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Abstract: Leaves account for the largest proportion of all organ areas for most kinds of plants,
and are comprise the main part of the photosynthetically active material in a plant. Observation of
individual leaves can help to recognize their growth status and measure complex phenotypic
traits. Current image-based leaf segmentation methods have problems due to highly restricted
species and vulnerability toward canopy occlusion. In this work, we propose an individual leaf
segmentation approach for dense plant point clouds using facet over-segmentation and facet region
growing. The approach can be divided into three steps: (1) point cloud pre-processing, (2) facet
over-segmentation, and (3) facet region growing for individual leaf segmentation. The experimental
results show that the proposed method is effective and efficient in segmenting individual leaves
from 3D point clouds of greenhouse ornamentals such as Epipremnum aureum, Monstera deliciosa,
and Calathea makoyana, and the average precision and recall are both above 90%. The results also
reveal the wide applicability of the proposed methodology for point clouds scanned from different
kinds of 3D imaging systems, such as stereo vision and Kinect v2. Moreover, our method is potentially
applicable in a broad range of applications that aim at segmenting regular surfaces and objects from
a point cloud.

Keywords: individual leaf segmentation; point cloud; greenhouse plant; facet over-segmentation;
local K-means clustering; region growing

1. Introduction

Leaves account for the largest proportion of all organ areas for most kinds of plants and comprise
the main part of the photosynthetically active material in a plant. Leaves contain important information
about the surface morphology and structure of a plant; therefore, observation of leaves can reveal
its growth status. Changes in leaf morphology, texture, or color normally reflects biotic stress
(plant diseases and pests) or abiotic stress (drought), so automatic leaf segmentation, recognition,
and classification methods can provide rapid early warnings for agriculture facilities and, ultimately,
help to increase plant output. Studies have used traditional imaging techniques and analyzing tools
to carry out 2D leaf recognition and classification. Neto et al. used Gustafson-Kessel clustering
and a genetic algorithm to segment individual leaves from different environments, and tested the
method successfully on soybean, sunflower, pigweed, and velvetleaf plants [1]. Xu et al. extracted
various color and texture features of leaves to identify nitrogen- and potassium-deficient tomatoes,
and showed that the system could diagnose disease about 6–10 days before experts could reach the
same assessment [2]. Kalyoncu and Toygar segmented and classified leaves of different species using a
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linear discriminant classifier [3], achieving an accuracy of 70% on the Leafsnap dataset [4]. Zhang et al.
proposed a novel cucumber disease recognition approach combining three pipelined procedures:
segmenting diseased leaf images by K-means clustering, extracting shape and color features from
lesion information, and classifying diseased leaf images using sparse representation [5].

Plant phenotyping is intended to measure complex traits related to growth, yield and adaptation
to stress with a certain accuracy and precision at different scales of organization, from organs to
canopies [6,7]. As an important task in high-throughput phenotyping, individual leaf segmentation
has been drawing considerable attention from biology research and agricultural industry facilities.
Recently, plant phenotyping software tools have sprouted up, such as PlantCV [8] and Leaf-GP [9].
Automatic leaf segmentation, alignment, and tracking algorithms are the key components of those
tools, and are mostly based on 2D imaging. Scharr et al. made a recent survey of state-of-the-art
2D leaf segmentation methods for plant phenotyping, and evaluated the results of four different
methods [10]. Given a fluorescence plant video, Yin et al. proposed a method that performed multi-leaf
joint segmentation, alignment, and tracking (SAT) for Arabidopsis [11]. Viaud et al. proposed an
Arabidopsis leaf segmentation and tracking system, in which the plant images were first segmented by
a watershed algorithm and then refined by an ellipsoid-shaped model [12]. Recently, some researchers
have introduced deep learning in counting or segmenting individual leaves from canopy images.
Dobrescu et al. used a modified Resnet50 net to count leaves of Arabidopsis and tobacco plant images
in the Computer Vision Problems in Plant Phenotyping (CVPPP) 2017 Leaf Counting Challenge
dataset [13]. Although their method outperforms the winner of the previous CVPPP challenge, it is
not able to locate the exact positions of leaves. Morris employed a pyramid-like Convolutional Neural
Network (CNN) to segment leaves from images of dense foliage [14], which restricts the segmentation
to the leaf boundary searching level.

Current leaf phenotyping algorithms are mostly image-based methods that often leverage
machine learning and pattern recognition techniques. Despite the evident progress that has been
made, leaf phenotyping remains restricted to processing several kinds of standard crops and plants
(e.g., wheat [8,9] and rosette plants [10,12,15]). Moreover, the structure of the canopy is usually
complicated, resulting in overlapping among leaves, which poses a great challenge to 2D leaf
segmentation algorithms. As the cost of hardware continues to fall and image technology advances, 3D
imaging has become a promising solution for sensing and phenotyping in cost-sensitive agricultural
applications. Compared to traditional 2D imaging and vision techniques, 3D imaging not only acquires
pixel-level colors, but also acquires the most important depth information of the scene. The spatial
structure information of the plant is highly beneficial for studying its growth and its phenotypic traits.
Recently, research on individual leaf segmentation with depth and range images or 3D point clouds
has emerged. Some related literature has focused on tasks such as separating canopy volume from
foliage point clouds scanned from a Lidar [16], segmenting single trees from forest point clouds [17,18],
and estimating the leaf area density (LAD) of the plant [19]. Teng et al. built a segmentation and
classification system for leaves, by which individual leaves can be segmented from point clouds by a
joint 2D/3D approach [20]. Chaurasia and Beardsley designed a superpixel graph clustering algorithm
to carry out initial segmentation of single-lobed leaves from point clouds, and then used Iterative
Closest Point (ICP) matching to refine the segmentation results [21]. Others have focused on low-cost
3D sensors and techniques to generate dense plant point clouds, from which plant organs are further
segmented. Li et al. [22] established a low-cost stereo system to reconstruct point clouds from six kinds
of greenhouse plants, showing high accuracy and invariance to illumination changes. Paproki et al. [23]
used multi-view 3D reconstruction and 3D meshes to generate a model of Gossypium hirsutum from 64
images, and then segmented leaves, petioles, and internodes from the model via a pipeline of four
steps. Xia et al. exploited the Kinect v1 sensor to carry out in situ leaf segmentation in a greenhouse
and reached a total segmentation rate of 87.97% [24]. Several research groups even turned to 4D point
cloud data, with time as the 4th dimension for facilitating automatic organ segmentation. Li et al.
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conducted a spatial and temporal analysis on 4D point cloud data of plants; budding and bifurcation
events could be accurately segmented in a non-real-time way [25].

In this paper, we propose an individual leaf segmentation approach for dense plant point clouds
using facet over-segmentation and facet region growing. The method can be divided into three steps:
(1) point cloud pre-processing; (2) facet over-segmentation; and, (3) facet region growing for individual
leaf segmentation. In the first step, the raw point clouds acquired from 3D sensors are filtered and
preprocessed to leave out non-leaf areas. Then iterative principle component analysis (IPCA) is used
to compute the spatial characteristics of each point in the point cloud (e.g., normal of the fitted plane
in a neighborhood, and smoothness). In the second step, we first deploy a number of seed points
and then apply a clustering algorithm to the plant point cloud with those seed points being the initial
cluster centers to generate small facets. The facets generated have a smooth spatial structure and are
uniformly distributed on the point cloud. In the third step, we use facet adjacency and coplanarity
as conditions to carry out facet region growing with a breadth-first search strategy. After region
growing, multiple facets will be combined to form a larger spatial structure that is finally regarded
as a segmented leaf provided that it covers enough points. The experimental results show that the
proposed method is effective in segmenting individual leaves from greenhouse ornamentals such as
Epipremnum aureum, Monstera deliciosa, and Calathea makoyana, with precision and recall above 90%.
The results also reveal the wide applicability of the proposed methodology for point clouds scanned
from different kinds of 3D imaging systems, such as stereo vision and Kinect v2.

2. Materials and Methods

2.1. Platform and Experiment Subjects

2.1.1. Platform

The processing unit was a desktop, assembled by the authors, with an Intel Core i7-7700
CPU (Intel, Santa Clara, CA, USA) and 16 GB RAM. The software environment included VS2013
(Microsoft, Redmond, WA, USA) with the Point Cloud Library (PCL) [26], which were all operated
in Windows 10. In the experiment, two types of imaging sensors with tripods were adopted to scan
sample plants for point clouds. The first system was a binocular stereo vision system proposed
in [22] (as illustrated in Figure 1a). This stereo vision platform consisted of two high-definition
webcams (HD-3000 series, Microsoft, Redmond, WA, USA), a supporting board (LP-01, Fotomate,
Jiangmen City, China) with a scale line, and a tripod (VCT-668RM, Yunteng Photographic Equipment
Factory, Zhongshang City, China). The second sensor was a structured light sensor [27] (Kinect V2,
Microsoft, Redmond, WA, USA) that obtains depth information by capturing reflections from the
projected infrared light pattern. The Kinect sensor was mounted on the same type of tripod as used for
the stereo system (as illustrated in Figure 1b).
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Figure 1. Two types of imaging sensors with tripods: (a) shows the binocular stereo vision system used
in this research; (b) shows a Kinect V2 sensor mounted on a tripod.

2.1.2. Experiment Subjects

Three types of greenhouse ornamentals were adopted as research subjects in this paper:
Epipremnum aureum (Linden & André) G.S. Bunting, Monstera deliciosa L., and Calathea makoyana.
The Kinect V2 sensor was used to acquire the point cloud of an Epipremnum aureum sample plant and a
Calathea makoyana sample plant. The binocular stereo vision system was used to reconstruct the 3D
point cloud of a Monstera deliciosa sample plant.

2.2. Framework

Our individual leaf segmentation approach for plant point clouds consisted of three steps;
the overview is shown in Figure 2. The first step was the pre-processing of the captured point cloud.
Since the point cloud acquired from a 3D sensor has a large amount of noise points and non-leaf areas,
such as pots and the ground, it was necessary to filter the original plant point cloud to generate a point
cloud containing only leaves for further processing. In addition, the spatial characteristics of each
point were also calculated in the pre-processing step, including the normal of the fitted plane in the
neighborhood and the smoothness. In the second step, we carried out facet over-segmentation on the
preprocessed point cloud data. In this step, a large number of uniformly distributed 3D facets that have
a flat spatial structure were generated on the point cloud. The aim of over-segmentation is to cluster
the points that share the same local spatial characteristics in advance. Therefore, it is a fine solution for
the issue of individual leaf segmentation because aggregating bigger structures, such as facets to a
leaf, is much easier than directly aggregating original points to a leaf in the cloud. We first utilized the
computed spatial characteristics of each point in the first step to coarsely cluster the leaf points that
are nearby and coplanar into the same facet. Then, to make the boundaries of over-segmented facets
more regular, we employed local K-means clustering to refine all facets. In the third step, we realized
individual leaf segmentation based on a facet region growing strategy. In this step, adjacency and
co-planarity among facets were the conditions of facet region growing. After region growing, multiple
facets were combined to form a larger spatial structure that could finally be regarded as a segmented
leaf if it covers a sufficient number of points.
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2.3. Point Cloud Pre-Processing

2.3.1. Removal of Non-Leaf Areas and Outliers

During the 3D point cloud reconstruction process, most imaging sensors will perform
interpolation in certain local areas of the original point cloud data, causing the boundary points of
different planes in the point cloud to leap across different surfaces. Although interpolation smoothed
the measurement errors for interior points, the spatial variances of boundary points became much
larger than those of the interior points, which may result in connection of leaves that are actually
isolated. Therefore, the removal of outliers in the point cloud is an important step in the framework.
The paper applied different filtering methods on point clouds generated by two types of imaging
methods. Three filtering operations were employed on the point cloud of the Epipremnum aureum
sample plant. Firstly, we filtered out the points belonging to the ground by using the z-axis coordinates
of the space. Second, if the number of points in the sphere of radius r centered at the current point
was lower than a threshold n1, then the current point will be considered an outlier and discarded
(i.e., the RadiusOutlierRemoval function in the PCL library). Lastly, we calculated the average distance
between the k nearest neighboring points and the current point, and removed the neighboring point
whose distance was larger than an upper bound derived by adding the average spacing to a coefficient
n2 multiplied by the standard deviation (the StatisticalOutlierRemoval function in the PCL library).
Consequently, non-leaf points and outliers in the Epipremnum aureum point cloud were filtered. Only the
first and the third operations were performed on the Monstera deliciosa point cloud to carry out filtering.
Only the first and the second filtering operations were performed on the Calathea makoyana point cloud;
there was no need to apply the last filtering operation because the leaves of Calathea makoyana are more
regular than the leaves of Epipremnum aureum.

2.3.2. Using IPCA to Compute Spatial Characteristics of Each Point

We specify the spatial characteristics of each point xi in the point cloud χ in two parts: the normal
ni of the fitted plane in a neighborhood of xi = [xi, yi, zi]

T and smoothness si of xi. The fitted plane
fi = (X3×K, xi, ni) of xi is a 3-tuple, in which the K nearest neighborhood matrix X3×K (including xi
itself) of xi is calculated by iterative principle components analysis (IPCA). In each iteration, a plane
passing through xi will be re-estimated by performing PCA on the inliers in the neighborhood.
The notation d(i, j) is defined as the Euclidean distance from the point xj in X3×K to the fitted plane



Sensors 2018, 18, 3625 6 of 16

fi of xi. If d(i, j) is larger than the fixed threshold parameter σ1, point xj will be removed from X3×K
before next iteration. The calculation of d(i, j) is as follows:

d(i, j) =

∣∣ni
T · (xj − xi)

∣∣
|ni|

(1)

The IPCA iterative process will cease when the size of X3×K′ remains unchanged, which also
means K′ decreases from K and finally becomes stable. The fitted plane fi = (X3×K′ , xi, ni) calculated
by IPCA will be very helpful in representing the spatial structure around each point xi. In IPCA,
the three-by-three covariance matrix Ci of X3×K needs to be calculated for updating the fitted plane:

Ci =
1
K

X3×K · XT
3×K (2)

In Equation (2), the data matrix X3×K has been centralized. λ1, λ2, and λ3 are the three descending
eigenvalues of the covariance matrix Ci formed by X3×K. Therefore, the unit eigenvector corresponding
to λ3 can be regarded as the normal ni of the fitted plane of xi. The smoothness indicator si is defined
as the ratio between λ2 and λ3 [28,29]. The greater the smoothness, the flatter the neighborhood of xi.
Both the normal ni and the smoothness si will be updated in each iteration of IPCA. The pseudocode
of the IPCA algorithm is given in Algorithm 1.

Algorithm 1 IPCA for computing the spatial characteristics of each point.

Input: Point Cloud χ, xi is any point in χ.
Parameters: Initial number of points in the neighborhood K.
Output: The unit normal vector ni, and the smoothness si.
1 for each point xi in χ do
2 Initialize xi’s K-nearest neighbors data matrix X3×K .
3 repeat
4 Compute the covariance matrix Ci of X3×K by Equation (2).

5
Compute the eigenvalues in descending order λ1, λ2, and λ3, and their corresponding

eigenvectors v1, v2, and v3 of Ci by Eigenvalue Decomposition.
6 ni ← v3 , si ← λ2/λ3 .

7
Compute the distance d(i, j) between the point xj and xi’s current fitted plane by

Equation (1).
8 if d(i, j) > σ1 then
9 remove the point xj from X3×K

10 end if
11 until X3×K remains the same
12 end for

2.4. Facet Over-Segmentation

2.4.1. Seed Point Selection and Coarse Planar Facet Generation

The normal ni of the fitted plane in the neighborhood and the smoothness si of xi in the point
cloud χ now have been computed according to Section 2.3.2. The coarse facet generation will be
performed based on the normal and smoothness indicators. The essence of the process is to cluster the
points in the point cloud with the same spatial characteristics. We carry out this coarse clustering by
deploying a number of seed points first and then clustering similar points in a local neighborhood
to each seed point. In order to produce reasonable seed points, we randomly select one point xi in
χ and let the point xj with the greatest smoothness in the K-nearest neighborhood X3×K of xi to be a
seed point. Next, based on the seed point xj, a facet whose points have the same spatial characteristics
will be established by local region growing. There are three conditions for local point region growing:
(i) the Euclidean distance between a candidate grow point xk and the seed point xj must be less than a
threshold r1; (ii) the angle between the normals of the fitted planes of the seed point xj and xk needs to
be less than θ; and (iii) the distance from the point xk to the fitted plane f j of xj should be less than
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σ1. The above conditions are used to judge whether xk and xj are near and coplanar, and the three
conditions must be satisfied at the same time to allow the facet region of xj to include xk. If a point xk
has been included in a facet by the local region growing, then it will be labelled as used and extracted
from χ. With the help of the above procedure, coarse planar over-segmented facets will be generated.
The detailed pseudocode for this step is given in the first half of Algorithm 2.

2.4.2. Local K-Means Clustering Based Facet Refinement

In Section 2.4.1, points in χ with the same spatial characteristics have been coarsely clustered into
over-segmented facets, and we have also obtained the collection χseed of seed points. The size of facets
can be controlled by the parameters K and r1; the parameter tuning process will be further discussed
in Section 3. The idea of our local K-means clustering is similar to simple linear iterative clustering
(SLIC) [28].

For facets refinement, a seed point xseed will be first randomly selected from χseed and then a
search sphere of radius r2 centered at xseed is formed. It should be noted that the sphere may possibly
contain multiple seed points in χseed. In each sphere, the Euclidean distances from each point xi in χ to
all seed points (if there are any) will be calculated respectively. After all seed points in χseed have been
processed with the above measure, each point xi in χ is classified to its nearest seed point. After all
points in the cloud have been classified, each cluster now becomes a new facet, and the position of each
seed point will be updated as the mean of the points in the facet it belongs to. We repeat the above
local K-means clustering until the cluster centers of facets become stable. In experiments, we have
observed that the boundaries of facets became stable after 3 to 5 iterations on several kinds of point
clouds. Therefore, we fix the maximum number of iterations for local K-means to be 10. The detailed
pseudocode for facet refinement is given in the second half of Algorithm 2.

Algorithm 2 Facet over-segmentation.

Input: Unit normal vector ni, and the smoothness si of each point xi.
Parameters: r1, θ, and σ1

Output: the collection F of facets, the seed point set χseed.
1 χseed ← ∅
2 for each unused point xi in χ do
3 set the point xj with the largest sj in X3×K of xi as the seed point xseed

4 χseed.push_back(xseed)

5 for each unused point xk in χ do
6 if xk and xseed satisfy the three conditions at the same time.
7 (i) |xk − xseed| ≤ r1

8 (ii) acos(nk · nseed) ≤ θ

9 (iii) d(seed, k) ≤ σ1

10 then grow xk belongs to the region of xseed, and label xk as used
11 end if
12 end for
13 end for
14 Set each region of xseed in χseed as a facet.
15 Set distance di = ∞ for each point xi in χ.
16 repeat
17 for each cluster center xseed in χseed do
18 for each point xi in a sphere of radius r2 centered at xseed do
19 Compute the distance D = |xseed − xi| (multiple seeds may exist)
20 if D ≤ di then
21 di ← D
22 classify xi to the cluster of xseed
23 end if
24 end for
25 end for

26
Points that do not belong to any facet are classified to its nearest seed points. Each

cluster of a seed xseed now becomes a new facet fseed, and all facets form a collection F.
27 until the positions of seeds remain stable.
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2.5. Facet Region Growing for Individual Leaf Segmentation

In Section 2.4, we have accomplished facet over-segmentation and obtained the collection F of
refined facets. The main idea of this section is to carry out facet region growing from each facet fi in F
according to the facet adjacency and the coplanarity. Then, multiple facets will be combined into a
larger structure that can be finally regarded a segmented individual leaf if it covers a sufficient number
of points.

The facet region growing from a starting facet fi to a facet f j must satisfy two conditions: (i) the
facet f j is adjacent to fi; and. (ii) if xi and xj are the centers of the two facets respectively, d(i, j),
which represents the distance from xj to the facet fi, is less than a threshold σ2. If facets f j and fi
satisfy both of these conditions, they are regarded as being located on the same leaf. A breadth-first
search strategy is employed in the facet region growing, which is demonstrated by Figure 3. In the
breadth-first facet region growing, we begin by defining a starting facet labeled by the number “1”
in Figure 3a. The first round of facet growing incorporates three nearby facets with label “2” into the
region (Figure 3b). Finally, after 4 rounds of growing, the total structure now covers 9 small facets
that are assigned the same red color (Figure 3e). The pseudocode for facet region growing is listed in
Algorithm 3.

Algorithm 3 Facet region growing.

Input: The collection of facts F.
Parameters: σ2

Output: The collection of individual leaves.

1 for each unused facet fk in F do
2 a temporal facet queue for breadth-first search A← NULL
3 Set fk as the starting facet of a new individual leaf.
4 A.push_back( fk), and label fk as used.
5 repeat
6 fi = A.pop_ f ront
7 for each unused facet f j in F do
8 if f j is adjacent and d(i, j) ≤ σ2 then
9 A.push_back( f j) and label f j as used
10 Grow fi to f j.
11 end if
12 end for
13 until A = NULL
14 end for
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4 . _ ( )kpush back fA , and label kf  as used. 
5 repeat 
6 . _if pop front=A  
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8 if jf  is adjacent and 2( , )d i j s£  then 

9 . _ ( )jpush back fA  and label jf  as used 
10 Grow if to jf .  

11 end if 
12 end for 
13 until =NULLA  
14 end for  

 
Figure 3. Breadth-first searching strategy for facet region growing: (a) shows the facets before region 
growing started; (b) shows the result of the first round of facet region growing; (c) shows the result 
of the second round of facet region growing; (d) shows the result of the third round of facet region 
growing; (e) shows the result of the final round of facet region growing.3. Results and Discussion. 

3.1. Point Cloud Pre-Processing Results 

Figure 3. Breadth-first searching strategy for facet region growing: (a) shows the facets before region
growing started; (b) shows the result of the first round of facet region growing; (c) shows the result
of the second round of facet region growing; (d) shows the result of the third round of facet region
growing; (e) shows the result of the final round of facet region growing.
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3. Results and Discussion

3.1. Point Cloud Pre-Processing Results

The Kinect V2 sensor is used to acquire point clouds of an Epipremnum aureum sample plant and a
Calathea makoyana sample plant, each containing a total of 217,088 points. The binocular stereo vision
system is used to reconstruct the 3D point cloud of a Monstera deliciosa sample plant that contains
200,000 points. Three filtering operations are employed on the point cloud of the Epipremnum aureum
sample plant. Firstly, we filter out the non-leaf points according to greenness and the z-axis coordinates
of the point cloud. Secondly, we compare the number of points in the radius r = 0.015m around
each point with a threshold n1 = 85. If the number of points is lower than 85, the current point will
be considered an outlier and discarded. Last, we calculate the average distance between the k = 40
nearest neighboring points and the current point, removing the neighboring points whose distance
is larger than an upper bound of adding the average spacing to n2 = 1 multiplied by the standard
deviation. However, only two filtering operations are performed on the Monstera deliciosa point cloud,
with parameters set as k = 25 and n2 = 1. Generally speaking, the radius-based filtering method can
better preserve the dense parts of the point cloud, while the filtering method based on the average
distance within a neighborhood is well suited for removing isolated outliers. The original and the
pre-processed point clouds are shown in Figure 4.
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Figure 4. The original and pre-processed point clouds of the three greenhouse sample plants:
(a) the original point cloud of Epipremnum aureum; (b) the original point cloud of Monstera deliciosa;
(c) the original point cloud of Calathea makoyana; (d) the pre-processed result on Epipremnum aureum;
(e) the pre-processed point cloud on (b); and, (f) the preprocessed result on (c).

3.2. Results of Facet over-Segmentation

Facet over-segmentation consists of two parts. The first part mainly selects seed points and
carries out the coarse facet generation in the preprocessed plant point cloud. The second part conducts
local K-means clustering to refine boundaries of facets. The threshold r1 roughly defines the spacing
between two different seed points in 3D space. However, coarse planar facet generation processes
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each point only once; namely, when the current seed point has grown into a facet, the remaining
seeds can only continue to grow on the remaining points in the point cloud. Thus, the coarse facets
may not have the suitable structure and points in the point cloud may not be assigned to the correct
seed points. Therefore, it is crucial to refine the boundaries of the facets by applying local K-means
clustering, which automatically classifies each point to its closest facet. Local K-means clustering also
updates the seed points (centers) of the refined new facets, respectively. The two parts combined can
generate regular and uniform facets on plant point clouds. The granularity of the generated facets can
be controlled by parameters K and r1. K is the number of points in the neighborhood when performing
IPCA, which not only influences the normal of the fitted plane, but also influences the number of
generated seed points (i.e., the number of facets). The smaller the value of K, the more seed points are
generated. The parameter r1 controls the minimum distance between seed points after the generation
of coarse facets. Therefore, a smaller r1 represents more facets input for local K-means clustering.
Figure 5b shows the over-segmentation result of Epipremnum aureum when K is 100 and r1 is 0.05 m;
Figure 5c shows the over-segmentation when K is 40 and r1 is 0.05 m; and, Figure 5d demonstrates the
results when K is 20 and r1 is 0.03 m. Figure 5f shows the over-segmentation result of the Monstera
deliciosa point cloud when K is 100 and r1 is 0.05 m; Figure 5g displays the result when K is 40 and r1 is
0.05 m; and, Figure 5h is the result when K is 40 and r1 is 0.03 m. Figure 5j shows the over-segmentation
result of the Calathea makoyana point cloud when the value of K is 100 and r1 is 0.05 m; Figure 5k shows
the result when K is 40 and r1 is 0.05 m; and, Figure 5l is the result obtained when K is 40 and r1 is
0.03 m. It can be clearly seen that the granularity of the facets changes as K and r1 decrease, and that a
smaller K or r1 tends to produce smaller facets.
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Figure 5. The facet over-segmentation of Epipremnum aureum, Monstera deliciosa, and Calathea makoyana;
point clouds (a,e,i) show the top-views of the original three point clouds, respectively; (b) the
over-segmentation result of Epipremnum aureum when K is 100 and r1 is 0.05 m; (c) the result when K
is 40 and r1 is 0.05 m; (d) the result when K is 20 and r1 is 0.03 m. (f) The over-segmentation result
of Monstera deliciosa when the value of K is 100 and r1 is 0.05 m; (g) the result when K is 40 and r1 is
0.05 m; and, (h) the result obtained when K is 40 and r1 is 0.03 m. (j) The over-segmentation result of
Calathea makoyana when the value of K is 100 and r1 is 0.05 m; (k) the result when K is 40 and r1 is 0.05
m; and, (l) the result obtained when K is 40 and r1 is 0.03 m.
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3.3. Result of Individual Leaf Segmentation based on Facet Region Growing

The result of facet region growing is mainly influenced by the parameter σ2, which is used to
prevent the growing region from extending to nearby leaves. The distance from the center of an adjacent
facet to the current facet needs to be less than σ2 when carrying out the breadth-first-search-based facet
region growing. The result of individual leaf segmentation of the point cloud of Epipremnum aureum
is shown in three different views in Figure 6a,d,g, in which σ2 is 0.0055 m. The individual leaf
segmentation results of the point cloud of Monstera deliciosa in three different views are shown in
Figure 6b,e,h, where σ2 is set as 0.0025 m. The individual leaf segmentation results of the point cloud
of Calathea makoyana in three different views are shown in Figure 6c,f,i, where σ2 is set as 0.0055 m
(the same as for Epipremnum aureum).
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Figure 6. The results of individual leaf segmentation of Epipremnum aureum, Monstera deliciosa, and
Calathea makoyana. The left column (a,d,g) shows three different views of the result of the point cloud
of Epipremnum aureum, respectively. The middle column (b,e,h) shows three different views of the
result of the point cloud of Monstera deliciosa, respectively. The right column (c,f,i) shows three different
views of the result of the point cloud of Calathea makoyana, respectively.

3.4. Parameters

The parameters that appear in the proposed method are listed in Table 1. The parameters can
be divided into two parts. The first part contains the filtering parameters, including r, n1, k, and n2.
The second part contains the segmentation parameters, that is, the last six parameters. The parameter
values for Epipremnum aureum, Monstera deliciosa, and Calathea makoyana are different, which is due to
the different leaf types of the three species.
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Table 1. Parameter settings for the three different point clouds.

Parameter Description Value for Epipremnum Value for Monstera Value for Makoyana

r
The radius parameter of the
search sphere used for
removing outliers.

0.015 m — 0.015 m

n1

A threshold that defines the
minimum number of points in the
search sphere.

85 — 50

k

The number of the nearest
neighbors of the current point
when computing the average
spacing.

40 25 —

n2

A threshold that is used to
multiply the standard deviation of
the average spacing.

1 0.1 —

K The number of the nearest
neighbor points used in IPCA. 20 40 40

r1
A radius threshold used for coarse
planar facet generation. 0.03 m 0.03 m 0.03 m

θ
An angle threshold for comparing
two normals. 23◦ 23◦ 23◦

σ1
A threshold for measure the
distance from a point to a plane. 0.025 m 0.025 m 0.025 m

r2
A radius threshold used in local
K-means clustering. 0.1 m 0.1 m 0.1 m

σ2

A threshold that defines the
distance from the center of one
facet to another adjoining facet.

0.0055 m 0.0025 m 0.0055 m

The Epipremnum aureum plant has small and curved leaves and a crowded canopy, therefore we
have to apply three different filters—the z-axis filter, the number-of-points-in-a-radius filter, and the
statistical average spacing filter—together to remove the outliers. So, for a plant that has small and
curved leaves, we strongly recommend applying all of the four filtering parameters to the point
cloud. Conversely, for a plant with large and broad leaves, such as the Monstera deliciosa and Calathea
makoyana, only two filters should be applied; the z-axis filter and the number-of-points-in-a-radius
(or the statistical average spacing filter) are enough to generate a satisfactory point cloud. Larger leaves
usually represent a simpler canopy structure because the area of leaves is already large enough to
capture energy from the sun, and a simple canopy structure means that the leaves are easier to be
segmented. In addition, we have also tested the number-of-points-in-a-radius filter and the statistical
average spacing filter separately on the Monstera deliciosa sample plant, and the two processed point
clouds are nearly identical. In our experience, the values for the four filtering parameters should be set
to larger values on a plant with small and dense leaves.

There are not many differences in fixing the segmentation parameters for the three different
species. Only the parameter K should be decided according to the average leaf size of the plant.
For a plant with small leaves (such as Epipremnum aureum), we use a smaller K to generate enough
facets for each single leaf. Conversely, for a plant with large leaves (such as Monstera deliciosa and
Calathea makoyana), we use a larger K to avoid generating too many tiny pieces of facets on a single leaf.
The parameters r, r1 and σ2 are related to the precision of the scanned point cloud. The average spacing
of the dense points in the sample clouds is about 1.95 mm, while the spacing of sparse points is between
3 mm and 6 mm. Thus, all the distance thresholds are tuned with a small step of 0.5 mm to avoid
producing unstable fluctuations in the segmentation result.n1, k, and K are the number thresholds that
relate to the number of points in the point cloud. On average, there are about 400 to 500 points on a
single leaf. Therefore, all the number thresholds are tuned with a small step of 5 to avoid producing
unstable fluctuations in segmentation result.

It is also worth noting that if the facets are smaller, then the facet region growing will be easier
because the distance from a facet center to another facet is smaller. This phenomenon is demonstrated
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in Figure 7. When fb breaks into two parts fb1 and fb2, the distance from fb1 to fa is much smaller than
the distance from fb to fa. Therefore, if the granularity of over-segmentation is changed, the parameters
for facet region growing should also be altered to avoid falsely combining facets on different leaves.
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Figure 7. The granularity of over-segmentation affects the result of facet region growing. (a) shows
the side view of a facet set containing only two adjacent facets, and (b) shows the side view of a facet
set containing three adjacent facets. If the facet fb in (a) breaks into two parts, fb1 and fb2; In (b),
the distance from fb1 to fa is much smaller than the distance from fb to fa, making the region growing
to be easier.

3.5. Performance Evaluation

Individual leaves are calculated according to the facet growing result of the proposed method.
We define the following metrics to better evaluate the proposed method, and the calculated metrics are
analyzed at the individual leaf level.

• TP (True Positive): if a segmented leaf region covers more than 70% of the total number of the
points of the real single leaf, the segmented leaf is then regarded as a TP.

• FP (False Positive): if two real leaves are segmented by the same segmentation region, then we
regard it to be an FP.

• FN (False Negative): If more than 70% points of a real leaf are not covered by any segmentation,
then we call it an FN.

Because we only provide point clouds of leaves for evaluating the proposed method, the True
Negative (TN) does not exist. Based on the above definitions of TP, FP, and FN, we calculate three
metrics—namely, the recall, precision, and F-measure—to quantitatively evaluate the proposed
algorithm. The three metrics are explained as follows:

recall =
TP

TP + FN
× 100% (3)

precision =
TP

TP + FP
× 100% (4)

F−Measure =
2TP

2TP + FP + FN
× 100% (5)

Table 2 lists the evaluation results of the proposed method on the three sample point clouds by
these defined metrics. The proposed method successfully segmented 21 individual leaves from the
point cloud of Epipremnum aureum with 23 real leaves, and segmented 15 individual leaves from the
point cloud of Monstera deliciosa with 16 real leaves. The proposed method also correctly segmented
11 individual leaves from the point cloud of Calathea makoyana with 12 real leaves. The average
precision of the method is higher than 90%, and the F-measure is higher than 95% on all three types
of plants. The metrics show that the proposed method is able to obtain high TP numbers in the
three cases. The FPs are mainly attributed to spatially adjacent leaves. For example, several leaves
are overlapping and coplanar, making them extremely difficult to be correctly segmented even by
a human (as illustrated in Figure 8a,b). We also manually evaluated the cover rates (defined as the
ratio of a segmented leaf area to the original leaf area) of the three sample plants. The average cover
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rate for the Epipremnum aureum sample plant is 94.35%; the maximum cover rate among all leaves is
100%, and the minimum is about 70.00%. The average cover rate of Monstera deliciosa roughly reaches
100% because our method generates almost perfect segmentation result on plants with large leaves.
The average cover rate of Calathea makoyana is 92.08%; the maximum cover rate among all leaves of
Calathea makoyana is 100%, and the minimum cover rate is about 50%.

Table 2. Quantitative results of the proposed method.

Plant Type True Positive
(TP) Reference False Positive

(FP)
False Negative

(FN) Recall Precision F-Measure

Epipremnum aureum 21 23 2 0 100% 91.30% 95.45%
Monstera deliciosa 15 16 1 0 100% 93.75% 96.77%
Calathea makoyana 11 12 0 1 91.67% 100% 95.65%
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4. Conclusions 

Figure 8. False Positives (FP) in two sample point clouds: (a) the two FPs for the point cloud of
Epipremnum aureum; (b) the FP of the point cloud of Monstera deliciosa sample plant.

The proposed method took 13.04 s to complete the individual leaf segmentation on the point cloud
of Epipremnum aureum, 4.85 s on the point cloud of Monstera deliciosa, and 4.50 s on the point cloud of
Calathea makoyana. Thus, the proposed method can be used for quasi-real-time plant phenotyping.

Although the original goal of the proposed method was to segment individual leaves from a
point cloud, we found that it has the potential to be applied to many applications that aim to segment
regular surfaces and objects from a point cloud; for example, remote sensing, building information
modeling (BIM), and simultaneous localization and mapping. In Figure 9, we apply the segmentation
method to a point cloud containing a table surface and several objects (bottles and boxes), and obtain a
satisfactory surface segmentation result, where all standing objects are correctly segmented from the
table surface.
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Although the original goal of the proposed method was to segment individual leaves from a 
point cloud, we found that it has the potential to be applied to many applications that aim to segment 
regular surfaces and objects from a point cloud; for example, remote sensing, building information 
modeling (BIM), and simultaneous localization and mapping. In Figure 9, we apply the segmentation 
method to a point cloud containing a table surface and several objects (bottles and boxes), and obtain 
a satisfactory surface segmentation result, where all standing objects are correctly segmented from 
the table surface. 

 
Figure 9. The segmentation result of our method on a point cloud containing a table surface and 
several objects (bottles and boxes): (a) the original point cloud with real colors, and (b) the 
segmentation result with different objects labeled in different colors, respectively. 

4. Conclusions 

Figure 9. The segmentation result of our method on a point cloud containing a table surface and several
objects (bottles and boxes): (a) the original point cloud with real colors, and (b) the segmentation result
with different objects labeled in different colors, respectively.

4. Conclusions

In order to address the problems of image-based leaf segmentation methods, such as restrictions on
species and vulnerability toward overlapping leaves, we propose a new individual leaf segmentation
method for plant point clouds. The method can be divided into three steps: pre-processing,
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facet over-segmentation, and facet region growing. Our method is not only suitable for the point
clouds generated from two-camera stereo systems, but also handles the plant point clouds scanned
from structured light sensors. In a performance assessment, our method achieved higher than 90%
in average recall and higher than 95% in average F-measure for three different kinds of greenhouse
ornamental plants. Although the original goal of our method was to segment individual leaves from a
point cloud, we found that it has the potential to be applied to many applications that aim to segment
regular surfaces and objects from a point cloud; for example, remote sensing, building information
modeling (BIM), and simultaneous localization and mapping.

In this research, we only handled the plant point clouds that are sufficiently dense, which requires
that a leaf should contain at least 50 points. Leaves that are both coplanar and adjoining are extremely
difficult to segment, even for a human. For our approach, the FPs (False Positives) which stem from
incorrectly growing facets across adjacent leaves are unavoidable. Although a FP segmentation does
not influence the total leaf area computed, it reduces the number of detected leaves in the point
cloud, resulting in an increase in the average leaf area index. For future research, we are interested in
integrating popular deep learning algorithms into the 3D leaf segmentation method to separate each
individual leaf from heavily clustered foliage. We also plan to test the proposed method on the plant
point clouds scanned by many other kinds of 3D sensors with distinct accuracies.
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