
Sirtuin 6 Builds a Wall Against Inflammation, Trumping
Diabetes
William Giblin1 and David B. Lombard1,2

Diabetes 2017;66:2535–2537 | https://doi.org/10.2337/dbi17-0025

In 2014, more than two-thirds of U.S. adults were over-
weight or obese (1). These numbers have more than dou-
bled over the past 50 years; ominously, obesity increasingly
afflicts younger individuals, including children (2). Numer-
ous deleterious health consequences are associated with obe-
sity, including hypertension, dyslipidemia, type 2 diabetes,
heart disease, and cancer (3,4). The costs associated with
obesity in the U.S. are estimated to top $500 billion/year
over the next two decades (5,6). Substantial literature has
documented key roles for adipose tissue macrophages and
hepatic Kupffer cells in driving chronic systemic inflamma-
tion and insulin resistance and their downstream sequelae
in obesity (7).

The sirtuins (SIRT1–7) are NAD+-dependent lysine
deacetylases/deacylases critical for maintaining cellular and
organismal homeostasis. A large body of work has demon-
strated roles of sirtuins in regulating inflammatory responses
and signaling through the insulin/IGF-1, mTOR, and AMPK
pathways, all of which help mediate the adverse health con-
sequences of obesity (8). SIRT6 is a chromatin-associated
sirtuin implicated in metabolism, inflammation, stress re-
sponses, and genomic stability. Whole-body Sirt6 knockouts
(KOs) die by a month of age from a complex hypoglycemic
degenerative phenotype. Conversely, transgenic male mice
overexpressing SIRT6 show extended longevity, with pre-
served glucose tolerance, attenuated adipose inflammation,
and reduced macrophage activation and accumulation in
adipose tissue (9). Sirt6 transgenics fed a high-fat diet
(HFD) show diminished white adipose tissue accumulation,
lower triglyceride and LDL cholesterol levels, and improved
glucose tolerance. Molecularly, SIRT6 deacetylates histone
H3 and pyruvate kinase muscle isozyme M2 (PKM2),
among other targets (10,11).

In this issue of Diabetes, Lee et al. (12) elucidate a novel
mechanism whereby SIRT6 suppresses insulin resistance
and inflammation occurring in response to HFD bymodulating
macrophage inflammatory signaling (Fig. 1). They show that
SIRT6 levels are reduced in macrophages from HFD-fed

mice and in proinflammatory M1 macrophages. To further
explore a role for SIRT6 in this cell type, they generated
myeloid-specific Sirt6 KOs (mS6KOs). Though unremarkable
under standard feeding conditions, these animals show an
aggravated metabolic phenotype during HFD: increased
weight gain, elevated fasting glucose and insulin levels,
and fatty liver, along with diminished insulin-induced tissue
phospho-AKT levels. mS6KOs exhibit increased M1 macro-
phage infiltration in liver and fat, with a concomitant re-
duction of M2 type macrophages associated with tissue
repair and attenuated inflammation. This effect appeared
to be cell autonomous. Mechanistically, the authors link
these effects to regulation of inflammatory signaling by
SIRT6—specifically, of its known targets nuclear factor-kB
(NF-kB), STAT3, and p38 mitogen-activated protein kinase.
Genetic suppression of NF-kB signaling, or pharmacological
STAT3 inhibition, suppressed the increased inflammation
present in cultured SIRT6-deficient macrophages to con-
trol levels. The authors further implicate the SIRT6 target
PKM2 as a STAT3 regulator involved in regulation of mac-
rophage inflammation.

The study by Lee et al. (12) contributes to the literature
by documenting the importance of SIRT6 in diverse cell types
in maintaining metabolic homeostasis during HFD (Fig. 1).
SIRT6 negatively regulates hepatic gluconeogenesis, re-
presses glycolytic gene expression, and attenuates lipogen-
esis by inhibiting the SREBPs, transcription factors involved
in lipogenesis and cholesterol biogenesis (11). In a genetic
obesity model, SIRT6 reduces hepatic and serum cholesterol
levels, whereas hepatocyte SIRT6 deletion results in fatty
liver (11). SIRT6 modulates PGC1-a activity, suppressing
hepatic glucose production (11). Adipose-specific SIRT6 de-
ficiency resulted in increased FOXO1 acetylation, decreased
lipolysis, and worsened obesity in response to HFD. HFD-
induced insulin resistance, increased adipose tissue inflam-
mation, and fatty liver were observed in these mice (13),
consistent with the phenotypes of mS6KOs. Sirt6 KO spe-
cifically in pancreatic b-cells results in exacerbated glucose
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intolerance and reduced glucose-stimulated insulin secre-
tion during HFD (14). SIRT6-dependent FOXO1 deacetyla-
tion attenuates FOXO1-mediated transcriptional repression
of critical glucose-sensing genes (15).

Might these functions of SIRT6 be relevant outside the
context of a pathogenic diet? SIRT6 levels decline in dermal
fibroblasts isolated from older donors (16). Likewise, NAD+

levels decrease during HFD and in aged mouse tissues (17).
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Figure 1—SIRT6 in macrophages inhibits inflammation via attenuation of NF-kB and JAK2/STAT3 signaling. SIRT6 in pancreatic b-cells, adipose
tissue, and the liver inhibit glucose intolerance, inflammation, insulin resistance, and cholesterol biogenesis, among other negative impacts of
HFD. Some graphics in this figure were obtained and modified from Servier Medical Art from Servier (www.servier.com/Powerpoint-image-bank).
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During natural aging, mice and humans show progressively
decreased insulin sensitivity and increased sterile inflamma-
tion (18). It is interesting to speculate that impaired SIRT6
activity, in macrophages and other cells, may contribute to
these changes. Perhaps pharmacological enhancement of
SIRT6 activity, via lipid-based activators (8) or NAD+ pre-
cursors (19), might help mitigate the effects of an un-
healthy diet or even metabolic dysregulation associated
with natural aging. However, caution is in order, since
pharmacological inhibition of SIRT6 was recently shown
to confer therapeutic benefit during HFD (20).
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