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Neurons in the visual primary cortex (area V1) do not only code
simple features but also whether image elements are attended or
not. These attentional signals are weaker than the feature-selective
responses, and their reliability may therefore be limited by the
noisiness of neuronal responses. Here we show that it is possible
to decode the locus of attention on a single trial from the activity of
a small population of neurons in area V1. Previous studies
suggested that correlations between the activities of neurons that
are part of a population limit the information gain, but here we
report that the impact of these noise correlations depends on the
relative position of the neurons’ receptive fields. Correlations
reduce the benefit of pooling neuronal responses evoked by the
same object but actually enhance the advantage of pooling
responses evoked by different objects. These opposing effects
cancelled each other at the population level, so that the net effect
of the noise correlations was negligible and attention could be
decoded reliably. Our results suggest that noise correlations are
caused by large-scale fluctuations in cortical excitability, which
can be removed by a comparison of the response strengths evoked
by different objects.
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Introduction

Neurons in the visual cortex act as detectors: they code the

properties of the stimulus in their receptive field. In early visual

areas, the coding of basic features like orientations and colors is

robust, and information about these stimulus properties is

present as soon as the neurons are activated by the appropriate

visual stimulus (Celebrini et al. 1993). This suggests that the

neurons’ selectivity is generated locally within the cortical

column or inherited from the previous processing levels. In

addition, the activity of neurons in early visual areas is

modulated by the behavioral context. One type of task where

these modulations are observed is perceptual grouping, where

the subject’s aim is to determine whether image elements

belong to the same object or not. In such a task, the neurons

that code the image elements that need to be grouped together

enhance their response relative to neurons coding nongrouped

features or background, as if the entire representation of the

relevant object is ‘‘labeled’’ with an enhanced response (Lamme

1995; Roelfsema et al. 1998; reviewed by Roelfsema 2006).

These response modulations have a correlate in psychology

because object-based attention is directed to precisely those

image elements that are labeled with the response enhance-

ment (Houtkamp et al. 2003).

The perceptual grouping process starts to modulate neuro-

nal responses after a delay relative to the initial response

triggered by the appearance of a stimulus in the receptive field,

which suggests that it requires a time-consuming integration of

information within and between visual areas. We previously

proposed that V1 neurons may actively participate in this

process if they propagate the enhanced response through

horizontal connections, which tend to link neurons tuned to

contour elements in collinear configurations that are likely to

belong to the same object (Roelfsema 2006). Area V1 provides

a high-resolution representation of the visual scene, and this

could be important for the correct grouping of nearby contour

elements. In a curve-tracing task, where the subject has to

determine which contour elements belong to the same

elongated curve, V1 responses evoked by grouped contour

elements are, indeed, enhanced relative to the responses

evoked by nongrouped elements (Roelfsema et al. 1998).

However, such a causal role of the primary visual cortex in the

grouping process presupposes that the V1 neurons reliably

code the set of contour elements that are grouped together.

The modulation of neuronal responses during perceptual

grouping is weaker than the feature-driven responses and

might be difficult to detect in the presence of neuronal

noise—the activity fluctuations that are observed from trial to

trial if the stimulus is held constant (Tomko and Crapper 1974).

Thus, it is not yet clear whether the response modulation in

area V1 can reliably distinguish relevant, to-be-grouped image

elements from irrelevant ones. In the present study, we

therefore ask how well neurons in the primary visual cortex

(area V1) differentiate between relevant and irrelevant image

elements. Most previous studies on the neurophysiological

correlates of visual attention investigated the average neuronal

responses collected across a number of trials, but here we wish

to decode the locus of attention on an individual trial.

Specifically, we will try to combine the responses of different

neurons recorded simultaneously on the same trial, instead of

pooling across trials.

In general, multiple neurons should convey more informa-

tion about the locus of attention than a single cell. The law of

large numbers states that the variance of the average response

of a population of neurons decreases linearly with neuron

number if cells fire independently (Rice 1995). However, we

know that the responses of neighboring cortical neurons are

correlated, with correlation coefficients in the range of 0.1--0.2

(e.g., Gawne and Richmond 1993; Zohary et al. 1994; Gawne

et al. 1996; Lee et al. 1998; Bair et al. 2001), and these so-called

‘‘noise correlations’’ influence the benefit of pooling. On the

one hand, noise correlations reduce the reliability of the pooled

responses if neurons are tuned to the same feature because the

correlated variability also enters in their average response

(Shadlen et al. 1996; Abbott and Dayan 1999). On the other

� 2008 The Authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by-nc/2.0/uk/


hand, the correlations need not be detrimental when evaluating

the responses of neurons tuned to different features. The

differences between the magnitudes of responses of neurons

tuned to dissimilar features are maintained in the presence of

overall fluctuations in activity (Oram et al. 1998; Averbeck et al.

2006). Thus, the net effect of the noise correlations on the

reliability of the attentional code remains to be determined.

In what follows, we will try to decode the locus of attention

in a curve-tracing task in which monkeys had to group together

contour segments of a target curve while ignoring a distracter

curve. We will measure the reliability of the response

enhancement at individual recording sites in area V1 and

investigate how much information can be gained by pooling

responses across recording sites. Here we will describe the

modulation of neuronal responses by the curve-tracing task as

a relative enhancement of responses evoked by the target

curve. We note, however, that our study was not designed to

determine whether the response modulation arises from an

enhancement of responses to the target curve, a suppression of

the responses evoked by the distracter curve or both. We will

also determine the strengths of the noise correlations and

evaluate whether they are helpful or harmful for the population

code.

Materials and Methods

We analyzed data from a previous study on the strength of synchrony

and noise correlations in area V1 (Roelfsema et al. 2004). This previous

study did not estimate if and how the noise correlations influence the

reliability of attentional effects in area V1.

Behavioral Task
Three monkeys participated in the study. They were seated at a distance

of 0.75 m from a monitor (resolution 1024 3 768, frame rate 70 Hz)

while they performed a curve-tracing task. A trial started as soon as the

monkey’s eye position was within a 1- 3 1-degree window centered on

the fixation point (0.2 degree). After an interval of 300 ms, 2 circles and

2 curves appeared on the screen (Fig. 1) while the monkey maintained

fixation. The circles and the fixation point were red and the curves

white (luminance85cdm
–2) on ablackbackground (luminance1.5 cdm

–2).

After an additional 600 ms, the fixation point disappeared and the

monkey had to make an eye movement to one of the circles. Eye

movements to the circle that was connected to the fixation point

by a curve that will be called target curve were rewarded with

apple juice, whereas eye movements to the circle on the end of

the other curve (distracter) were not. A small change close to the

fixation point switched the target and distracter curve (compare

the 2 stimuli in Fig. 1). We presented the 2 stimulus configurations

in a randomly interleaved sequence so that the same curve could

appear as target or distracter.

Surgical Procedure
The animals underwent 2 surgeries under general anesthesia that was

induced with ketamine (15 mg kg
–1 injected intramuscularly) and

maintained after intubation by ventilation with a mixture of 70% N2O

and 30% O2, supplemented with 0.8% isoflurane, fentanyl (0.005 mg kg
–1

intravenously), and midazolam (0.5 mg kg
–1 h

–1 intravenously). In the

first operation, a head holder was implanted and a gold ring was

inserted under the conjunctiva of one eye for the measurement of eye

position (Bour et al. 1984). In the second operation, 40--50 Teflon-

coated or polyimide-coated platinum--iridium wires (diameter 25 lm,

impedance 0.1--0.8 MX at 100 Hz) were implanted chronically in area

V1. The tips of the wires were positioned 1--2 mm below the cortical

surface. The animals recovered for at least 21 days before training was

resumed, and data collection was initiated. All procedures complied

with the National Institutes of Health Guide for Care and Use of

Laboratory Animals (National Institutes of Health, Bethesda, MD) and

were approved by the institutional animal care and use committee of

the Royal Netherlands Academy of Arts and Sciences.

Recordings
The eye position was measured with a double magnetic induction

technique, sampled, and recorded at a rate between 500 and 1000 Hz

(Bour et al. 1984). To record multiunit activity (MUA), the signals from

the chronically implanted electrodes were amplified, band-pass filtered

(750--5000 Hz), full-wave rectified, and then low-pass filtered at 500 Hz

(Legatt et al. 1980; Supèr and Roelfsema 2005). MUA represents the

pooled activity of a number of single units in the vicinity of the tip of

the electrode. The population response obtained with this method is

expected to be identical to the population response obtained by

pooling across single units. We recently compared MUA with single-

unit data in a curve-tracing and a figure-ground segregation task and

found that MUA, indeed, provides a reliable estimate of the average

single-unit response (Supèr and Roelfsema 2005). Moreover, the

reliability of the attentional effect at MUA recording sites was in the

same range as the reliability of single-unit responses (Supplementary

Information). We measured the receptive field dimensions of every

recording site by determining the onset and offset of the response to

a slowly moving light bar for each of 8 movement directions (Kato et al.

1978). The median receptive field size was 0.54 degree2 (range 0.11--9.4

degree2).

We quantified visual responsiveness by calculating the mean activity

�y and the standard deviation (SD), s, across trials in 2 time windows

relative to stimulus onset: w1 = [–200, 0] ms (spontaneous activity)

and w2 = [0, 200] ms (initial response) and then computed

rVisual=
�
�yw2

–�yw1

��
sw1

. Only recording sites with a good visual response

(rVisual > 1) were included in the analyses. If we recorded the activity of

a combination of recording sites more than once (e.g., on different

days), then we included only one of these measurements in the analysis,

namely the measurement with the maximal product of the rVisual’s. The

mean number of trials per stimulus condition was 89 (range 36--199).

Data Analysis
To compute the population responses, we first normalized the

responses before averaging across recording sites. We estimated the

spontaneous activity (Sp) by taking the mean activity in the time

window of w1 = [–200, 0] ms relative to stimulus onset and the peak

response (Pe) by taking the maximum of the average response over all

conditions (smoothed with a moving window of 25 ms). We normalized

neuronal responses by subtracting Sp and dividing the result by (Pe –

Sp). To quantify the strength of the attentional effects, we computed

the modulation index (MI), which we defined as the difference in

Figure 1. The curve-tracing task. Every trial started with the presentation of
a fixation point for 300 ms. Then 2 curves and 2 saccade targets (the 2 big dots at
the end of the 2 curves) were presented. After 600 ms, the fixation point disappeared
and the monkey had to make a saccade (gray arrow) to the saccade target at the end
of the curve connected to the fixation point (target curve). During the fixation and
stimulus period, the monkey maintained fixation within a 1-degree window centered
on the fixation point.
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response strength normalized to the average response: (T – D)/((T +
D)/2). Here T and D are the responses to the target and distracter curve

after subtraction of the spontaneous firing rate, in a time window of w3 =
[200, 600] ms relative to stimulus onset.

The strength of the noise correlation, that is, the degree of coupling

of the response strengths at different recording sites across trials, was

quantified with the correlation coefficient. If we compared distribu-

tions of correlation coefficients, then we first applied Fisher’s z-

transformation to obtain normal distributions. We showed 2 comple-

mentary stimuli, and we, therefore, obtained 2 correlation coefficients

for every pair of recording sites. These correlation coefficients are

expected to be comparable for pairs of recording sites with receptive

fields (RF) on different curves (1-1 pairs) because for both stimuli one

RF was on the target curve and the other one on the distracter curve.

However, if the RFs fell on the same curve, they both fell either on the

target curve or on the distracter curve (2-0 pairs). We compared the

average strength of the noise correlations for 2-0 pairs evoked by the

target and distracter curve and found them to be equivalent (Wilcoxon

signed-rank test, P = 0.11). We will therefore report the average

correlation coefficients for the 1-1 and 2-0 pairs. In the Supplementary

Information, we describe how we have used the monopole mapping to

estimate the cortical distance in millimeters between a pair of V1

electrodes from the locations of their RFs (Balasubramanian et al. 2002

and see Supplementary Information).

Neuronal Discrimination between Attentional Conditions
We estimated the linear function that optimally discriminates between

attention conditions, by maximizing the difference between responses

evoked by the 2 complementary stimuli relative to the variance of the

responses (Fisher 1936). If we have the activity vector y of p neurons

on N trials with stimulus A and M trials with stimulus B, then our aim is

to find the p-dimensional weight vector a that best separates the scalar

quantities zAi
=aT yAi

(with mean �zA and SD sA) and zBj
= aT yBj

(with

mean �zB and SD sB) across trials, where Ai and Bj are single trials of the

2 stimulus conditions (T denotes the transpose). If the distributions of

the responses in the 2 stimulus conditions are Gaussian with the same

variance, the squared standardized difference between the z values,

ð�zA–�zBÞ2
.
s2z , is maximal for a = S–1ð�yA–�yBÞ, where sz is the pooled SD

of sA and sB, S
21 is the inverse of the covariance matrix, and �yA and �yB

are mean activity vectors for the 2 stimuli (Rencher 2002). In order to

compare weights, we can standardize them by multiplying every weight

with the SD of the corresponding variable: a* = [s1a1, s2a2, . . ., spap]

(Rencher 2002). The linear discriminant function with the standardized

weights is then L = a�
1R1+a�

2R2+ . . . +a�
pRp , where R is the response

strength minus the mean response strength divided by the SD (z-score).

The discriminability, d2 (square of the d-prime value), can be defined as

d2 = ð�yA–�yBÞ
T
S–1

�
�yA–�yB

�
(Averbeck and Lee 2006). To study the

impact of the correlations, we also quantified the discriminability under

the assumption that the correlations are zero. Specifically, we

computed d2
shuffled = ð�yA–�yBÞ

T
S–1
d

�
�yA–�yB

�
, where S–1

d is obtained by

setting the off-diagonal elements of the covariance matrix to zero. The

effect of the correlation on the discriminability is computed as

Dd2 = d2–d2
shuffled (Averbeck and Lee 2006). Thus, Dd2 is larger than

zero if the noise correlations improve discriminability and negative if

they degrade discriminability. To measure how much information is

present in the pattern of neuronal activity on a single trial, we also

computed the classification rate, the percentage of trials where the

stimulus is correctly decoded from the neuronal responses by applying

the linear discriminant. We used a cross-validation procedure to prevent

overfitting: we partitioned the trials into a training set (random selection

of half of the data) and a validation set (other half of the data), estimated

the optimal weights in the training set, and used these weights to

measure classification in the validation set. We then repeated this

procedure with taking the second half of the data as the training set and

the first half as the validation set and averaged these 2 values.

Results

The curve-tracing task is illustrated in Figure 1. The monkey

had to mentally trace a target curve while ignoring a distracter

curve (see Materials and Methods). The performance of the

monkeys was 99.1% correct, averaged across all recording

sessions. During this task, we recorded MUA from chronically

implanted electrodes in area V1 of 3 macaque monkeys. In

monkey 1, recordings were obtained from the left and right

hemisphere (N = 42), in monkey 2 from the left hemisphere

(N = 35), and in monkey 3 from the right hemisphere (N = 21).

Figure 2 shows the centers of the receptive fields of all

recording sites.

At 55 of 98 recording sites, the target curve evoked

a significantly stronger response than the distracter curve

(Fig. 3A). This response modulation by selective attention does

not occur during the initial transient response but develops

after an additional delay. We will refer to the recording sites

with significant attentional modulation as A-sites (attention

sites; P < 0.05, U-test), whereas we refer to the sites that do not

discriminate between target and distracter curve as N-sites

(Fig. 3B, no effect of attention; P > 0.05, U-test). At 2 recording

sites, the responses evoked by the distracter curve were

stronger than those evoked by the target curve, and these sites

were included with the N-sites (total N = 43). To investigate the

possibility that N-sites are poor or noisy recordings, we

compared the visual responsiveness (rVisual, described in

Materials and Methods) of N- and A-sites but found it to be

similar (P > 0.1). We quantified the strength of the attentional

modulation by computing the MI (MI = (target response –

distracter response)/average). The distributions of the MIs

across the population of N-sites (average MI = 0.05) and A-sites

(average MI = 0.31) are shown in Figure 3C. These distributions

indicate that the difference between the populations of A- and

N-sites is not absolute but that they rather fall in different

regions of a continuum.

The MI is a measure for the difference between the average

responses evoked by the target and distracter curve, but it does

not indicate how much information the recording sites convey

about the identity of the curve in the RF on a single trial. We

therefore also computed the d-prime for all our recording sites

(Fig. 3D). The mean d-prime was 1.09 for A-sites, whereas it

Figure 2. Location of the RF centers of the recording sites. Different symbols denote
recording sites in the 3 monkeys.
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was 0.16 for N-sites. From the figure, it is apparent that there

are clear differences between the reliability of A-sites: the first

quartile, the median, and third quartile of the d-prime

distribution are 0.66, 0.89, and 1.52, respectively (correspond-

ing to a classification rate of 61%, 67%, and 75%).

We carried out a number of control analyses to ensure that

the observed response modulation was not caused by 1)

a nonclassical RF surround effect of the contour element that

connected the fixation point to one of the curves or (2)

a systematic difference in eye position between conditions.

These results have been described in Supplementary Information.

Pairs of Recording Sites

The responses at 2 recording sites are expected to convey

more information about the identity of the target and distracter

curve than the response of a single site. Previous theories

showed that the information gain depends on the correlation

between firing rates of recording sites across trials (Shadlen

et al. 1996; Oram et al. 1998; Abbott and Dayan 1999; Averbeck

et al. 2006). We therefore started our analysis of paired

recordings with a quantification of the noise correlation. We

computed the noise correlations in a window from 200 to 600 ms

after stimulus presentation because the attentional response

modulation was most pronounced in this epoch. First,

we investigated how the noise correlation depends on the

distance between recording sites. We compared the noise

correlation between pairs of recording sites with nearby

receptive fields ( <1 degree, N = 122) and pairs of recording

sites with receptive fields that were farther apart ( >1 degree,

N = 265). The noise correlation was slightly stronger for the

neurons with nearby receptive fields (median correlation

coefficient 0.24 vs. 0.19, U-test, P < 0.05), which may be due

to common input from the lateral geniculate nucleus. In the

rest of the Results, we will focus on the pairs of recording sites

with distant receptive fields ( >1 degree) as our aim is to

compare the influence of noise correlations for combinations

of neurons with receptive fields on the same and on different

curves, and we did not attempt to stimulate neurons with

overlapping receptive fields with different curves. Within the

subgroup of pairs with nonoverlapping receptive fields, the

noise correlation did not exhibit a strong dependence on

the receptive field distance (r = 0.04, P > 0.5, see Fig. 4A). Also,

the noise correlation within this subgroup did not depend

on the estimated cortical distance between electrodes (r = 0.02,

P > 0.5, Fig. 4B). To investigate if and how the noise correlation

changed during a trial, we computed the noise correlations in

4 different time windows relative to stimulus onset, [–200, 0],

[0, 200], [200, 400], and [400, 600] ms for all paired recordings.

The noise correlation was similar across these time windows

(repeated-measures analysis of variance, F3,1158 = 0.18, P = 0.97)

and is thus fairly constant over time. In Supplementary

Information, we demonstrate that the noise correlations are

not caused by variations in eye position across trials.

In some of our paired recordings, the 2 receptive fields fell

on the same curve, that is, they either both fell on the target

curve or both fell on the distracter curve, and we will refer to

these pairs as ‘‘2-0 pairs.’’ The other paired recordings will be

called ‘‘1-1 pairs’’: one receptive field was on the target curve,

whereas the other was on the distracter curve. The strength of

the noise correlation differed between 2-0 and 1-1 pairs

(see also Roelfsema et al. 2004). This effect is illustrated in

Figure 4C, which shows the distribution of correlation

Figure 3. Attentional modulation of neuronal responses. (A, B) Population responses for the recording sites that were significantly modulated by attention (A-sites) (A) and sites
not modulated by attention (N-sites) (B). Solid traces show responses evoked by the target curve and dotted traces responses evoked by the distracter curve. The gray areas
around the traces show ±2 standard error of the mean. Data were smoothed with a moving window of 25 ms. (C) Distribution of the attentional MI of A-sites (white bars) and N-
sites (black bars) in a window from 200 to 600 ms after stimulus presentation. (D) Distribution of the d-prime for A- and N-sites. Arrows show the means.
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coefficients of 2-0 and 1-1 pairs as white and black bars,

respectively. Although there is a large overlap between the 2

distributions that are both shifted to positive values, the

distribution for 2-0 pairs (median = 0.21) is shifted to larger

values than the distribution for 1-1 pairs (median = 0.16; U-test,

P < 0.05).

Because the single-trial responses of many A-sites carried

incomplete information about the identity of the target and

distracter curve, we investigated how the discrimination

improves for pairs of recording sites and how this improvement

depends on the noise correlation. Figure 5 illustrates the

distributions of single-trial responses at 2 pairs of recording

sites during the curve-tracing task. Figure 5A shows a 2-0 pair

with receptive fields on the same curve. Every point of the

scatterplot shows the (normalized) single-trial responses of the

2 recording sites in a window from 200 to 600 ms, evoked by

the distracter curve (red points, see stimulus 2 in Fig. 5A) and

the target curve (blue points, see stimulus 1 in Fig. 5A). The

shaded ellipses show the 90% confidence intervals of these

2 distributions, where the elongation of the ellipses reflects the

noise correlation, which was equal to 0.43. The discrimination

of the individual recording sites corresponds to a projection of

the data points onto the x and y axis (i.e., the marginal

distributions shown on the coordinate axes of Fig. 5A), and

the d
2 values (d2 is the square of the d-prime value) of these

recording sites were 0.68 and 1.67 (with classification rates of

66% and 75%). We next computed the linear combination of

the 2 responses that best separates the 2 distributions (linear

discriminant, see Materials and Methods). The tilted histogram

in Figure 5A shows the optimal linear combination of the 2

responses, which gives rise to a d
2 of 1.74 and a classification

rate of 75%. The projection that best separates the 2 linear

distributions involves a weighted addition of the responses at

the 2 recording sites, with L2-0 = 0.29R1 + 1.16R2 (here the

weights and the responses R1 and R2 are standardized as

explained in Materials and Methods). To investigate the effect

of the noise correlation on the discrimination, we also

computed the d2
shuffled, which is the square of the d-prime

value that would be obtained in the absence of correlation. In

general, d2
shuffled is the sum of the d

2 values of the individual

recording sites. The d2
shuffled for the pair of Figure 5A was 2.36,

which is higher than the observed d
2 of 1.74, indicating that

the positive noise correlation reduced the information gain.

This effect can be understood by inspecting Figure 5A: the

positive noise correlation causes the confidence ellipses to be

elongated along the line that connects the means of the 2

distributions, and it, therefore, causes these distributions to

overlap more.

Figure 5B illustrates a pair of recording sites with RFs on

different curves (1-1 pair) with a noise correlation of 0.34. The

d
2 values of the individual recording sites were 0.56 and 1.50

(with classification rates of 63% and 75%). Note that the linear

discriminant now has a positive slope. This indicates that

a weighted ‘‘difference’’ between the responses, L1-1 = 1.30R1 –

1.66R2, best separates the 2 distributions. The d
2 of the optimal

linear combination was 3.00 (with a classification rate of 83%),

which is larger than the d2
shuffled of 2.05. Thus, the positive noise

correlation is beneficial for the 1-1 pair: the joint distribution

contains more information about the identity of the target and

distracter curve than would have been expected in the case of

no correlation. It can be seen in Figure 5B that the noise

correlation causes the 2 distributions to contract along a line

that connects the 2 means, giving rise to a reduced overlap. In

other words, by subtracting the 2 responses from each other, it

is possible to remove activity fluctuations that are common to

the 2 recording sites.

In the examples of Figure 5, the positive noise correlations

reduced the reliability of the attentional code of the 2-0 pair,

whereas they improved the reliability for the 1-1 pair. A

population analysis indicated that these observations were

typical for the pairs of V1 recording sites. In this population

analysis, we included pairs only if the distance between the RFs

was larger than 1 degree and if the neurons at both recording

Figure 4. Noise correlation statistics. (A) Relation between the distance between
the centers of 2 receptive fields and the noise correlation. Black points on the gray
background are pairs with RF distance smaller than 1 degree and the white line is
their mean noise correlation and gray points on the white background are the pairs
with RF distance larger than 1 degree and the black line is their mean. n Indicates
number of pairs, r correlation coefficient, and P significance for the pairs with RF
distance larger than 1 degree. (B) Relation between estimated cortical distance and
the noise correlation. (C) Distributions of the noise correlation coefficients for pairs of
recording sites with RFs on the same curve (white bars) and on different curves
(black bars).
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sites were modulated by attention (2 A-sites). For the 2-0 pairs

(N = 69), the average d
2 for the individual A-sites was 2.08 with

a classification rate of 70%. The d2 value increased to an average

of 3.74 if the information from the 2 recording sites was

combined and the classification rate increased to 76%. The

positive noise correlations caused an average increase in d
2 for

the pairs that was smaller than the d2
shuffled of 4.16, which would

have been expected in case of no correlation, and the average

Dd2=d2–d2
shuffled was significantly smaller than zero (mean –

0.42, dotted gray curve in Fig. 6A; Wilcoxon signed-rank test,

P < 10
–7). Thus, the positive noise correlation caused the joint

distributions of responses evoked by the target and distracter

curve to overlap more, as was discussed in relation to

Figure 5A.

The average d
2 of individual A-sites in the sample of 1-1 pairs

(N = 49) was 1.63 (with a classification rate of 70%), which is

slightly, but not significantly (P > 0.5, U-test), lower than the d
2

of the A-sites contributing to the 2-0 pairs. The average d
2 for

the combinations of 1-1 pairs was 3.84 (with a classification

rate of 78%), which was larger than the average d2
shuffled of 3.26.

Accordingly, the distribution Dd2 was shifted to positive values

(mean 0.59, solid black curve in Fig. 6A; Wilcoxon signed-rank

test, P < 2.10
–6). Thus, for 1-1 pairs, the positive noise

correlations increased the separation between the joint

Figure 5. Example combinations of 2 recording sites. (A) Stimuli used to evoke responses at 2 recording sites with RFs on the same curve (2-0 pair). The gray rectangles show
the receptive fields. (B) Coding of attention by the 2-0 pair. Abscissa, the neuronal activity evoked at recording site 1. Ordinate, neuronal activity of site 2. The blue and red points
in the scatterplot represent the activity of the neurons in individual trials with stimulus 1 and 2, respectively. Blue and red ellipses represent 90% confidence ellipses, and the
black dots show the means of the 2 distributions. The marginal distributions of response strengths for the 2 sites are shown on the 2 axes. The tilted histogram shows the
projection that optimally separates the joint distribution and the green line is the linear discriminant border. (C) Stimuli used to evoke responses at a pair of recording sites with
RFs on different curves (1-1 pair). (D) Coding of attention by the 1-1 pair; conventions are as in (B).
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distributions of firing rates evoked by the 2 stimuli (just as was

observed in Fig. 5B).

More than 2 Recording Sites

Our analysis is easily extended to more than 2 recording sites.

Figure 7 shows an example where we recorded simultaneously

from 6 A-sites. Figure 7A shows the 2 stimuli that only differed

at a location close to the fixation point, outside the neurons’

receptive fields. Figure 7B illustrates the discrimination

performance achieved by combining 1, 2, 3, 4, 5, and 6 sites.

The d
2 reaches a value of 13.0 when all 6 recording sites are

combined, and the classification rate was 96%. Note that in this

example, noise correlations do not degrade the discrimination

but rather enhance it (Dd2 = 2.7).

We next evaluated at the population level how the

discrimination improves for recording sessions with more than

2 A-sites. We obtained a sufficient number of combinations of 3

and 4 A-sites for a population analysis, whereas the number of

cases where we recorded from more than 4 A-sites was too

small. We recorded from a total of 164 combinations of 3

A-sites: 89 of these were 3-0 triplets and 75 were 2-1 triplets.

For the 3-0 triplets, we obtained a mean d
2 of 4.50 (mean

classification rate of 81%), whereas the mean d
2 for 2-1 triplets

was 6.53 (classification rate of 87%). The positive correlations

among the 3-0 triplets caused an information reduction about

where attention was relative to what would have been

expected in the case of no correlation. The mean Dd2 was

–1.23, which was significantly smaller than zero (Wilcoxon

signed-rank test, P < 10
–10; dotted gray curve in Fig. 6B). In

contrast, the positive noise correlations were beneficial for the

attentional code for 2-1 triplets. Here the mean Dd2 was 1.14,

which was significantly larger than zero (P < 10
–5; solid black

curve in Fig. 6B). Similar results were obtained for 85

quadruplets of A-sites. We recorded from 34 quadruplets with

RFs on the same curve (4-0 quadruplets). The mean d
2 for

these quadruplets was 4.40, with a classification rate of 83%,

and the mean Dd2 was –2.09, which was significantly smaller

than zero (P < 10
–6; dotted gray curve in Fig. 6C). The mean d

2

for the 3-1 quadruplets (N = 32) was 9.17 with a mean

classification rate of 90% and a mean Dd2 of 1.14 (P < 0.02;

dashed curve in Fig. 6C), whereas the mean d
2 for the 2-2

quadruplets (N = 19) was 8.98 with a mean classification rate

of 92% and a mean Dd2 of 2.62, significantly larger than zero

(P < 10
–3; solid black curve in Fig. 6C). Thus, an equal number

of recording sites with receptive fields on the 2 curves

generally yielded an information gain beyond the expectation

in the case of no correlation, whereas neuronal responses

evoked by the same curve carried redundant information.

Figure 8 summarizes the results of the population analysis

for pairs, triplets, and quadruplets of recording sites. The black

line in Figure 8A gives an impression of the d
2 if neurons would

fire independently (it is simply the average d
2 multiplied by the

number of sites): discriminability should increase linearly with

the number of recording sites. Combinations of recording

sites with RFs on both curves tend to fall above this line,

whereas combinations with all RFs on a single curve tend to fall

below this line. If we average across all the RF configurations,

however, these opposing effects largely cancel each other

(black circles), and the overall d2 is surprisingly close to the

black line. This effect is also seen clearly in Figure 8B, which

shows the Dd2 as a function of the number of recording sites.

Dd2 is positive for combinations with RFs on both curves,

negative for combinations with RFs on the same curve, and

close to zero if we average across all combinations. These

results, taken together, suggest that the noise correlations in

area V1 hardly influence the reliability of the attentional code.

Discussion

The aim of our study was to investigate how much information

neurons at individual recording sites in area V1 convey about

where attention is on a single trial and how much information

can be gained by combining the responses of neurons at

different recording sites. We quantified the amount of in-

formation with the d
2 value (square of d-prime) and found that

this measure increases approximately linearly with the number

of recording sites, so that a d
2 value of approximately 7

(corresponding to a classification rate of ~90%) is reached with

an average of 4 A-sites. This result implies that we can infer the

Figure 6. Distributions of Dd2; the difference between d2 and d2shuffled. (A)
Distribution of Dd2 for pairs of recording sites with RFs on the same curve (2-0 pairs,
gray dotted line) and pairs of recording sites with RFs on different curves (1-1 pairs, in
black). (B) Distributions of Dd2 for 3-0 triplets (gray dotted line) and 2-1 triplets
(black). (C) Distribution of Dd2 for 4-0 quadruplets (gray dotted line), 3-1 quadruplets
(dashed line), and 2-2 quadruplets (black).
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identity of the target and distracter curve reliably with

a relatively small sample of the neuronal activity in area V1.

In addition, we found that the effects of noise correlations on

decoding depended on the location of the receptive fields. The

noise correlations decreased the information gain for recording

sites with RFs on the same curve, whereas they enhanced the

information gain for recording sites with RFs on different

curves.

Attentional Effects at Individual Recording Sites

V1 neurons are traditionally characterized as specialized for the

coding of orientation or contrast (Hubel and Wiesel 1962;

Albrecht and Hamilton 1982), whereas the demonstration of

attentional effects in area V1 is of a more recent date (Motter

1994; Roelfsema et al. 1998; Vidyasagar 1998; Roberts et al.

2007). There is a temporal separation between the coding of

basic tuning properties, which is apparent from the onset of

the response, and the attentional effects that are weaker and

occur after an additional delay (Lamme and Roelfsema 2000) in

area V1 as well as in extrastriate areas (Chelazzi et al. 1993;

Motter 1994; Reynolds et al. 1999; reviewed by Treue 2001). In

the curve-tracing task, it takes about 130 ms before all the

contour elements belonging to the target curve are labeled

with an enhanced neuronal response (Roelfsema et al. 2003).

When we studied a variant of this task in human subjects, we

found that they direct their attention to all the contour

elements that belong to a target curve. This suggests that

labeling contour elements with an enhanced response (atten-

tion) is the way that the visual system can ‘‘bind’’ these contour

elements into a coherent representation of an elongated curve

(reviewed by Roelfsema 2006).

The reliability of the attention signal in area V1 is consistent

with an active role in the grouping process. V1 provides

a retinotopic map with a high spatial resolution so that

perceptual objects can be segregated from each other, even

if they are close together. We note, however, that not all V1

Figure 7. The combination of information from multiple recording sites. (A) Stimuli that were used to evoke responses at 6 recording sites. The gray rectangles show the
receptive fields. (B) Distributions of the linear combinations of the responses across trials with the maximal separation. Blue bars, single-trial responses evoked by stimulus 1. Red
bars, single-trial responses evoked by stimulus 2. The number of recording sites included in the analysis increases from 1 (left panel) to 6 (right panel). Note that the d2 increases
steadily with the number of recording sites, from 1.7 to 13.0.

Figure 8. d2 and Dd2 as a function of the number of recording sites. (A) Black filled circles are the mean d2 for combinations of 2, 3, and 4 sites. The gray squares are the mean
d2 for the combinations with all RF’s on the same curve and the white diamonds are combinations in which not all RF’s lie on the same curve. The black line is the mean d2 for
single sites multiplied with the number of sites. Error bars show standard error of the mean. (B) Black filled circles show the mean Dd2 across all combinations of 2, 3, and 4
sites. The gray squares and white diamonds are the average Dd2 for the various combinations.
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neurons carry information about attention. We distinguished

between A-sites that are modulated by attention and N-sites

that are not (Roelfsema et al. 2004). The N-sites (~40% of

recording sites) represent the contour elements irrespective of

the context in which they occur, and they may thereby provide

a ‘‘veridical’’ map of the visual scene that is independent of

attention shifts. Here we have focused on the A-sites (~60%)
that may form another map of the visual field highlighting the

objects relevant for behavior. The classification rate at some of

these A-sites was only slightly better than chance, at others it

was almost perfect, whereas the average classification rate

was approximately 70%. In a recent study, Li et al. (2006)

investigated the activity of single V1 neurons in another

contour integration task where monkeys had to discriminate

between a string of collinearly aligned contour elements and

a random arrangement of contour elements. The discrimination

performance of most of their neurons was striking: they were

as sensitive to the collinear contour alignments as the monkeys

were at a behavioral level. This contrasts with our finding that

there is a substantial proportion of N-sites in the curve-tracing

task, which represent clusters of nearby neurons not modu-

lated by attention. This difference between results may be

related to the task, as Li et al. manipulated the alignment of

contour elements in the vicinity of the neurons’ RFs, whereas

the cue segment in the curve-tracing task that determines the

identity of target and distracter curve is generally at a larger

distance from the RFs. Another difference is that Li et al. mainly

recorded from the superficial layers of cortex whereas most of

our electrodes were in the deep layers. Previous studies on the

neurophysiological correlates of attention shifts in striate and

extrastriate cortex almost invariably found a mixture of

‘‘A-neurons’’ modulated by attention shifts and ‘‘N-neurons’’

that were not (Chelazzi et al. 1993; Motter 1994; Treue and

Maunsell 1996; Reynolds and Desimone 1999). These previous

studies did not quantify the single-trial classification rates, but

the attentional effects were generally weak if compared with

the visual responses, just as in the present study. It is therefore

important to understand how the responses from multiple

neurons can be combined to increase the reliability of coding

of attention and how the noise correlations influence the

combined reliability.

Noise Correlation

The distribution of noise correlation coefficients between

activities at the V1 recording sites was shifted to positive values

with an average value of 0.21. This value is consistent with

a number of previous studies in V1 (0.22 in Gawne et al. 1996;

0.25 in Reich et al. 2001; 0.20 in Kohn and Smith 2005) and

other areas, including inferior temporal cortex (0.23 in Gawne

and Richmond 1993) supplementary motor area (0.13 in

Averbeck and Lee 2006) and the middle temporal visual area

(0.19 in Zohary et al. 1994). We did not observe a strong

relationship between the strength of the noise correlations and

the distance between the V1 recording sites and noticed that

the strength of the noise correlations was similar before and

after stimulus presentation. These results are consistent with

a previous study by Chen et al. (2006) who used voltage-

sensitive dyes to measure the activity of a V1 region in a target

detection task. Chen et al. (2006) found that the presentation

of the visual stimulus has little effect on the noise correlation,

just as was found in the present study. Moreover, in the study of

Chen et al. (2006), the average correlation decreased gradually

with cortical distance within the imaged region of 4 mm, which

is consistent with our finding that the correlation was stronger

for the neurons with nearby receptive fields ( <1 degree) than

for neurons with more distant receptive fields. Our study adds

to these results by showing that the noise correlation does not

decrease further with larger distances within area V1 as it

remained relatively constant for distances between 4 and 24

mm. These results, taken together, seem to suggest that a large

fraction of the noise correlation represents relatively global

variations in cortical excitability as could be caused, for

example, by fluctuations in the activity of neuromodulatory

systems that are related to variations in arousal. We note,

however, that the pattern of the noise correlations is not

entirely unstructured because the correlations are slightly but

significantly stronger between neurons with RFs on the same

curve than between neurons with RFs on different curves (see

also Roelfsema et al. 2004).

Influence of Noise Correlation on the Reliability of the
Attentional Code

Theoretical work suggested that the impact of noise correla-

tions depends on the tuning of the neurons that are combined:

positive correlations between neurons that have the same

tuning are harmful, whereas positive correlations between

neurons with different tuning allow for subtraction of common

noise (Johnson 1980; Snippe and Koenderink 1992; Oram et al.

1998). Initial empirical work emphasized the adverse effects of

noise correlations between neurons with similar tuning curves

(Zohary et al. 1994). However, a recent study by Romo et al.

(2003) showed that the effects of noise correlations on coding

accuracy in primary and secondary somatosensory cortex of

monkeys performing a vibrotactile discrimination task are

mixed. Some cells in these areas prefer higher stimulus

frequencies, whereas others prefer lower frequencies. Romo

et al. (2003) observed a loss in accuracy caused by positive

correlations (with an average correlation coefficient of 0.12)

between neurons tuned to the same frequency, but this was

partially offset by an improvement caused by positive correla-

tion between neurons tuned to different frequencies. Thus, if

the aim is to decode a sensory property in the presence of

common noise, then it is beneficial to compare the response of

neurons tuned to different features.

Our results are compatible with the findings of Romo et al.

(2003), although we recorded the activity from neurons in

another sensory modality and focused on the neurons’

attentional modulation rather than on their tuning. Noise

correlation decreased the information gain for neuronal

responses evoked by the same curve (with Dd2 < 0) and

increased the information gain for responses evoked by

different curves (Dd2 > 0). Overall, the decreases in accuracy

for the 2-0 pairs were offset by a comparable increase in

accuracy for the 1-1 pairs so that pooling across the neurons

improved the accuracy of the code considerably. Thus, in the

presence of widespread positive correlations, neurons coding

for the same object provide partially redundant information,

whereas neurons coding for different objects can be used to

remove the influence of global activity fluctuations (common

noise) unrelated to selective attention. The optimal discrimi-

nant, indeed, removed the common noise by computing the

difference between the responses evoked by the target and

distracter curve. These results generalized to triplets and

quadruplets of recording sites as discrimination continued to
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improve when information from additional recording sites was

added, in particular, if these recording sites had RFs on

different curves. Remarkably, the adverse and beneficial effects

of the noise correlations cancelled each other for combinations

of 2, 3, and 4 recording sites so that the overall coding accuracy

was close to that expected in the absence of noise correlations.

Mechanisms for Removal of Common Noise

The removal of global fluctuations in neuronal activity can be

achieved in several ways. Here we only recorded from neurons

with an RF on one of the curves and compared the strengths of

neuronal responses evoked by the target and distracter curve.

This comparison is presumably difficult to implement in

neuronal hardware, especially if the shape of the curves

changes from trial to trial, because the weights of the linear

discriminant depend on the RFs that fall on the same and on

different curves. We note, however, that the only requirement

for the removal of common noise is an estimate of the overall

V1 activity level, which can be obtained in several ways. First, it

is possible to compare the activity of neurons at A- and N-sites

with overlapping RFs. This activity difference gives a reliable

measure of the locus of attention in the presence of global

variations of neuronal activity. If a contour element is relevant

for the task, then the A-neurons are more active than the

N-neurons, whereas the 2 classes of neurons are equally active

if the contour element in their RF is part of the distracter. Thus,

a connection scheme where A-neurons are excited by

neighboring A-neurons but inhibited by the N-neurons can

propagate the response enhancement along the target curve.

Second, measures of the overall V1 activity can be obtained in

higher areas where neurons have large receptive fields. Bair

et al. (2003) provided evidence that these higher areas provide

inhibitory feedback to area V1, and we suggest that the

neuronal response at an A-site can also be compared with the

strength of such a feedback signal in order to determine

whether a contour element is relevant or not.

Finally, we note that the linear discriminants used in the

present study can be implemented in an anatomical projection

from lower to higher areas. Downstream neurons involved in

the selection of a behavioral response can extract the relative

saliency of one of a number of objects if they receive excitation

from the representation of this object and inhibition from the

representation of the other ones. The response modulations

observed in early visual areas that are associated with attention

shifts are reflected by comparable response modulations in

areas involved in response selection, like the frontal eye fields

(Schall and Thompson 1999). Neurons in the frontal eye fields

code the eye movement to a particular location in the visual

field, and they receive excitatory visual input from the

corresponding retinotopic location and inhibition from other

retinotopic locations and engage in a competitive process

where the eye movement plan receiving most activation

eventually wins (Bruce et al. 1985; Seidemann et al. 2002).

Thus, also at this level, differences between the activation of

eye movement plans determine the outcome of the competi-

tion, so that global fluctuations in activity cancel out.

Here we have shown that the focus of attention can be

decoded from a relatively small sample of the activity in area

V1. We hypothesize that the processes that propagate the

enhanced response along the target curve and that select the

required eye movement take advantage of the proposed

mechanisms for noise cancellation, so that all the information

present in the neuronal responses can be brought to bear

during such an attention-demanding task.
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