletion can lead to
growth arrest and cell death in cell cultures of those types of TC [76]. The application of
Mito-CP, the disrupter of mitochondrial metabolism [77], resulted in a robust induction
of apoptosis in PTC and ATC cell lines. Interestingly, Mito-CP-mediated apoptosis was
partially rescued by mortalin overexpression [76].

Taken together, these results demonstrated that existing approved drugs (such as
mitotane, Mito-CP, and niclosamide) could be repurposed and considered as a novel agent
for the treatment of TC. Due to the resistance of TC to the TKI, further investigation
of the currently used medications and the development of new drugs with TC-specific
mitochondria-targeted activities is required.

Natural Substances with Pro-Apoptotic Properties

Capsaicin, an active component of chilli peppers, is the agonist of TRPV1 (transient
receptor potential vanilloid type 1), whose anti-proliferative and pro-apoptotic properties
were studied on several kinds of cancer cells [78], including also TRPV1-mediated anti-
metastatic activity on PTC cell culture [79]. Mechanically, capsaicin activates TRPV1
and causes Ca2+ entrance into the cell, resulting in the disturbance of intracellular Ca2+

homeostasis [80]. Recent research has shown that capsaicin is effective also against the
ATC type of TC, where capsaicin treatment caused severe Ca2+ overload in mitochondria,
increase in ROS production, mitochondrial membrane depolarisation, and opening of
mitochondrial permeability transition pores. Subsequently, cytochrome c was released into
the cytosol, and caspase activation led to apoptosis [81].

Berberine, a natural isoquinoline alkaloid, is found in many plants and exhibited
multiple medical-relevant activities, including anti-carcinogenic [82,83]. PTC and ATC
types of TC were more sensitive to berberine cytotoxic properties than normal thyroid cells
with a more prominent inhibition of proliferation, induction of mitochondrial apoptosis,
and cell cycle arrest. In TC cell lines, the levels of Bax/Bcl-2, P21, and cleaved caspase 3
were increased, while Cyclin E1, Vimentin, and CDK2 (Cyclin-Dependent Kinase 2) were
decreased. In general, the expression of PI2K–AKT and MAPK pathways was decreased
and disturbed, suggesting that berberine has a high potential for the treatment of TC [84].

Myricetin is a common flavonoid found in different berries and herbs. Previous studies
have reported that myricetin has a wide range of biological properties: anti-oxidant, anti-
viral, cytoprotective, anti-microbial, and anti-cancer [85]. In the case of PTC cells, myricetin
was shown to induce mitochondrial dysfunction-mediated apoptosis. Myricetin treatment
resulted in an up-regulation of caspase cascades proteins (caspases 3, 8, and 9), Bax/Bcl-2
ratio, alteration of the mitochondrial membrane potential, and AIF release [86]. A similar
mechanism was described also for the ATC type of TC, where myricetin treatments caused
DNA condensation, induction of mitochondria-mediated apoptosis, DNA condensation,
and cell cycle arrest in the sub-G1 phase, with an overall reduction of cell proliferation by
70% [87].

In total, we could conclude that many existing medications and natural compounds
could be used in TC treatment. The induction of mitochondria-mediated apoptosis via the
modulation of mitochondrial Ca2+ levels is relatively well-studied and used in anti-cancer
therapy [88]. Various natural compounds are known to have a wide range of biological
activities and provide beneficial effects on many levels. With the proper investigation and
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understanding of the underlying molecular mechanisms, these properties could be useful
in the development of anti-TC therapeutic agents in the future.

3.2. Mitochondrial Biogenesis and Metabolism Targeted Drugs

Growing evidence supports the significance of mitochondrial metabolism reprogram-
ming for cancer cell proliferation and survival because they required more energy and
building blocks for uncontrolled proliferation. However, such modifications and enhance-
ments often lead to an increased production of toxins (primarily ROS) harmful to cancer
cells. Such vulnerability provides a promising target to suppress cancer cells growth with
no or minimal effect on normal healthy cells [89].

Tigecycline is an FDA-approved antibiotic binding to 30S ribosome subunit and is also
known to suppress mitochondrial protein translation in mammalian cells, including also
several types of cancer cells [90,91]. Tigecycline inhibited proliferation and induced apop-
tosis in PTC, ATC, and FTC cell lines and mice models without causing significant toxicity.
In combination with the standard chemotherapeutic drug paclitaxel, tigecycline achieved
better efficacy than paclitaxel alone in both in vitro and in vivo experiments. Mechanically,
in TC cells, tigecycline inhibited mitochondrial respiration and ATP production more effec-
tively than in normal thyroid cells, supporting the idea that TC cells require a higher level
of mitochondrial biogenesis and ATP in comparison to normal thyroid cells [92].

Atovaquone is an FDA-approved antimalarial drug with a broad spectrum of anti-
parasitic properties. It acts by inhibiting the cytochrome bc1 complex and mitochondrial
respiration, leading to a blockage of energy supply. Recently, atovaquone was reported as a
promising anti-cancer agent that is effective against cancer cells and cancer stem cells. The
application of atovaquone increase radiosensitivity by alleviating tumour hypoxia, thus
suggesting its high potential in combination with other anti-cancer drugs [93,94]. In ATC
and FTC cell cultures, atovaquone decreases growth, migration, and survival by inhibiting
mitochondrial complex III activity and subsequently reducing ATP production. In addition,
atovaquone suppresses the phosphorylation of STAT3 (Signal Transducer and Activator Of
Transcription 3) in TC cells, an important regulator of cell growth and apoptosis, which is a
consequence of mitochondrial respiration inhibition [95]. Similarly, another anti-malarial
drug Artesunate was shown to act against chemo-sensitive and -resistant ATC in vitro and
in vivo. Artesunate inhibits growth and induces apoptosis, suppressing mitochondrial
functions without affecting glycolysis in ATC cells [96].

Due to the high metabolic burden of actively growing TC, the key mitochondrial
systems are overloaded. Several FDA-approved drugs have approved efficiency against
TC via the inhibition and/or suppression of mitochondrial respiration, ATP production,
and levels of released ROS. The application of these medications in combination with other
anti-cancer drugs and therapeutical approaches is a new promising anti-TC strategy.

4. Conclusions

Mitochondrial abnormalities are playing a crucial role in the development and pro-
gression of all types of thyroid cancer. TC cell-specific mitochondria produce high levels of
ROS under the in vivo hypoxic tumour microenvironment, which further causes oxidative
damage to biomolecules, inducing genomic instability and metabolic reprogramming (fatty
acid synthesis, oxidative phosphorylation, glycolysis, TCA cycle, and carbon metabolism).
In addition, the mitochondrial ROS contribute to tumour growth, epithelial–mesenchymal
transition, cancer invasion, and metastasis. Thus, further comprehensive and insight-
ful investigations on TC-specific mitochondrial signalling pathways (such as regulating
mitochondria-specific apoptosis and dynamics) would help to develop an effective method
and/or strategy for the prevention, diagnosis, and therapy of different types of TCs.
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Abbreviation

ACC acetyl-CoA carboxylase
ACC adrenocortical carcinoma
AIF apoptosis-inducing factor
ALK anaplastic lymphoma kinase
AMPK 5′AMP-Activated Protein Kinase
ATC anaplastic thyroid carcinoma
BCL2L13 BCL2 Like 13
BNIP3 BCL2 Interacting Protein 3
BRAF rapidly accelerated fibrosarcoma type-B
CCN2 connective tissue growth factor
CDK2 Cyclin-Dependent Kinase 2
COX cytochrome c oxidase
CPT1 carnitine palmitoyltransferase
CV classical variant
DRP1 dynamin-related protein 1
EIF1AX Eukaryotic Translation Initiation Factor 1A Pseudogene 1
FAO fatty acid oxidation
FAS fatty acid synthesis
FIS1 mitochondrial fission 1
FNMTC familial non-medullary thyroid cancer
FTC follicular thyroid carcinoma
FUNDC1 FUN14 Domain Containing 1
FV follicular variant
GPD2 mitochondrial glycerol-3- phosphate dehydrogenase
GRB7 Growth Factor Receptor Bound Protein 7
HIFs hypoxia-inducible transcription factor
IFT88 Intraflagellar Transport 88
JNK-MIEF1 c-Jun N-terminal kinases/Mitochondrial Elongation Factor 1
KIF3A Kinesin Family Member 3A
MAPK mitogen-activated protein kinase
MFN2 mitofusin 2
Mst1 Macrophage Stimulating 1
Mst2 Macrophage stimulating 2
MTC medullary thyroid carcinomas
mtDNA-CN mtDNA copy number
MYO1F Myosin IF
NIS Sodium/Iodide Symporter, or SLC5A5, Solute Carrier Family 5 Member 5
NIX NIP-3-Like Protein X
NO nitric oxide
NOXs NADPH Oxidase
NTRK neurotrophic receptor tyrosine kinase
OPA1 optic atrophy 1
Parkin Parkin E3 Ubiquitin Protein Ligase
PAX8 Paired Box Gene 8
PDTC poorly differentiated thyroid carcinoma
PGC-1α PPARG Coactivator 1 Alpha
PI3K Phosphoinositide 3-Kinase Alpha
PINK1 PTEN Induced Kinase 1
PPARγ Peroxisome Proliferator-Activated Receptor Gamma
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PTC papillary thyroid carcinoma
RAS rat sarcoma
RET rearranged during transfection
RPS6KB1 Ribosomal protein S6 kinase beta-1
STAT3 Signal Transducer And Activator Of Transcription 3
TC thyroid cancer
TCV tall cell variant
TERT Telomerase Reverse Transcriptase
TKI tyrosine kinase inhibitors
TP53 Tumour Protein P53
TRPV1 transient receptor potential vanilloid type 1
TSH thyroid-stimulating hormone
VDAC1 Voltage-Dependent Anion Channel 1
WDTC well-differentiated thyroid carcinomas
Yap Yes-Associated Protein 1
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