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ABSTRACT

Current machine learning techniques provide the opportunity to develop 
noninvasive and automated glioma grading tools, by utilizing quantitative parameters 
derived from multi-modal magnetic resonance imaging (MRI) data. However, the 
efficacies of different machine learning methods in glioma grading have not been 
investigated.A comprehensive comparison of varied machine learning methods in 
differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well 
as WHO grade II, III and IV gliomas based on multi-parametric MRI images was 
proposed in the current study. The parametric histogram and image texture attributes 
of 120 glioma patients were extracted from the perfusion, diffusion and permeability 
parametric maps of preoperative MRI. Then, 25 commonly used machine learning 
classifiers combined with 8 independent attribute selection methods were applied 
and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the 
influences of parameter selection on the classifying performances were investigated. 
We found that support vector machine (SVM) exhibited superior performance to 
other classifiers. By combining all tumor attributes with synthetic minority over-
sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for 
LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive 
Feature Elimination (RFE) attribute selection strategy further improved the classifying 
accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced 
by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising 
tool in developing automated preoperative glioma grading system, especially when 
being combined with RFE strategy. Model parameters should be considered in glioma 
grading model optimization.

INTRODUCTION

Gliomas are the most common brain tumors all over 
the world and can be classified into different grades, i.e. 
low-grade gliomas (LGGs) including grade I and grade 

II as well as high-grade gliomas (HGGs) including grade 
III and grade IV, according to World Health Organization 
(WHO) criteria. Preoperative glioma grading is crucial as 
the therapeutic strategies are quite disparate for different 
grades, which may further influence the patient’s prognosis 
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[1–3]. Pathological diagnosis after biopsy or surgery 
is predominately used as the gold standard. However, 
the inevitable sampling error and invasive procedure 
may bring more risks than benefits to glioma patients. 
Moreover, this histological examination is usually time-
consuming [4, 5], challenging timely glioma grading.

Recently, researchers devoted to exploring a non-
invasive neuroimaging tool for glioma grading by using 
diverse quantitative parameters derived from advanced 
magnetic resonance imaging (MRI) techniques, such as 
dynamic contrast enhanced MRI (DCE-MRI) [2, 3, 6], 
arterial spin labeling (ASL) [7, 8] and diffusion weighted 
imaging (DWI) [9–11]. Despite various correlations 
between parameter features (or attributes) and glioma 
grades reported in the literature, considerable difficulties 
emerge when selecting the imaging biomarkers with the 
best accuracy and reproducibility. Moreover, even for one 
single modal MRI, it is still not decided which features 
contribute most to diagnosis, those from commonly used 
histogram parameters or image texture attributes [2, 3, 9, 
10, 12–14]? Thus, feature selection is an unsolved critical 
issue and should be carefully performed when making the 
preoperative glioma grading.

Facing tons of information offered with multimodal 
MRI, selecting the most effective features and coming to 
the satisfying diagnostic accuracy with mankind is a big 
challenge. With the development of artificial intelligence 
technology, machine learning techniques are gradually 
applied in glioma imaging studies [6, 15, 16]. Compared 
with previous receiver operating characteristics (ROC) 
diagnostic analysis, machine learning demonstrates several 
advantages [7, 9]. First, a subset of vital features that 
contribute most or are most relevant to glioma grading can 
be picked up with suitable feature selection methods [4, 
17]. Furthermore, the machine can automatically learn the 
discrimination patterns from the existing data and establish 
the corresponding model to predict the individual glioma 
grade [16, 18]. Additionally, the classifying model can 
be further optimized to improve its diagnostic accuracy 
by selecting an appropriated classifier, optimizing model 
parameters or specific validation procedure [4, 19, 20]. 
Thus, it is expected to develop a high-efficient machine 
learning based glioma grading system utilizing informative 
multi-parametric MRI features.

Even so, varied machine learning classifiers, feature 
selection strategies and model parameters unavoidably 
introduced difficulties to determine the glioma grading 
model, making the optimization work critically important. 
Thus, in the current study we first constructed a 
comprehensive machine learning based glioma grading 
system using the combined parametric histogram features 
and image texture attributes of multi-parametric tumor 
images, and then tried to achieve the overall optimal 
grading model by investigating the influence of different 
feature selection strategies and classification methods on 
the performances of glioma grading. We aimed to provide 

an effective preoperative glioma grading tool with the best 
use of the multi-parametric MRI images.

RESULTS

Demographical and clinical results

The statistical results of the demographical and 
clinical characteristics of LGG and HGG patients involved 
in our experiment were summarized in Table 1. It was 
suggested that there was no significant group difference 
between LGG patients and HGG patients on gender and 
tumor location except for age (P<0.001). The pathological 
types for each grade gliomas were summarized in 
Supplementary Table 1

Multi-parametric MRI images

The example conventional, multi-parametric images 
and pathological haematoxylin and eosin (H&E) stain 
results of four individual patients diagnosed of WHO 
grade I, grade II, grade III and grade IV were provided 
in Figure 1. For each individual, conventional MRI 
images (T1ce/FLAIR), ASL parametric map (CBF), DWI 
parametric maps (fast ADC, fast f, slow ADC, slow f and 
Chi-square) and part of DCE parametric maps (9 out of 
24 parameters, i.e. AUCAIF, “Extended_Ktrans, Extended_
Kep, Extended_Ve, Extended_Vp, Perfusion_AUCEP” 
Perfusion_BAT, Perfusion_Peak, and Perfusion_Washin) 
were figured for the selected slice with glioma. The H&E 
stain results demonstrated that the HGG gliomas (grade 
III and grade IV) had relatively high cell density (see 
Supplementary Figure 1).

After multi-parametric MRI histogram and texture 
attribute extraction and collection, the imbalanced tumor 
attribute samples were preliminarily oversampled with 
SMOTE [17] and a newly normalized attribute combination 
composed of 100 LGG and 100 HGG samples was 
generated (as shown in Table 2). Similarly, to discriminate 
the grade II, III and IV gliomas, each class was oversampled 
to new datasets with 68 samples in each grade.

Preliminary comparison among 25 WEKA 
classifiers

Linear kernel was initially used for LibSVM 
classifier, regarding that linear SVM is qualified for big 
attribute number condition and default parameters were 
used for all the classifiers. The classifying performance 
without attribute selection was preliminarily summarized 
in Table 2.

It was revealed that the highest classifying accuracy 
was 0.808 using LogitBoost (AUC=0.846) and AdaBoostM1 
(AUC=0.793) classifiers for raw LGG and HGG data. The 
other classifiers showed much lower accuracy, implying the 
lower potential of clinical application. However, these results 
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were not reliable due to severe imbalance of original data 
(with low AUC values). Based on the new dataset generated 
with SMOTE, almost every classifier exhibited significant 
improvement of classifying performance, except for OneR 
classifier. The highest classifying accuracy reached 0.945 by 
using LibSVM or SMO classifier, both of which were SVM 
classifiers.

Similar results were revealed in classifying grade II, 
III and IV gliomas. The highest accuracy was only 0.786 
(SMO classifier with AUC = 0.874 and LibSVM classifier 
with AUC = 0.838) for original samples, yet it increased 
to 0.956 along with increased AUC (0.957 for LibSVM 
classifier and 0.975 for SMO classifier) using SMOTE 
samples. The highest performance was acquired by using 
IBk classifier with accuracy = 0.961 and AUC =0.971. 
Thus, the following investigations and comparisons were 
performed on SMOTE datasets.

Classification comparison with attribute 
selection

The tumor attributes were independently re-ranked 
according to the rank outcome using seven ranking 

metrics. The top 50~600 attributes with a stepwise of 
50-attribute in each ranking sequence were selected 
to test classifying accuracies for each classifier. The 
classification performances using different numbers of 
top-ranked attributes were investigated for each classifier 
and the highest accuracy was recorded as its optimal value 
under the corresponding ranking strategy. On the other 
hand, by applying the ‘CfsSubsetEval’ method, the best 
first attributes were sorted out. Based on this attribute 
subset, the classification results of each classifier were 
obtained. After that, all the classifiers were compared 
across attribute selection methods. The optimal classifying 
accuracy of these classifiers under each attribute selection 
strategy in discriminating LGG and HGG gliomas as well 
as grade II, III and IV gliomas were visualized in Figures 
2 and 3, respectively.

It turned out that in LGG and HGG glioma 
classification, both LibSVM and SMO classifiers got 
top accuracy for each attribute selection situation 
(Figure 2). The best result was achieved when 
combined with ‘SVMAttributeEval’ ranking method, 
i.e. SVM Recursive Feature Elimination (SVM-RFE) 
method. Besides, the SGD, IBk, AdaBoostM1, LMT 

Table 1: Baseline demographics and clinical characteristics of patients

Variable LGG
(grade I/II)

HGG
(grade III/IV)

P value

Patients N=28 N=92 -

Gendera

  Male 46.4% (13/28) 57.6% (53/92) 0.298

  Female 53.6% (15/28) 42.3% (39/92)

Ageb

  Mean±SD 35.9±16.2 49.3±15.0 <0.001*

Locationc

  Supratentorial 10.7%(3/28) 1.1%(1/92) 0.060

  Subtentorial 89.3%(25/28) 98.9%(91/92)

Histologic feature

  Diffuse astrocytoma 39.3%(11/28) - -

  Oligodendroglioma 7.1%(2/28) - -

  Oligoastrocytoma 39.3%(11/28) - -

  Anaplastic astrocytoma - 6.5%(6/92) -

  Anaplastic oligodendroglioma - 5.4%(5/92) -

  Anaplastic oligoastrocytoma - 19.6%(18/92) -

  Glioblastoma - 67.4%(62/92) NA

  Miscellaneous 14.3%(4/28) 1.1%(1/92) NA

Note: Difference between LGG and HGG patients was evaluated with the Pearson Chi-Squarea, unpaired Student t testb and 
continuity correctionc. * The difference between the LGG and HGG groups was significant.
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and RandomForest classifiers also exhibited superior 
performance to others with high accuracy over 0.9. As 
shown in Figure 3, grade II, III and IV glioma classification 
got similar results. In spite of different top classifiers 
under each attribute selection strategy (including IBk, 
RandomForest, SMO, LibSVM, etc.), the overall best 
result was achieved when using ‘SVMAttributeEval’ 
evaluating method combined with SMO/LibSVM/SGD/
IBk classifiers. All of the above results suggested the high 
performance of jointly using SVM classifier and SVM-
RFE attribute selection method in glioma grading.

The top ranked attributes in ‘SVMAttributeEval’ 
sequence were further surveyed here. We found that 
the highest accuracy have already reached up to 1 for 
SMOTE LGG and HGG samples when using top 50 
attributes combined with SMO and LibSVM classifiers. 
Twenty-three out of them came from texture analysis 
and other 27 attributes were from histogram analysis of 
multi-parameter data. It was observed that CBF (derived 
from ASL), D* and D (derived from multi b-values DWI), 
Kep, Ktrans, Ve and perfusion parameters including AUCFP, 

peak-value, and wash-out time (derived from DCE-MRI) 
held the majority of top important attributes (37 out of 
50). Extended TOFTs model was superior to other three 
models. As for grading II, III and IV gliomas, the top 
50 attributes, i.e. 25 histogram attributes and 25 texture 
attributes, were a bit different from those for classifying 
LGG from HGG gliomas. They mainly covered the 
following parameters: D* from DWI, Kep, Ve, Vp, perfusion 
AUCFP and peak-value from DCE-MRI. Similarly, 
Extended TOFTs model outperformed other models. The 
details of the top 50 SVM-RFE attributes selected in LGG 
and HGG classification as well as grade II, III and IV 
classification were listed in Supplementary Table 2.

Model parameter selection

Three high-efficient classifying models, i.e. SMO, 
LibSVM and IBk classifiers were discussed in this section 
based on the original attribute collection. First, linear kernel 
and RBF kernel were independently analyzed for LibSVM 
classifier. For linear LibSVM, different c values were 

Figure 1: Conventional/multi-parametric MRI maps and H&E stain results of 4 individuals diagnosed as grade I (A), II (B), 
III (C), and IV (D) gliomas, respectively. For each individual, 1 parametric map derived from 3D ASL (i.e. CBF), 5 parametric maps 
derived from multi b-value DWI (i.e. fast ADC, fast f, slow ADC, slow f and Chi-square maps), part of parametric maps derived from DCE 
(9 out of 24, i.e. AUCAIF, Extended_Krans, Extended_Kep, Extended_Ve, Extended_Vp, Perfusion_AUCFP Perfusion_BAT, Perfusion_Peak, 
and Perfusion_Washin) and H&E stain (i.e. haematoxylin and eosin) result were shown.
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applied and the classification performances were compared 
(Figure 4A). It was revealed that c=2-3, but not the default 
value (c=1) is the best parameter for our purpose. For RBF 
LibSVM, different combinations of varied c and gamma 
were investigated in Table 3. When using gamma=2-6 and 
c=21 for LGG and HGG data or gamma=2-7 and c=23 for 
grade II, III and IV glioma data, the highest accuracy and 
AUC values were achieved (default: gamma=0 and c=1).

Then, the other two key parameters, c and kernel, 
were considered in SMO model and the classification 
results along with their variations were summarized in 
Table 4. Compared to default models using PolyKernel and 
c=1, the classifying accuracy had a slight increase of 0.015 
for both LGG and HGG classification as well as grade II, 
III and IV glioma discrimination by using RBFKernel and 
c=22/23. The AUC values showed similar results.

Table 2: The classification accuracy/AUC of 25 WEKA classifiers using combined multi-parametric histogram and 
texture attributes in LGG and HGG as well as grade II, III and IV gliomas classification

25 WEKA classifiers
(accuracy/AUC)

LGG vs. HGG Grade II, III and IV

Original
(28 vs. 92)

Smote
(100 vs. 100)

Original
(25 vs. 29 vs. 

63)

Smote
(68 vs. 68 vs. 

68)

Bayes BayesNet 0.717/0.743 0.750/0.826 0.667/0.836 0.770/0.880

NaiveBayes 0.742/0.717 0.845/0.874 0.641/0.778 0.750/0.885

Lazy IBk## 0.750/0.638 0.905/0.905 0.718/0.795 0.961##/0.971

LWL 0.733/0.769 0.800/0.833 0.735/0.858 0.642/0.892

Functions LibSVM (linear)** # 0.792/0.690 0.945**/0.945 0.786#/0.838 0.956/0.957

Logistic 0.708/0.698 0.885/0.934 0.556/0.716 0.828/0.895

SimpleLogistic 0.792/0.841 0.930/0.957 0.735/0.888 0.922/0.976

SGD 0.792/0.715 0.930/0.930 0.701/0.816 0.917/0.977

SMO**# 0.758/0.668 0.945**/0.945 0.786#/0.874 0.956/0.975

VotedPerceptron 0.758/0.697 0.800/0.861 0.590/0.758 0.657/0.873

Meta AdaBoostM1* 0.808*/0.793 0.875/0.956 0.675/0.925 0.809/0.894

Bagging 0.783/0.818 0.855/0.933 0.726/0.912 0.858/0.966

ClassificationViaRegression 0.708/0.800 0.830/0.900 0.658/0.879 0.939/0.843

LogitBoost* 0.808*/0.846 0.885/0.945 0.675/0.891 0.877/0.974

Rules Decision Table 0.642/0.597 0.795/0.896 0.761/0.912 0.745/0.871

Jrip 0.767/0.612 0.850/0.808 0.726/0.838 0.814/0.879

OneR 0.792/0.616 0.645/0.645 0.718/0.809 0.672/0.754

PART 0.633/0.567 0.830/0.804 0.692/0.821 0.775/0.818

Trees DecisionStump 0.767/0.629 0.815/0.630 0.726/0.771 0.304/0.608

HoeffdingTree 0.742/0.218 0.850/0.875 0.650/0.777 0.750/0.885

J48 0.675/0.397 0.855/0.801 0.684/0.817 0.833/0.872

LMT 0.800/0.849 0.930/0.958 0.744/0.896 0.922/0.976

RandomForest 0.792/0.845 0.915/0.976 0.752/0.892 0.922/0.984

RandomTree 0.658/0.540 0.815/0.813 0.607/0.698 0.755/0.818

REPTree 0.742/0.460 0.820/0.850 0.650/0.837 0.779/0.901

*, ** represent the classifier with the highest classifying accuracy on original and SMOTE LGG and HGG glioma data, 
respectively. #, ## represent the classifier with the highest classifying accuracy on original and SMOTE grade II-III-IV 
glioma data, respectively.
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For IBk classifier, the important parameter K in 
KNN was investigated. The best K was 1 for our LGG 
and HGG (accuracy/AUC = 0.905/0.905) data as well as 
grade II, III and IV (accuracy/AUC = 0.961/0.971) glioma 
data (Figure 4B).

All the above results demonstrated the importance 
of optimizing model parameters for machine learning 
based glioma grading studies.

DISCUSSION

In summary, we proposed a comprehensive 
automated glioma grading scheme integrating advanced 
multi-parametric MRI data with machine learning 
methods. Various commonly used classifiers and attribute 

selection approaches were conducted in order to optimize 
the most effective machine learning tool for preoperative 
glioma grading. SVM is proved to be superior to the 
other classifiers, and achieved the best performance 
when combined with RFE attribute selection strategy. In 
addition, the selection of some key model parameters, 
such as kernel type, gamma, c in SVM models, K in IBk 
model, etc., may influence the classifier’s performance. 
The current study suggested the importance of classifier 
type, attribute selection methods and model parameters 
in auto-grading of gliomas using machine learning 
techniques.

The analysis flow of generating multi-parametric 
MRI maps, extracting and selecting effective tumor 
attributes as well as optimizing machine learning models 

Figure 2: The classification accuracy of 25 WEKA classifiers in LGG and HGG classification, using each attribute 
selection strategy. (A)–(G) Using ‘CorrelationAttributeEval’, ‘GainRatioAttributeEval’, ‘InfoGainAttributeEval’, ‘OneRAttributeEval’, 
‘ReliefFAttributeEval’, ‘SymmetricalUncertAttributeEval’ and ‘SVMAttributeEval’ with ‘Ranker’ search method, respectively. (H) Using 
‘CfsSubsetEval’ with ‘BestFirst’ search method. Under each attribute selection strategy, the highest accuracy among all the 25 WEK. In 
each figure, blue bars mean the highest classification accuracy across classifiers using the corresponding attribute selection method. The 
overall best result was achieved when using ‘SVMAttributeEval’ attribute slection method with LibSVM/SGD/SMO classifiers as shown 
in (G).
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offered the opportunity to establish the comprehensive 
non-invasive preoperative glioma grading system. To our 
knowledge, it is the first report to inspect the performance 
of commonly used machine learning methods for glioma 
grading. Inevitably, there are some limitations for the 
present study. The classification accuracy of the proposed 
machine learning glioma grading system seemed very 
high (over 90%) in the current study, probably override 
experienced neuro-radiologist. This could be real owing 
to the great contributions of multi-parametric attributes 
and effective machine learning techniques, or could be 
associated with the following factors to some extent. 
First, our patient data were biased across glioma grades, 
i.e. more HGG (especially grade IV) samples than LGG 
ones. The oversampling procedure with SMOTE was 
applied and the performance of grading models were 

largely improved after that. However, the SMOTE 
procedure only generated new datasets from original 
data and the minority samples were oversampled even 
more than three times of the original data, which might 
not fully represent the features of the minority class (i.e. 
LGG). Thus, this operation may result in a model with 
relatively high classification accuracy on current data but 
bad performance on new dataset. Second, the over-fitting 
risk of machine learning could not be avoided by cross-
validation procedure. More independent testing dataset 
should be collected to further test the performances of 
models. Moreover, the applied LOOCV method in this 
study repeatedly used the original samples during each 
training and testing procedure. It was not recommended 
for larger dataset than the current one. More generalized 
validation approaches and strategies should be performed 

Figure 3: The classification accuracy of 25 WEKA classifiers in grade II, III and IV gliomas classification, using 
each attribute selection strategy. (A)–(G) Using ‘CorrelationAttributeEval’, ‘GainRatioAttributeEval’, ‘InfoGainAttributeEval’, 
‘OneRAttributeEval’, ‘ReliefFAttributeEval’, ‘SymmetricalUncertAttributeEval’ and ‘SVMAttributeEval’ with ‘Ranker’ search method, 
respectively. (H) Using ‘CfsSubsetEval’ with ‘BestFirst’ search method. In each figure, red bars mean the highest classification accuracy 
across classifiers using the corresponding attribute selection method. The overall best result was achieved when using ‘SVMAttributeEval’ 
attribute slection method with LibSVM/SGD/SMO/IBk classifiers as shown in (G).
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on large datasets in the future. In addition, the classifiers 
inspected in this study did not embrace all the classification 
techniques; specially, the deep learning was not included, 
which is a powerful tool for representing big and complex 
data [21].

Despite that multi-parametric MRI images were 
investigated in previous glioma grading studies, most 
of them have been focused on analyzing the relationship 
between the parameter values and glioma grades and 
evaluating their discriminating ability using conventional 
ROC method. However, it is difficult to determine which 
parameter and parameter feature is the best for glioma 
grading and it is impractical for accurately individualized 
diagnosis. According to previous studies, various MRI 
parameters can reflect the glioma grading information in 
distinct aspects, e.g. DCE-derived permeability parameters 

such as Ktrans [2, 3, 14], Ve [3], Vp [2], and etc., DWI-derived 
diffusion parameters including ADC [9, 11], D [9], D* [9], 
and ASL-derived perfusion CBF [7] parameter were all 
considered to be helpful in distinguishing the differences 
between different grade gliomas, however, some of them 
were found to be not significantly correlated with glioma 
grades in some studies [2, 22, 23]. Thus, it is much possible 
that not one single parameter but the comprehensive 
parametric combination affords the most effective 
discriminative ability. Thus, instead of using one specific 
parameter, we collected multi-modal MRI parametric 
images and automatically selected the most effective and 
informative parameter combinations for glioma grading 
through proper attribute selection techniques.

Recently, machine learning approaches have been 
applied in diagnostic studies of various cancers such as 

Table 3: The classification performance of LibSVM (RBF) classifier using different c and gamma

Accuracy/
AUC

c=2-5 c=2-4 c=2-3 c=2-2 c=2-1 c=20 c=21 c=22 c=23 c=24 c=25

LGG 
vs. 
HGG

gamma=2-8 0/0 0.685/
0.685

0.730/
0.730

0.745/
0.745

0.815/0.815 0.880/0.880 0.930/0.930 0.940/0.940 0.945/0.945 0.950/0.950 0.950/0.950

gamma=2-7 0.280/
0.280

0.725/
0.725

0.745/
0.745

0.765/
0.765

0.850/0.850 0.930/0.930 0.950/0.950 0.950/0.950 0.950/0.950 0.950/0.950 0.950/0.950

gamma=2-6 0.270/
0.270

0.720/
0.720

0.750/
0.750

0.810/
0.810

0.900/0.900 0.940/0.940 0.955/0.955 0.955/0.955 0.955/0.955 0.955/0.955 0.955/0.955

gamma=2-5 0/0 0.595/
0.595

0.755/
0.755

0.805/
0.805

0.885/0.885 0.945/0.945 0.950/0.950 0.950/0.950 0.950/0.950 0.950/0.950 0.950/0.950

gamma=2-4 0/0 0/0 0.525/
0.525

0.800/
0.800

0.830/0.830 0.895/0.895 0.900/0.900 0.900/0.900 0.900/0.900 0.900/0.900 0.900/0.900

gamma=2-3 0/0 0/0 0/0 0/0 0.690/0.690 0.815/0.815 0.835/0.835 0.835/0.835 0.835/0.835 0.835/0.835 0.835/0.835

gamma=2-2 0/0 0/0 0/0 0/0 0/0 0.690/0.690 0.710/0.710 0.710/0.710 0.710/0.710 0.710/0.710 0.710/0.710

gamma=2-1 0/0 0/0 0/0 0/0 0/0 0.120/0.120 0.155/0.155 0.155/0.155 0.155/0.155 0.155/0.155 0.155/0.155

Grade 
II, III, 
and 
IV

gamma=2-8 0/0.250 0.235/
0.426

0.265/
0.449

0.534/
0.651

0.770/0.827 0.843/0.882 0.922/0.941 0.946/0.960 0.971/0.978 0.975/0.982 0.971/0.978

gamma=2-7 0.005/
0.254

0.265/
0.449

0.309/
0.482

0.765/
0.824

0.838/0.879 0.912/0.934 0.946/0.960 0.971/0.978 0.981/0.985 0.981/0.985 0.981/0.985

gamma=2-6 0/0.250 0.265/
0.449

0.588/
0.691

0.784/
0.838

0.853/0.890 0.941/0.956 0.961/0.971 0.966/0.974 0.966/0.974 0.966/0.974 0.966/0.974

gamma=2-5 0/0.250 0.196/
0.397

0.598/
0.699

0.789/
0.842

0.892/0.919 0.951/0.963 0.961/0.971 0.961/0.971 0.961/0.971 0.961/0.971 0.961/0.971

gamma=2-4 0/0.250 0/
0.250

0.078/
0.309

0.750/
0.813

0.838/0.879 0.838/0.879 0.907/0.930 0.907/0.930 0.907/0.930 0.907/0.930 0.907/0.930

gamma=2-3 0/0.250 0/
0.250

0/
0.250

0/
0.250

0.466/0.599 0.824/0.868 0.828/0.871 0.828/0.871 0.828/0.871 0.828/0.871 0.828/0.871

gamma=2-2 0/0.250 0/
0.250

0/
0.250

0/
0.250

0/0.250 0.603/0.702 0.652/0.739 0.652/0.739 0.652/0.739 0.652/0.739 0.652/0.739

gamma=2-1 0/
0.250

0/
0.250

0/
0.250

0/
0.250

0/0.250 0.054/0.290 0.074/0.305 0.074/0.305 0.074/0.305 0.074/0.305 0.074/0.305
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prostate cancer [17], breast cancer [24], lung cancer 
[25], colorectal cancer [26], gliomas [15], etc. The good 
performance and the potential clinical application value 
of machine learning were concerned, typically in the 
radiomics studies utilizing the diverse imaging data [25, 
26]. Our results also indicated that the machine learning 
approach using multi-parametric MRI attributes can help 
to improve the predictive performance of glioma grading. 
Thus, it is expected to explore a set of automated cancer 
diagnosis systems in the future. Whereas, there are still 
some blocks to reach this goal. Though various machine 
learning algorithms were proposed, each of them had 
inherit advantages and disadvantages. Thus, it’s difficult 
to select the optimal approach for the complex cancer 
data. On the other hand, the current machine learning 
based method depended mostly on the technique itself. 
The variation of model parameters or samples may lead to 

an obvious variation of model performance. A big amount 
of samples will be needed for improving the stability and 
generalization ability of the trained models before clinical 
application. What’s more, the influence of the complex and 
diverse data collected from different imaging devices with 
inconsistent parameters in different institutions should 
also be carefully considered. Meanwhile, the attribute 
extraction and attribute selection procedures could also be 
very complicated. Then, it will be hard to say which kinds 
of attributes from what kinds of data were the optimal 
for diagnosis expect for a large number of experiments. 
All in all, it will be a promising but challenging way to 
the extensive application of machine learning in cancer 
diagnosis.

This study provided evidence for establishing a 
high-efficient and accurate automated preoperative glioma 
grading system. By data mining on the big patient data 

Figure 4: The influence of key model parameters for linear SVM and IBk classifiers. (A) The classification performance of 
LibSVM (linear) classifier using different c. When using c=2-3, the best classification performance was achieved for both LGG and HGG 
(Accuracy/AUC = 0.945/0.945) as well as grade II, III, and IV (Accuracy/AUC = 0.961/0.971) gliomas classification. (B) The classification 
accuracy and AUC values of IBk classifiers using different K in KNN for LGG and HGG as well as grade II, III, IV gliomas classification, 
respectively.
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Table 4: The performance of WEKA SMO classifier using different c and kernel

Accuracy/
AUC

c=2-5 c=2-4 c=2-3 c=2-2 c=2-1 c=20 c=21 c=22 c=23 c=24 c=25

LGG 
vs. 
HGG

Normalized
Poly-Kernel

0.030/
0.030

0.705/0.705 0.735/
0.735

0.760/0.760 0.810/
0.810

0.865/0.865 0.920/0.920 0.940/0.940 0.950/0.950 0.950/0.950 0.950/0.950

PolyKernel 0.920/
0.920

0.940/0.940 0.945/
0.945

0.945/0.945 0.945/
0.945

0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945

RBFKernel 0.390/
0.390

0.725/0.725 0.745/
0.745

0.795/0.795 0.865/
0.865

0.930/0.930 0.955/0.955 0.960/0.960 0.960/0.960 0.960/0.960 0.960/0.960

PUK 0.295/
0.295

0.310/0.310 0.300/
0.300

0.265/0.265 0.235/
0.235

0.765/0.765 0.745/0.745 0.745/0.745 0.745/0.745 0.745/0.745 0.745/0.745

Grade 
II, III, 
and 
IV

Normalized
Poly-Kernel

0.103/
0.141

0.456/0.632 0.436/
0.626

0.613/0.732 0.775/
0.852

0.843/0.900 0.922/0.957 0.941/0.965 0.966/0.981 0.966/0.981 0.966/0.981

PolyKernel 0.946/
0.966

0.956/0.977 0.961/
0.979

0.956/0.975 0.956/
0.975

0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975

RBFKernel 0.186/
0.310

0.456/0.629 0.598/
0.732

0.770/0.846 0.848/
0.909

0.917/0.955 0.956/0.977 0.966/0.983 0.971/0.986 0.971/0.986 0.971/0.986

PUK 0.162/
0.350

0.172/0.326 0.152/
0.321

0.152/0.309 0.176/
0.319

0.745/0.822 0.735/0.819 0.735/0.819 0.735/0.819 0.735/0.819 0.735/0.819

Figure 5: The flowchart of the current study. Based on multi-modal MRI data including DCE-MRI, multi-b DWI and 3D-ASL 
(A) and tumor volume of interest (VOI) manually drawn on resampled T1ce or FLAIR image (B), a group of permeability, diffusion and 
perfusion parametric images were derived and the corresponding parametric maps of the whole tumor region were extracted (C). Utilizing 
histogram analysis and texture analysis, a big collection of tumor parameter attributes was acquired for the following machine learning 
process (D). 25 commonly used classifiers and 8 attribute selection methods were implemented and compared using WEKA software with 
additional discussion on model parameters to construct the optimal glioma grading model (E).
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using optimal classification model with the improved 
automatic tumor segmentation procedure, a valuable 
computer-aided preoperative glioma grading system 
is very promising and feasible for clinic use in the near 
future. This system will largely assist the clinicians 
to make appropriate treatment plans and improve the 
prognosis of glioma patients.

As discussed above, we will try to improve in the 
following aspects in our future research. First, a large 
number of balanced sample data will be introduced in 
model construction to avoid the imbalanced sample 
problem. Second, two-fold cross validation strategy and 
further validation on samples collected from independent 
institutions will be performed to improve the model’s 
generalization ability. Finally, deep learning technique 
will be integrated into our study, in order to automatically 
exploit the potentially advanced discriminative tumor 
features and classify the glioma grades with higher 
performance. It is expected to play a superexcellent role 
in glioma grading.

MATERIALS AND METHODS

The study data of the current project derived from a 
diagnostic trial that has been registered to ClinicalTrials.
gov (NCT02622620, https://www.clinicaltrials.gov/) with 
the trial protocol published [27]. The overall analysis 
scheme was described in Figure 5 on how to integrate 
the histogram and textual attributes (i.e. features) 
(Supplementary Table 3) of multi-parametric MRI images 
into pattern classification methods. Briefly, a group of 
permeability, diffusion and perfusion related parametric 
images were first generated from DCE-MRI, DWI and 
ASL scanning. Then, using parametric histogram and 
image texture analyses, a number of tumor attributes were 
extracted from each parametric map within the tumor 
region. The essence of this study is to conduct a set of 
machine learning classifications and feature selection 
methods using Waikato Environment for Knowledge 
Analysis (WEKA) software [4] in combination with 
model parameter evaluation, to optimize the most effective 
classifying model for glioma grading. It is noted that two 
kinds of classifying tasks were investigated in this study, 
i.e. LGG and HGG classification as well as WHO grade II, 
III and IV classification.

Patient selection and image acquisition

A total of 120 histologically confirmed glioma 
patients were enrolled, involving 28 LGGs (3 grade I, 
25 grade II) and 92 HGGs (29 grade III, 63 grade IV), 
approved by the Ethics Committee of Tangdu Hospital 
of the Fourth Military Medical University (TDLL-
20151013). Written informed consent was obtained from 
all individuals. Each participant underwent preoperative 
conventional and advanced MRI scans on a 3.0T MRI 

scanner (Discovery 750, GE Healthcare, Milwaukee, WI, 
USA) with an 8-channel head coil.

Conventional MRI scans included pre-contrast 
axial T1-weighted spin-echo imaging (T1WI), contrast 
enhanced T1WI (T1ce) and pre-contrast fluid attenuated 
inversion recovery (FLAIR) imaging. Imaging parameters 
for T1WI/T1ce were TR/TE = 1750 ms/24 ms, slice 
thickness = 5 mm, slice spacing = 1.5 mm, acquisition 
matrix = 256×256, field of view (FOV) = 240×240 mm2, 
number of excitation (NEX) = 1; for FLAIR: TR/TE = 
8000 ms/165 ms, slice thickness = 5 mm, slice spacing = 
1.5 mm, acquisition matrix = 256×256, FOV = 240×240 
mm2, NEX = 1.

Advanced MRI scans included three dimensional 
ASL (3D-ASL), multi b-value DWI and DCE-MRI in 
transverse planes. 3D-ASL and multi b-value DWI were 
conducted prior to the contrast agent injection, and then 
DCE-MRI sequences were performed and followed with 
T1ce. The parameters for 3D-ASL were: TR/TE = 4632 
ms/10.5 ms, slice thickness = 4 mm, slice spacing = 0 mm, 
image matrix = 512×512, FOV = 240×240 mm2, NEX = 3, 
Post label Delay = 1525. Multi b-value DWI is a diffusion 
weighted echo-planar sequence applied with a single shot 
spin-echo using 13 different b-values (0~3500 s/ mm2) 
[10]. The corresponding imaging parameters were: TR/
TE = 3000 ms/Minimum, slice thickness = 5 mm, slice 
spacing = 1.5 mm, acquisition matrix = 128×128, FOV = 
240×240 mm2, NEX = 3. The total scan lasted 5 min and 
45 s. DCE-MRI was performed with a dynamic gradient-
echo T1, with the following parameters: TR/TE = 2.9 
ms/1.3 ms, flip angle = 12°, FOV = 240×240 mm2, slice 
thickness = 2.5 mm, slice spacing = 0 mm, acquisition 
matrix = 128x128. Fifty phases with a temporal resolution 
of 4 s were conducted resulting in a total acquisition time 
of 3 min and 20 s. Gadodiamide contrast agent (CA, 0.5 
mmol, 0.2 ml/kg, Omniscan, GE Healthcare, Co. Cork, 
Ireland) was administered at the rate of 2 ml/s at the end 
of the fifth phase, followed with a bolus injection of 15 
ml saline.

Parametric image generation and tumor 
segmentation

A set of permeability, diffusion and perfusion 
parameters could be calculated from advanced 3D-ASL, 
multi-b values DWI and DCE-MRI data. Given that lots of 
parameters were reported to provide valuable information 
in glioma grading [3, 7, 9], as many parameter maps as 
possible were generated and considered in this study (see 
Supplementary Table 3).

NordicICE software (Version 4.0; 
NordicNeuroLab, Bergen, Norway) was used here to 
derive multi-parametric maps from DCE and DWI 
images. First, DCE-MRI data were processed to acquire 
a serial of pharmacokinetic parameter maps [28] by using 
four computational models, i.e. TOFTs model, Extended 
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TOFTs model, PATLAK model and Incremental model 
integrated in the DCE module of NordicICE. Quantitative 
parameters reflecting the exchange procedure of the 
physiological CA between the blood plasma (BP) and the 
extracellular extravascular space (EES), i.e. the CA from 
BP into EES (Ktrans) or from EES back to BP (Kep), the 
fractional volumes of BP (Vp) and EES (Ve), and the area 
under the curve of the arterial input function (AUCAIF) 
were fully or partly inferred from above models based 
on the population-based arterial input function (AIF) and 
a fixed T1 with 1000 ms [28]. Furthermore, perfusion 
parameters including time to peak (TTP), cerebral blood 
flow (CBF), wash-in time, wash-out time, peak value, 
bolus arrived time (BAT) and first pass AUC (AUCFP) 
were also estimated. Besides, parameter maps derived 
from different models were automatically coregistered 
using rigid transformation by maximization of mutual 
information. Then, a total of 24 DCE parametric maps 
were generated from DCE-MRI for each subject and the 
detailed parameter names can be found in Supplementary 
Table 3. The multi b-value DWI images were analyzed 
using the Intra-voxel Incoherent Motion (IVIM) imaging 
model in NordicICE [9, 10]. Several diffusion related 
parameters including the slow apparent diffusion 
coefficient (ADC), (i.e. D), fast ADC (i.e. D*), slow 
fractional ADC (i.e. slow f), and fast fractional ADC (i.e. 
fast f) were calculated and chi-square map was obtained 
as well. As for 3D-ASL, the CBF parametric map was 
created based on the GE post-processing platform 
(FuncTool 4.6) [7].

In total, 30 parametric images were finally generated 
from DEC-MRI, multi-b value DWI MRI and 3D-ASL 
data. Since most of them (24 out of 30) came from DCE-
MRI images and DCE-MRI contained more slices than 
T1ce or FLAIR, conventional MRI images (T1ce/FLAIR) 
were resampled to DCE images using NordicICE software 
to assure that most of original parametric values were kept. 
The volume of interest (VOI) for each tumor was manually 
drawn on the resampled T1ce or FLAIR maps, covering 
the whole tumor region while excluding the obvious 
necrosis and edema. Then, it was overlapped on DCE-
derived parametric maps and the parameter values within 
the whole tumor volume were extracted. Furthermore, the 
pre-drawn VOIs were resampled to DWI-parametric and 
ASL-CBF maps to obtain the resulting parametric values 
of the tumor.

Multi-parametric attribute extraction

For each parametric map of the tumor VOI, two 
types of features, i.e. histogram attributes [29] and texture 
attributes [17], were extracted based on the MATLAB 
platform. More than one thousand tumor attributes 
were collected in this section and the detailed name 
of the parametric map and the attributes were listed in 
Supplementary Table 3.

Histogram attributes

Using the parameter value of each pixel within the 
tumor VOI, twenty-three histogram statistical indictors 
were measured according to their mathematical definitions 
[29]. They were: mean, median, mode, standard deviation, 
variance, standard error of mean (SE-mean), skewness, 
kurtosis, minimum, maximum, Inter-Quartile Range 
(IQR), the 25th/75th percentile (Q1/Q3), the 10th/90th 
percentile, the 5th/95th percentile, the mean of the top five 
percent data (larger than the 95th percentile), the mean of 
the low five percent data (lower than the 5th percentile), 
energy and entrophy, the peak height of the parameter 
histogram and the corresponding parameter value at the 
peak point (1000 bins).
Texture Attributes

One online texture analysis tool named “radiomics” 
written in MATLAB code was introduced to conduct 
image texture analysis (https://github.com/mvallieres/
radiomics). Thirty-two gray levels were chosen to rescale 
each parameter map into gray-level image according to 
its intensity. The first-order texture attributes (i.e., global 
attributes) were calculated from the gray histogram 
distributions, including the variance, skewness and 
kurtosis. Then, three kinds of 3-dimensional second-order 
texture analysis based on Gray-Level Co-occurrence 
Matrix (GLCM) [17], Gray-Level Run-Length Matrix 
(GLRLM) [30], and Gray-Level Size Zone Matrix 
(GLSZM) [31] models were independently performed 
to utilize corresponding indictors such as correlation, 
energy, variance, dissimilarity and etc. The detailed 
definition of the four texture models were summarized 
in Supplementary Table 4. A total of 37 texture attributes 
were acquired from each parametric map.

Machine learning techniques

Based on the tumor attributes, diverse classifying 
methods were carried out to train glioma grading models 
using WEKA (version 3.8.0) [4]. WEKA is an open-source 
and powerful machine learning tool with operable GUI 
interfaces, which assembled lots of popular classifying 
techniques and is easy-to-use. Three modules containing 
‘Preprocess’, ‘Classify’ and ‘Select attributes’ modules 
were involved to execute data preprocessing, classification 
and attribute selection operations on the collected 
tumor attribute dataset. 25 commonly used classifying 
approaches in combination with 8 different attribute 
selection strategies were conducted in this study.
Data preprocessing

Before classification, one important issue was 
noticed that the glioma data was highly biased across 
grades in our experiment, i.e. 28 vs. 92 for LGG and HGG 
classification, and 25 vs. 29 vs. 63 for WHO grade II, 
III and IV classification. This imbalanced sampling may 
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bias the trained model to favor the class with majority 
samples, thereby resulting in that most testing samples 
were designated into the big class to achieve relatively 
high accuracy but low sensitivity or specificity [17]. The 
predicting ability of the learned classifier in this condition 
is really poor and could not be generalized to new 
datasets. One solution to solve this problem was sample 
augmentation, i.e. generating new samples of the minority 
class by over-sampling. Synthetic minority over-sampling 
technique (SMOTE) [17] was generally recommended 
(also supported in ‘WEKA-Preprocess’ module). Before 
that, each attribute of individual patients was normalized 
to 0~1 according to the minimal and maximal values 
among all subjects.
Attribute selection

Attribute (i.e. feature) selection is of vital importance 
for classification [4, 17, 32]. A huge number of multi-
parametric attributes were retrieved in this study, some of 
which may play essential roles in glioma grading while the 
others may be negative or completely useless for glioma 
grading. Thus attribute selection is critical to sort the most 
effective attribute subset and improve the classifying 
ability. Several commonly used attribute selection methods 
were integrated in the ‘Select attributes’ module in WEKA. 
Among them, eight were employed in the current study 
to optimize attribute selection, including seven distinct 
attribute ranking strategies and one for selecting the best 
attributes. The ranking programs were operated to re-rank 
all the attributes according to the attribute importance 
evaluation functions, i.e. ‘CorrelationAttributeEval’, 
‘GainRatioAttributeEval’, ‘InfoGainAttributeEval’, 
‘OneRAttributeEval’, ‘ReliefFAttributeEval’, ‘Symme
tricalUncertAttributeEval’, and ‘SVMAttributeEval’ in 
WEKA, combined with ‘Ranker’ search method. The 
latter attribute selection method is named ‘CfsSubsetEval’, 
running with ‘BestFirst’ searching method to pick out the 
best first attributes for classification (Figure 2).

Classifiers

Twenty-five classifiers were tested using WEKA, 
aiming to find the most suitable classifier in discriminating 
LGGs from HGGs as well as classifying WHO grade II, 
III and IV gliomas. Since the number of grade I glioma 
samples was too small (i.e. only three patients), they were 
not included in the following investigation. The details of 
each WEKA classifier applied in this study were given in 
Table 2. The classification accuracy and the area under the 
curve (AUC) were focused to compare the classification 
performance of different classification methods.

Cross-validation

The leave-one-out cross validation (LOOCV) 
strategy, which is widely used in machine learning studies 
and allows the use of most training data, was applied to 
assess the performance of each classifier in our study [18, 
33]. Assuming the sample number is N, N-1 samples were 

selected as training data to construct the classifying model 
while the remained one sample was used as the testing 
data to testify the predicting accuracy. This operation 
would run N times and the summarized performance 
indicators of the classifiers were estimated after the whole 
validation procedure.
Model parameter

Parameter selection can have a significant influence 
on the performance of classifiers to some extent. 
Selecting appropriate model parameters can optimize the 
discriminative ability of the grading model. In WEKA, 
default parameter values or options were given, while 
the classifiers may reach their optimal performance by 
adjusting some critical parameters. Taking support vector 
machine (SVM) for example, four kernel types can 
be adopted, i.e. linear kernel, RBF kernel, polynomial 
kernel and sigmoid kernel, with additional predominant 
parameters for different SVM models such as c (penalty 
coefficient) for all models, gamma (radius of the kernel 
function) for RBF and sigmoid kernel SVM, degree 
for polynomial kernel SVM, etc. The general idea 
of parameter selection is to determine the optimal 
combination from a group of parameter combinations.
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