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Abstract

Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal
polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However,
the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during
development and among the types of neurons, probably determining their firing characteristics in response to stimulation.
Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the
AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance
of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only
after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each
confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on
ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction,
as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the
heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding
differences in action potential regulation.
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Introduction

The non-uniform distribution of specific of voltage-gated K+

(Kv) channels and their restriction to discrete neuronal domains

is thought to contribute to the control of neuronal excitability.

Indeed, these channels are believed to influence different

properties of neurons, including resting membrane potential,

waveform shape, action potential (AP) firing pattern, transmitter

release and synaptic strength. The importance of Kv channels

in neuronal function is reflected by the neurological alterations

induced by mutations or diseases that disrupt K+ channel

expression, including episodic ataxia and epilepsies [1,2,3,4,5,6].

In the plasma membrane, Kv channels are actually complexes

made up of four voltage-sensing and pore-forming subunits,

each generated from a family of over 35 subunits divided into

12 subfamilies (Kv1–12) [7,8]. These complexes may assemble

with auxiliary b subunits what may influence the expression,

localization and biophysical properties of Kv channels [9,10,11].

The axon initial segment (AIS) is a neuronal domain that is

densely populated by voltage-gated ion channels, and it is

a structure that is critical for input integration and action

potential generation [12,13,14,15]. In addition to voltage-gated

Na+ (VGSC) [16,17,18,19,20] and Ca2+ (Cav) channels

[12,21,22], the AIS of neocortical and hippocampal principal

cells is characterized by the expression of Kv1, Kv2 and Kv7

channels [17,18,19,20,23,24,25,26]. The distinct subunit com-

position of these channels confers distinct biophysical properties

to the ion currents mediated by each of them. Together with

heterogeneous expression and localization of such channels in

the AIS, they are likely to contribute to the electrophysiological

variability between neuronal populations, and the corresponding

differences in AP initiation and/or propagation

[17,18,19,20,27,28,29,30,31].

Kv1 channels are characterized by low thresholds, as well as

rapid activation and slow inactivation kinetics, and they are known

to modulate the threshold, initiation, shape and propagation rate

of APs, as well as neurotransmitter release and synaptic efficacy

[25,32,33,34,35,36]. Kv2 or delayed rectifier Kv channels regulate

somatodendritic excitability and Ca2+ influx in hippocampal and

cortical neurons during periods of repetitive high frequency firing

[37,38,39,40,41,42,43]. These channels are also localized at the

AISs of different neuronal populations, where they contribute to
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the maintenance of AP amplitude by regulating the inter-spike

potential during high frequency firing [44,45]. Kv7 channels are

localized at the AIS [23,46,47,48,49,50,51] and they underlie the

M-current. These channels regulate resting potential and AP firing

and they are characterized by low-threshold, slow activation gating

at negative voltages, and sustained activity and non-inactivation

near the AP threshold [47,52,53,54].

Despite the functional importance of the AIS, the timing and

the intracellular mechanisms involved in the compartmentaliza-

tion of Kv channels at the AIS remain poorly understood. A

Figure 1. Developmental expression of potassium channels in cultured hippocampal neurons. (A) Western blot of Kv1.2, Kv2.2 and Kv7.2
in hippocampal neurons cultured at high density (50,000/cm2) for different intervals (from 1 to 21 DIV) in control conditions. (B) Histograms show
Kv1.2, Kv2.2 and Kv7.2 expression normalized to actin when quantified densitometry of Western blots. The data represent the mean 6 SE of three
independent experiments. Note the delayed onset of Kv1.2 expression as compared with that of Kv2.2 and Kv7.2. (C) Photomicrograph of
hippocampal neurons cultured for 6 DIV and double immunostained for Kv7.2 (green) and MAP2 (red). Note the early expression of Kv7.2 in a single
process emerging from the cell body (arrows). (D) Histogram shows the percentage (mean 6 SE) of neurons expressing Kv7.2 at the AIS at different
developmental stages in vitro. Scale bar = 16 mm.
doi:10.1371/journal.pone.0048557.g001
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key aim of the present study was to describe the distribution,

developmental expression and co-localization of different Kv

channel types in the AIS of cultured hippocampal neurons,

a model commonly used to study the development of neuronal

polarity and axonal maturation [55]. In cultured hippocampal

neurons, ankyrin G is one of the earliest markers to be detected

at the AIS and it is essential for the tethering of other proteins

that appear early during AIS development, such as VGSC

[56,57,58]. Like VGSCs, Kv7 channels (Kv7.2 and Kv7.3

subunits) contain a common ankyrin G binding domain that is

required for their targeting to the AIS. Together with the

adhesion molecules NrCAM and Neurofascin 186, accumulation

of Kv7 channels at the AIS is critically dependent on the

interaction of ankyrin G with the actin cytoskeleton via bIV
spectrin [16,46,48,49,56,57,59,60,61,62,63]. Correct tethering of

these proteins also depends on the structural integrity of actin

and on the microtubule cytoskeleton in the AIS [64,65,66,67].

Further AIS maturation in cultured hippocampal neurons

involves the expression of GABAA receptor subunits and

gephyrin clusters [68], as well as the acquisition of the cisternal

organelle. The latter structure is involved in Ca2+ regulation

and reaches neurochemical maturation during the second week

in vitro [69,70]. To date, the precise temporal distribution of

Kv1 and Kv2 channels in the AIS, along with the associated

trafficking and clustering mechanisms, has not been fully

elucidated [19,20,24]. Therefore, we have studied the temporal

and spatial distribution of Kv1.2 and Kv2.2 subunits during AIS

development, and the role of the submembranous actin

cytoskeleton in this process. Our results show that Kv1.2 and

Kv2.2 expression are mutually exclusive in the AIS of cultured

hippocampal neurons, and that their localization in this region

is dependent on ankyrin G, yet independent of actin cytoskel-

eton integrity.

Materials and Methods

Neuronal Cultures
Hippocampal neurons were obtained from E17 mouse embryos

and prepared as described previously [55]. Mice were obtained

from the Cajal Institute animal facility. Pregnant female mice and

embryos were sacrificed by cervical dislocation and decapitation

respectively following the guidelines of Council of Europe

Convention ETS123, recently revised as indicated in the Directive

86/609/EEC. In addition all protocols were approved by the

institutional animal care and use committee (Subcomité de

Bioética, CSIC; Institutional review board; IRB 0007851).

Briefly, after dissection of the hippocampus, tissue pieces were

washed three times in Ca2+/Mg2+-free HSBB and digested for

15 min in the same solution containing 0.2% trypsin. The tissue

was washed three times in Ca2+/Mg2+-free HBSS and dissociated

with a fire-polished Pasteur pipette. The cells were counted,

resuspended in plating medium (MEM with 10% Horse Serum

and 0.6% glucose) and plated on polylysine coated coverslips

(1 mg/ml) at a density of 5,000 cells per cm2 (low density) for

immunostaining, or 50,000 cells per cm2 (high density) for Western

blots. After 2 hours, the medium was replaced with neuronal

culture medium (Neurobasal medium supplemented with B-27

and glutamax-I). To maintain the neurons for 21 days in vitro

(DIV), the cells were transferred to 60 mm plates containing

astrocyte monolayers that had been cultured in neuronal culture

medium for 24 h previously. 1-b-D-arabinofuranosylcytosine

(AraC: 5 mM) was added to the culture after 3 days to prevent

astroglial cell growth, and in some cases neurons were treated

between 15 and 17 DIV with 5 mM cytochalasin D (Sigma) to

impede actin polymerization. For detergent extraction, neurons

were maintained in culture for 21 DIV, washed briefly in PBS and

then treated for 15 minutes at 37uC with 1% Triton X-100 in

cytoskeletal buffer (2 mM MgCl2, 10 mM EGTA, 60 mM Pipes

[pH 7.0]), as described previously [64]. For nucleofection experi-

ments, the plasmids were introduced into hippocampal neurons by

nucleofection prior to plating (Amaxa Bioscience, Koln, Ger-

many), according to the manufacturer’s instructions. Nucleofection

was performed using 3 mg of total DNA and the plasmids used for

transient expression were: scrambled negative control shRNA in

a pGFP-V-RS plasmid and a shRNA-AnkG (sequence: TCGGA-

TAGGTCCTACACCTTGAACAGAAG) in a pGFP-V-RS plas-

mid (Origene, Rockville, MD, USA). The effects of nucleofection

were analyzed at 18 DIV.

Western Blotting
Protein samples were prepared from hippocampal neurons

cultured at high density (50,000/cm2) in control conditions.

After different times in culture (from 1 DIV to 21 DIV), the

plates were washed twice with cold PBS, the neurons were lysed

and then homogenized in a buffer containing: 20 mM HEPES

[pH 7.4]; 100 mM NaCl; 100 mM NaF; 1% Triton X-100;

1 mM sodium orthovanadate; 10 mM EDTA; and a complete

protease inhibitor cocktail (Roche Diagnostics, Mannheim,

Germany). The lysates were boiled for 10 minutes, separated

by SDS-PAGE on 8% acrylamide gels and transferred to

nitrocellulose membranes. The membranes were incubated

overnight at 4uC with primary antibodies in blocking solution

(PBS, 0.2% Tween-20 and 5% BSA): mouse anti-Kv1.2

(1:1,000; Neuromab, UC Davis, USA); rabbit anti-Kv2.2

(1:500; Alomone, Jerusalem, Israel); mouse anti-Kv7.2

(KCNQ2, 1:500; Neuromab) and mouse anti-b-actin (1:5,000;

Sigma, St Louis MO, USA). After washing, the membranes

were incubated with the corresponding peroxidase conjugated

secondary antibody for 2 h at room temperature, and antibody

binding was visualized by ECL (Amersham). Densitometry was

performed using an imaging densitometer (GS-800, BioRad).

Background level was subtracted using a whole-image back-

ground subtraction tool (Quantity One software, BioRad).

Immunocytochemistry
After different times in culture, neurons were fixed in 4%

paraformaldehyde for 20 minutes and then washed in PBS. For

immunostaining, the coverslips were treated with 50 mM NH4Cl

and incubated in blocking buffer for 45 minutes (PBS, 0.22%

gelatin and 0.1% Triton X-100). After blocking non-specific

binding, the coverslips were incubated for 1 h at room temper-

ature with the primary antibodies to Kv channel subunits diluted

in blocking buffer: rabbit anti-Kv2.2 (1:250, Alomone); mouse

anti-Kv1.2 (1:250; Neuromab); mouse anti-Kv 7.2 (KCNQ2,

1:200; Neuromab). To identify the AIS we used mouse anti-Pan

sodium channels (1:100; Sigma) and mouse anti-ankyrin G (1:200;

Neuromab) antibodies and rabbit antibodies (14D4) raised against

phospho (p-32)-IkBa (1:500; Cell Signalling, Beverly, MA, USA)

that recognize an uncharacterized phosphorilated protein present

at the AIS [71]. Mouse anti-Tau-1 (1:1,000; Sigma) and chicken

anti-MAP2 (1:5,000; Abcam, Cambridge, UK) antibodies were

used to reveal axonal and neuronal morphology respectively. In

some neurons, actin filaments were also stained with Alexa 488

phalloidin (1:100; Invitrogen, A-12379). The secondary antibodies

used were donkey anti-mouse, anti-rabbit or anti-chicken cupled

to Alexa 488, Alexa 594 or Alexa 647. After staining coverslips

were counterstained with DAPI (1:1000, Calbiochem, San Diego,

CA, USA) and mounted in Fluoromount G (Southern Biotech,
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Birmingham, AL, USA). Images were obtained using a DP70

camera attached to an Olympus BX51 fluorescence microscope,

or by laser scanning confocal microscopy (Zeiss 710). Z sections

were recorded at 0.2–1-mm intervals through separate channels

and ZEN 2009 software (Zeiss) was used to construct composite

images from each optical series by combining the images recorded

through the different channels. In all cases, Adobe Photoshop CS4

software was used to generate the figures (Adobe Systems Inc., San

Jose, CA, USA). The cell counts in the different experimental

conditions were compared by the unpaired t-test using Sigma Plot

11.0 software.

Results

Voltage-gated Potassium Channel Expression in the
Developing AIS of Cultured Hippocampal Neurons
We first analyzed the expression of voltage-gated potassium

channels in hippocampal neurons cultured at high density for

different intervals up to three weeks. The total expression of the

different Kv subunits was analyzed in Western blot and the results

were normalized to the expression of b-actin (Fig. 1). Kv1.2

subunit expression was only weakly detected during the first days

in vitro, yet it increased progressively from about 13 DIV (Fig. 1A–

B). By contrast, Kv2.2 subunit expression was clearly evident from

the first day in culture and it increased progressively thereafter.

The pattern of Kv7.2 subunit expression closely resembled that

observed for Kv2.2, consistent with previous studies describing the

early onset of Kv7.2 expression at the AIS. This Kv7.2 expression

is dependent on its binding to ankyrin G [48], which is expressed

in the developing AIS from 3 DIV [58].

We next used immunocytochemical analysis to study the

localization of these voltage-gated potassium channels in the

developing AIS of cultured hippocampal neurons. When we

studied the localization of Kv7.2 subunit in our cultures (Fig. 1C–

D), it was already present in the AIS of 17.15 (60.49%) of neurons

after 3 DIV and from 6 DIV onwards, it was detected in ,80% of

neurons: 78.64 (64.38%) at 6 DIV; 80.88 (61.39%) at 10 DIV;

85.39 (63.76%) at 15 DIV; 89.96 (61.19%) at 17 DIV; and 84.44

(62.96%) at 21 DIV. Kv7.2 was distributed homogeneously in the

AIS and it was detected along the distal and proximal regions at all

stages of development (Fig. 1C). As the expression patterns of

Kv7.2 and Kv7.3 at the AIS along with the mechanisms that allow

their concentration at the AIS have been well characterized

[48,50] we subsequently focused on Kv1 and Kv2 channel

expression. Accordingly, the results described below demonstrate

that the trafficking of Kv1 and Kv2 channels towards the axon lags

behind that of sodium channels and Kv7.2 channels.

Kv1.2 Expression in the AIS of Cultured Hippocampal
Neurons
To study the expression of low threshold voltage-gated

potassium (Kv1) channels during the development of neuronal

polarity and AIS maturation, hippocampal cells were cultured for

different intervals and stained with antibodies raised against the

Kv1.2 subunit (Fig. 1). Kv1.2 was expressed in the nascent axon

after 36 h in culture, as identified by 14D4 staining, which co-

localizes with the axonal marker SMI-31 [58]. In parallel with

axon elongation, there was a progressive concentration of 14D4

immunostaining in the AIS, whereas diffuse Kv1.2 staining was

observed in neurons, predominantly in the soma. Indeed, Kv1.2

did not concentrate in the AIS until around 8 DIV (Fig. 2 A–E).

Consistent with the findings in Western blots, Kv1.2 immunos-

taining was more intense and specifically concentrated to the AIS

of some neurons after 10 DIV (Fig. 2F–H). Indeed, the percentage

of neurons exhibiting Kv1.2 staining restricted to the AIS (Fig. 3G)

increased after 8 DIV to ,30% of cultured neurons by 21 DIV

(n= 3): 1.46 (60.25%) at 8 DIV; 5.15 (60.39%) at 10 DIV; 12.1

(60.07%) at 13 DIV; 17.67 (60.63%) at 15 DIV; 22.56 (61.76%)

at 17 DIV; and 29.75 (61.41%) at 21 DIV. Kv1.2 immunostain-

ing was homogeneous, unclustered and mainly concentrated in the

distal region of the AIS, while the proximal region in which 14D4

staining was detected, exhibited no Kv1.2 expression at any

developmental stage (Fig. 2F–H).

Kv2.2 Expression at the AIS of Cultured Hippocampal
Neurons
To study the expression of delayed rectifier voltage-gated

potassium channel (Kv2) during the development of the AIS,

hippocampal cells cultured for different intervals were stained with

antibodies directed against the Kv2.2 subunit (Fig. 3), and for

sodium channels to identify the AIS. In Western blots, Kv2.2

immunostaining was evident from the initial stages of neuronal

differentiation. Indeed, immunocytochemistry revealed diffuse

staining in the soma and proximal processes at all times in

culture. In addition, after 14 DIV (Fig. 3D–F) there were intense

patches of Kv2.2 immunostaining in the AIS, mainly in the

proximal region, in contrast to the pattern of Kv1.2 expression

observed. The proportion of neurons exhibiting clustered and

polarized Kv2.2 expression (Fig. 3H) increased progressively after

14 DIV, representing over 70% of the cultured neurons at 21 DIV

(n= 3): 16.32 (62.19%) at 10 DIV; 53.76 (62.35%) at 14 DIV;

66.89 (65.02%) at 17 DIV and 74.57 (67.36%) at 21 DIV.

Mutually Exclusive Kv1.2 and Kv2.2 Expression in the AIS
The differential localization of low-threshold Kv1.2 (distal) and

delayed rectifier Kv2.2 potassium channels (proximal) in the AIS

suggests that each potassium channel is expressed in a specific

region of this structure. Indeed, when we double-stained 21 DIV

neurons using antibodies against Kv1.2 and Kv2.2 (Fig. 4), the

expression of these subunits at the AIS was mutually exclusive and

they were localized in distinct neuronal populations (Fig. 4). Kv1.2

subunits were detected at the AIS of 19.47 (61.85%) of neurons,

which in turn exhibited no Kv2.2 immunostaining in the AIS

(arrows in Fig. 4). By contrast, in neurons with clustered Kv2.2

expression in the soma and AIS (52.6761.34%; arrowheads in

Fig. 4) no Kv1.2 immunostaining was evident in the AIS. In our

experimental conditions, we failed to observe neurons exhibiting

Kv1.2/Kv2.2 double immunostaining in the AIS. Moreover,

a significant percentage of neurons expressed neither Kv1.2 nor

Kv2.2 in the AIS (27.85% 60.63: Fig. 4F).

Figure 2. Kv1.2 is concentrated at the AIS during axonal maturation in vitro. Hippocampal neurons were grown for 1, 3, 6, 8, 10, 13, 15 and
18 days at low density (5,000/cm2), fixed in 4% PFA, and doubled stained with antibodies against Kv1.2 (green) and 14D4 antibodies (red) to identify
the AIS. Note that 14D4 staining is detected at the moment of axon outgrowth in the nascent axon (A, B) and it is restricted to the AIS as the axon
elongates (arrows). Confocal microscopy photomicrographs showing Kv1.2 immunostaining in hippocampal neurons cultured for up to 10 DIV (A–E).
Staining is light and localized to the soma and neurites. After 10 DIV (F–H), intense Kv1.2 immunostaining is observed in the distal AIS. See Figure 3
for quantification. Scale bar = 18 mm.
doi:10.1371/journal.pone.0048557.g002
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Kv1.2 and Kv2.2 Localization at the AIS is Dependent on
Ankyrin G and Independent of the Integrity of the Actin
Cytoskeleton
To identify the mechanisms underlying the localization of

Kv1.2 and Kv2.2 to the AIS, we first evaluated the resistance of

Kv1.2 and Kv2.2 to detergent extraction, a property common to

other proteins concentrated in the AIS, such as ankyrin G and the

protein recognized by 14D4 immunostaining [16,58,64,71,72]. In

21 DIV hippocampal neurons, Kv1.2 (Fig. 5A) and Kv2.2 (Fig. 5D)

expression was still evident in the AIS after extraction with 0.5%

TX-100 (15 min at 37uC), as identified by 14D4 and ankyrin G

immunostaining, respectively (Fig. 5). This suggests that potassium

channels in the AIS associate with the cytoskeleton and/or

scaffolding proteins that are resistant to detergent extraction, such

as ankyrin G.

We also assessed whether the localization of Kv1.2 and Kv2.2

in the AIS was dependent on the integrity of the actin

cytoskeleton, which is necessary to preserve the structure and

function of the AIS [13,64], and to maintain the structure and

neurochemical features of the cisternal organelle [70]. Actin

microfilaments were disrupted in neurons by exposing them to

cytochalasin D (5 mM) from 15 to 17 DIV, as witnessed by the

altered patterns of phalloidin staining when compared to control

neurons (Fig. 6I and L). However, neither the expression nor

the distribution of Kv1.2 or Kv2.2 was altered in the AIS

following exposure to cytochalasin D (see arrows in Fig. 6).

Hence, the polymerized state of actin microfilaments does not

actively influence the distribution and tethering of Kv1.2 or

Kv2.2 channels in the AIS.

We next investigated the role of ankyrin G in the retention of

Kv1.2 and Kv2.2 potassium channels, nucleofecting neurons

Figure 3. Kv2.2 concentration at the AIS increases during axonal maturation in vitro. Confocal microscopy photomicrographs showing
representative hippocampal neurons cultured for 1, 3, 6, 8, 10, 13, 15, 18 and 20 days at low density (5,000/cm2), fixed in 4% PFA, and stained with
antibodies against Kv2.2 (green) and VGSC (red). According to a previous study (Sánchez Ponce et al., 2008), VGSCs concentrate at the AIS (arrows)
after 3 DIV. Note that moderate Kv2.2 immunostaining is localized homogeneously in the soma and proximal processes at all developmental stages in
culture (A–C). After 14 DIV (D–F), Kv2.2 expression is evident in the axon in patches mainly distributed in the proximal region of the AIS. Histogram
shows the percentage of neurons expressing Kv1.2 (G) and Kv2.2 (H) at the AIS at different developmental stages in vitro (the data represent the
mean 6 SE from three independent experiments). Scale bar = 18 mm (A–D) and 16 mm (E–F).
doi:10.1371/journal.pone.0048557.g003

Figure 4. Lack of Kv1.2 and Kv2.2 colocalization at the AIS of cultured hippocampal neurons. A–B and C–D: Pairs of representative
confocal microscopy photomicrographs of hippocampal neurons cultured for 18 days, double immunostained for Kv1.2 (red) and Kv 2.2 (green), and
counterstained with DAPI (A–D). Note that Kv1.2-expressing AISs (arrows) lack Kv2.2 immunostaining (Kv2.2) and vice versa (E). Histogram shows the
proportion of neurons expressing Kv1.2, Kv2.2, neither or both at the same AIS at 18 DIV (the data represent the mean 6 SE from three independent
experiments). Scale bar = 25 mm.
doi:10.1371/journal.pone.0048557.g004
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with plasmids expressing scrambled or ankyrin G shRNA and

GFP, and maintaining them in culture until 18 DIV. The

absence of ankyrin G expression in the AIS of neurons

nucleofected with ankyrin G shRNA was verified by ankyrin

G immunostaining. No ankyrin G expression was detected in

any of the processes emanating from the cell soma of the vast

majority of GFP-positive ankyrin G shRNA-nucleofected

neurons (Fig. 7J). Moreover, another AIS marker, recognized

by 14D4 immunostaining [71], was absent from ankyrin G

shRNA-nucleofected neurons (Fig. 7D), as described previously

[72]. By contrast, ankyrin G expression persisted in the AIS of

neurons nucleofected with scrambled shRNA plasmids (Fig. 7G).

In parallel with the loss of ankyrin G and 14D4 staining, no

tethering of Kv1.2 or Kv2.2 was detected by immunostaining in

the AIS of neurons nucleofected with ankyrin G shRNA, or in

any other process emanating from the soma (Fig. 7B, E, H and

K). However, in control nucleofected neurons (distinguished by

GFP staining), Kv1.2 (Fig. 7A–C) and Kv2.2 (Fig. 7G–I)

expression remained localized in the AIS, with a similar

distribution to that observed in non-nucleofected neurons

(Fig. 2 and 3). Data from three independent experiments

showed that the percentage of neurons expressing Kv1.2 at the

AIS fell significantly (p#0.001), from 16.23 (62.65%) in

scrambled shRNA-nucleofected neurons (total number of

nucleofected neurons = 127) to 1.1 (61.1%) in shRNA ankyrin

G-nucleofected neurons (106 nucleofected neurons. Similarly,

the clusters of Kv2.2 immunostaining observed in the AIS

disappeared in the absence of ankyrin G, while Kv2.2

expression in the soma was unaffected (Fig. 7 J–L). The mean

percentage of neurons expressing Kv2.2 at the AIS also fell

(p#0.001) from 71.83 (61.88%) in scrambled shRNA nucleo-

fected neurons (111 nucleofected neurons) to 1.89 (60.97%) in

shRNA ankyrin G-nucleofected neurons (128 nucleofected

neurons). These results, strongly suggest that Kv1.2 and Kv2.2

tethering and clustering at the AIS is dependent on ankyrin G

but not on the actin cytoskeleton.

Discussion

The present findings indicate that in contrast to the early

expression of voltage-gated sodium channels (VGSC) and Kv7

potassium channels in the AIS, Kv1.2 and Kv2.2 subunits are first

tethered at the AIS of cultured hippocampal neurons after 10 days

in vitro (DIV). Furthermore, after 21 DIV Kv1.2 and Kv2.2 are

distributed distinctly in the AIS, with each subunit largely

restricted to distinct populations of neurons. Our results show

that the accumulation of Kv1.2 and Kv2.2 subunits in the AIS is

resistant to detergent extraction and like other AIS proteins, it is

dependent on the presence of ankyrin G. Moreover, the presence

of Kv1.2 and Kv2.2 subunits in the AIS is not affected by the

disruption of the actin cytoskeleton.

AIS Maturation
Cultured hippocampal neurons are widely used as a model to

study the development of neuronal polarity [55]. This process

begins with the specification of the axon, followed by its

subsequent elongation and the development of functionally

specialized subdomains, including the AIS. These processes

require the synthesis, transport and precise spatial and temporal

localization of membrane and cytoskeletal components. Among

the first markers detected at the AIS of cultured neurons are

ankyrin G [56,57], the protein recognized by 14D4 immunostain-

ing [58,71] and casein kinase 2 [72], which concentrate at the AIS

of the short nascent axon. Ankyrin G is responsible for the

accumulation of other structural and functional proteins to the

AIS, including VGSC [16,56,57], which concentrate in the AIS

shortly after ankyrin G accumulation in this region [57,58]. We

found that the ankyrin G-dependent targeting and accumulation

of Kv7 channels (Kv7.2 subunit) in the AIS [48,49] was a relatively

Figure 5. AIS resistance to detergent extraction. Hippocampal neurons cultured for 21 DIV were incubated for 15 min in a buffer containing
0.5% Triton X-100 before fixation (see Experimental methods) and analyzed by confocal microscopy. After detergent extraction, Kv1.2 (A) and Kv2.2
(D) were still present in the AIS, and they colocalized with the detergent resistant AIS markers 14D4 (B) and ankyrin G (E), respectively. Asterisks
indicate the location of the neuronal soma. Scale bar = 12 mm.
doi:10.1371/journal.pone.0048557.g005
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early event in AIS maturation (3–6 DIV), although it occurred

after VGSC expression [58]. This contrasts with the late onset of

Kv1 and Kv2 channel expression, which begin to concentrate at

the AIS during the second week in vitro (10 DIV). The late

expression of Kv1 and Kv2 channels in the AIS of cultured

hippocampal neurons is concomitant with the appearance of

gephyrin and GABAA receptor subunits at the AIS [68], and the

acquisition of the cisternal organelle, which is involved in Ca2+

regulation and reaches neurochemical maturation during the

second week in vitro [69,70]. Further studies will be required to

determine whether these late events in AIS maturation are

coordinated with the expression of Kv1 and Kv2 channels, in

terms of protein tethering mechanisms in this axonal domain, and

to identify the functional consequences of AIS maturation on

action potential generation and the regulation of neuronal

excitability.

Kv Channel Distribution in the AIS
While the uneven distribution of different Kv channel types is

required for proper neuronal function, the specific cellular and

subcellular distribution of distinct Kv channel proteins has not

been fully elucidated [73,74]. We observed a distinct distribution

for Kv1, Kv2 and Kv7 channels in cultured hippocampal neurons.

The Kv7 or KCNQ channel is expressed in the AIS of different

neuronal types, including the rodent adult hippocampus and

cultured hippocampal neurons [23,46,47,48,49,50,51]. We found

that during the first three weeks of in vitro development, the Kv7.2

subunit was homogeneously distributed throughout the length of

the AIS in the vast majority of hippocampal neurons. This is

consistent with the homogeneous distribution of ankyrin G

throughout the AIS, as the ankyrin G binding domains of Kv7.2

and Kv7.3 are required for their localization to the AIS

[46,48,49].

In contrast to Kv7 channels, the Kv1.2 subunit of Kv1 channels

was restricted to the distal region of the AIS. AIS compartmen-

talization, is evident through the segregation of different VGSCs

and the enrichment of the distal AIS with Kv1 channels, and it has

been linked with the specialization of the distal and proximal AIS

regions in generating and back-propagating APs, respectively

[13,17,18,27,28,29,30,31,32,33,75]. However, enrichment of the

Kv1.2 subunit at the distal versus the proximal AIS is only

observed in certain neuronal types, probably reflecting electro-

physiological differences between neuronal populations. These

include neocortical pyramidal cells in layer 2/3, interneurons,

CA1 pyramidal neurons and retinal ganglion cells, but not other

neuronal populations such as pyramidal neurons in layer V of the

neocortex or in the CA3 region of the hippocampus [17,18,28,35].

In our hippocampal cultures, only 30% of the neurons expressed

Kv1.2 at the distal AIS at 21 DIV. This percentage may reflect the

proportion of CA1 pyramidal neurons in our model, or

alternatively a delay in Kv1.2 expression in the AIS of the

neuronal population corresponding to the 60% of neurons that do

not express Kv1.2.

Kv2 delayed rectifier channels include those comprised of

Kv2.1 and Kv2.2 subunits, although they can also form

heterotetramers with members of the silent Kv subfamilies (Kv5,

6, 8 and 9) [76]. Kv2 channels regulate excitability in hippocampal

and cortical neurons rather than in playing a more classical role in

action potential repolarization [37,39,40,41,42,43], and they are

mainly distributed in clusters of around 1.3 microns in diameter in

the soma and proximal dendrites of neocortical and hippocampal

neurons [38,40,77,78,79,80,81,82,83,84]. Clusters of Kv2.1 have

been associated with astrocytic contact points [85] being also

coincident with membrane zones associated with subsurface

reticulum cisterns, known to also contain IP3Rs [86,87,88,89].

Kv2.1 clusters overlap with clusters rich in ryanodine receptor

Ca2+ release channels and the luminal Ca2+ binding protein

calsequestrin, suggesting the involvement of Kv2 channels in Ca2+

regulation [37,82,85]. We found that in addition to this

somatodendritic domain, Kv2.2 also clusters in the AISs of

cultured hippocampal cells, mainly in the proximal AIS. Hence,

Kv2.2 subunits may contribute to the maintenance of the AP

amplitude in hippocampal neurons by regulating inter-spike

potential during high frequency firing, as occurs in neurons of

the median nucleus of the trapezoid body [45]. The AIS contains

the cisternal organelle, which is composed of stacks of smooth

endoplasmic reticulum cisterns. The outermost of these elements is

in apposition to the plasma membrane, and contains IP3R-

expressing microdomains [70]. However, no spatial overlap

appears to occur between Kv2.2-expressing AIS membrane

clusters and IP3R1-containing microdomains (unpublished ob-

servations), suggesting that AIS Kv2 channels are not involved in

the IP3R1-mediated Ca2+ dependent mechanisms in the AIS.

The clustering of Kv2.2 at the AIS described here is consistent

with that of the Kv2.1 subunit in hippocampal neurons in vitro, and

in neocortical neurons in vivo [44]. Whether Kv2.2 colocalizes with

Kv2.1 in the AIS clusters remains unknown. At 21 DIV, Kv2.2

clusters were observed in the AIS of approximately 60% of

cultured neurons, and a similar proportion of neocortical

pyramidal neurons exhibited Kv2.2 somatodendritic immunos-

taining [38,83]. Interestingly, the expression of Kv2.2 and Kv1.2

subunits at the AIS in cultured hippocampal neurons was mutually

exclusive. It remains unclear whether these distinct expression

patterns reflect differences in neuronal type within the mature

hippocampal formation, or alternatively, a lag in in vitro Kv1.2 or

Kv2.2 expression in a specific neuronal type.

Mechanisms Mediating AIS Localization of Kv Channels
In recent years, several studies have described mechanisms

responsible for the concentration of ion channels at different

axonal subdomains, including protein-protein interactions, and

have identified amino acid motifs involved in these interactions.

However, the functions of the proteins that form complexes with

Kv channels, and the mechanisms responsible for channel

trafficking and clustering at the AIS have yet to be fully

characterized [90].

In the AIS, the presence of ankyrin G and its interaction with

the actin cytoskeleton through bIV spectrin is critical to

concentrate functionally important molecules, such as VGSCs,

the adhesion molecules neurofascin-186 and NrCAM, and Kv7

potassium channels [16,46,48,49,56,57,59,60,61,62,63,91]. Accu-

mulation of the latter occurs through direct binding of Kv7.2 and

Kv7.3 subunits to ankyrin G via an ankyrin G binding domain

similar to that found in VGSCs [48,49,91].

Figure 6. AIS Kv channel expression is not dependent on the actin cytoskeleton. Confocal microscopy photomicrographs show that Kv1.2
(A–F) and Kv2.2 (G–L) accumulation in the AIS is not affected by cytochalasin D. Hippocampal neurons were exposed to DMSO (control, A–C, G–I) or
cytochalsin D (5 mM; D–F, J–L) from 15 to 17 DIV, double stained for 14D4 or ankyrin G (blue) and Kv1.2 (red, A–F) or Kv2.2 (red, G–L), and stained with
Alexa 488 phalloidin to reveal F-actin. Note the presence of Kv1.2 and Kv2.2 at the AIS in both control and cytochalasin D-treated neurons. Scale
bar = 25 mm (A–F) and 30 mm (G–L).
doi:10.1371/journal.pone.0048557.g006
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Proteins that form complexes with Kv1 subunits (Kv1.1, Kv1.2

and Kv1.4) include Caspr2, TAG-1 and ADAM22, and the

cytoskeletal scaffold PSD 93. The localization of Kv1 in the AIS is

dependent on the presence of PSD93/Chapsyn-110 and on PDZ

domain interactions [24,92,93], although additional mechanisms

may also be involved [74,94]. We found that the accumulation of

Kv1.2 subunits in the AIS of cultured hippocampal cells was

unaffected by disruption of the actin cytoskeleton and was

dependent on the presence of ankyrin G at the AIS, as these

subunits were absent in neurons nucleofected with ankyrin G

shRNA. While no evidence for a direct interaction between

ankyrin G and Kv1.2 has been reported [20], our data indicate

that the presence of ankyrin G is necessary for proper AIS

development, and for the acquisition and/or maintenance of

Kv1.2 and Kv2.2 expression at the AIS. This view is in line with

previous studies in which ankyrin G knockdown resulted in the loss

of ankyrin G-interacting proteins, such as Na+ channels, bIV
spectrin and neurofascin-186 [20,63], as well as the disappearance

of casein kinase 2a, IP3R1, annexin 6, synaptopodin and a-actinin
immunostaining at the AIS [69,70,72].

The diverse mechanisms involved in Kv2 channel clustering,

including that which occurs at the AIS, remain to be fully

elucidated [20,82]. Kv2.1 subunit clusters are dynamic structures,

the maintenance and localization of which may depend on the

presence of a targeting motif known as the proximal restriction

and clustering (PRC) signal [81], or on their interaction with

scaffold proteins [95]. Kv2.1 clustering and the voltage-de-

pendence of channel activation are also regulated by phosphor-

ylation in response to both neuronal activity-induced Ca2+ influx

and Ca2+ release from internal stores [37,96,97,98]. Within

clusters, Kv2.1 channels are mobile, although their mean diffusion

coefficient is lower than that outside the clusters, suggesting that

the clusters are corralled by part of the cortical cytoskeleton

[97,99]. Kv2.1 clusters are reported to favor cell surface regions

not associated with phalloidin-positive F-actin, suggesting that they

form within depressions in the cortical cytoskeleton corralled by

a high density of cortical actin filaments [99,100]. Accordingly,

actin depolymerization in HEK cells and hippocampal neurons

has been reported to either increase Kv2.1 cluster size [99] or

induce complete cluster dissolution [97]. Kv2.1 subunit clusters in

the AIS are more stable than those found in the soma [44].

Moreover, although no measurements of cluster size were

performed, we found that Kv2.2 subunit clusters in the AIS were

not affected by disrupting the actin cytoskeleton with cytochalasin

D, which disrupts the diffusion barrier of the AIS, and deregulates

the normal mobility and asymmetric distribution of other AIS

proteins and lipids [64,65,101]. Together with the absence of

Kv2.2 clusters from the AISs of ankyrin G shRNA-nucleofected

neurons, these findings suggest that in addition to the actin

cytoskeleton, other as yet uncharacterized molecular interactions

might contribute to the stabilization Kv2 channel clusters in the

AIS.
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