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Clinical responses to dopamine replacement therapy for individuals with Parkinson’s
disease (PD) are often difficult to predict. We characterized changes in MDS-UPDRS
motor factor scores resulting from a short-duration L-Dopa response (SDR), and
investigated how the inter-subject clinical differences could be predicted from motor
cortical magnetoencephalography (MEG). MDS-UPDRS motor factor scores and
resting-state MEG recordings were collected during SDR from twenty individuals with a
PD diagnosis. We used a novel subject-specific strategy based on linear support vector
machines to quantify motor cortical oscillatory frequency profiles that best predicted
medication state. Motor cortical profiles differed substantially across individuals and
showed consistency across multiple data folds. There was a linear relationship between
classification accuracy and SDR of lower limb bradykinesia, although this relationship
did not persist after multiple comparison correction, suggesting that combinations
of spectral power features alone are insufficient to predict clinical state. Factor
score analysis of therapeutic response and novel subject-specific machine learning
approaches based on subject-specific neuroimaging provide tools to predict outcomes
of therapies for PD.

Keywords: short duration L-Dopa response, magnetoencephalography, Parkinson’s disease, motor cortex,
machine learning

INTRODUCTION

Parkinson’s Disease (PD) symptoms differ across individuals (Foltynie et al., 2002), exhibiting
distinct symptom profiles that include motor and non-motor components (Goetz et al., 2008).
Since therapeutic response may depend on the individual symptom profile or disease subtype
(Marras et al., 2020), an understanding of how symptom profiles respond to therapies is needed
to facilitate personalized therapeutic targeting. However, there is limited quantitative information
on symptom profile response to treatment, including for the gold standard therapy L-Dopa where
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differential effects on motor signs are common to clinical
observation (Sethi, 2008). While previous studies investigated the
effects of short-duration L-Dopa response (SDR) across a subset
of motor signs (Koller et al., 1989; Gomez Arevalo et al., 1997;
Bartels et al., 2003), these studies did not provide quantitative
information on SDR across the range of motor factors that are
understood to characterize PD (Goetz et al., 2008).

Non-invasive neuroimaging can complement standard
clinical outcome measures in managing neurodegenerative
disorders by providing objective neurophysiological features
to evaluate treatment efficacy that can be monitored over
the course of therapy (Ross and Tabrizi, 2011; Weingarten
et al., 2015; ten Kate et al., 2018). However, similar to clinical
symptoms, non-invasive neuroimaging metrics also differ
across individuals (Finn et al., 2015; Yang et al., 2017) and the
therapeutic implications of such inter-subject variability in
PD are currently not well characterized (Marras et al., 2020).
Previous studies using non-invasive magnetoencephalography
(MEG) in PD to image motor cortex reported SDR effects
in a variety of neuroimaging metrics such as spectral power
(Heinrichs-Graham et al., 2014; Cao et al., 2020; Vinding
et al., 2020), cortico-muscular coherence (Salenius et al., 2002;
Hirschmann et al., 2013), and interhemispheric coherence
(Heinrichs-Graham et al., 2014). However, conflicting findings
reflect a lack of robustness of any single metric when averaged
across multiple subjects (Boon et al., 2019; Vinding et al.,
2020), and the role of inter-subject variability remains unclear.
Novel features may help account for outcome differences
across individuals, as highlighted in recent MEG studies of
healthy subjects using novel whole-brain modeling and feature
extraction techniques (Vidaurre et al., 2018; Becker et al., 2020;
Hirschmann et al., 2020). Nevertheless, inter-subject variability
among multi-faceted neuroimaging metrics remains a challenge
for identification of SDR biomarkers.

One potential strategy to leverage inter-subject variability
among multiple simultaneous metrics is to adapt concepts from
multivariate decoding previously used in other neuroimaging
applications (Haynes and Rees, 2006, p. 200; Norman et al.,
2006). Multivariate decoding trains classifiers to distinguish the
effects of a given stimulus using multiple selected metrics, or
features, simultaneously. Within a given study, the resulting
classification accuracy can then represent the extent to which
candidate features encode information related to the stimulus
(Haynes, 2015; Hebart and Baker, 2018). In the context of SDR,
the stimulus is L-Dopa, and the classification features can be any
candidate set of metrics of clinical interest (e.g., spectral power
in distinct frequency bands). Accuracies from subject-specific
classification may then represent the degree to which the metrics
chosen encode neurophysiological SDR effects across subjects.
Finally, by quantifying the relationship between accuracies and
clinical outcomes, one can evaluate the potential of a candidate
feature set as a biomarker of clinical improvement.

Our study had three primary objectives: (1) characterize
inter-subject variability of SDR in terms of motor profiles, (2)
characterize inter-subject variability of SDR in terms of spectral
power profiles across multiple frequency bands, (3) evaluate the
ability of spectral power profiles to account for motor profile

score changes in SDR. We quantified motor sign response
profiles by applying the previously determined MDS-UPDRS
motor factor structure (Goetz et al., 2008). We quantified MEG
spectral profile changes using a novel subject-specific strategy
that used power from multiple frequency bands within each
subject to identify the combination of frequency bands that best
classified whether a given subject was off or on L-Dopa. We
interpreted classification accuracy as reflective of the degree to
which frequency bands changed during SDR, and we interpreted
frequency band weights as the relative importance of a given band
in SDR. This method contrasts with the traditional strategy in
MEG for PD of averaging data across all subjects (e.g., from single
frequency bands). Finally, we calculated the relationship between
motor factor SDR and classification accuracy to evaluate spectral
power profiles as potential biomarkers of clinical SDR effects.

MATERIALS AND METHODS

The study protocol and consent form were approved by
the King Fahad Medical City and University of Minnesota
institutional review boards. The study followed ethical principles
described in the Declaration of Helsinki. MDS-UPDRS Part III
ratings were measured from 20 subjects with PD diagnosis per
UK Brain Bank criteria (Gibb and Lees, 1988) (demographic
information in Supplementary Table 1) after an overnight
medication withdrawal (LEVODOPA-OFF) and again 1 h
following administration of two carbidopa/L-Dopa tablets
(25/100 mg) (LEVODOPA-ON). MDS-UPDRS factor scores
(Goetz et al., 2008) were then calculated for (1) midline
function, (2) rest tremor, (3) rigidity, (4) bradykinesia right
upper extremity, (5) bradykinesia left upper extremity, (6)
postural and kinetic tremors, (7) lower limb bradykinesia (see
Supplementary Table 2). A history of dyskinesias was an
exclusion criterion. During the MEG recordings, no motor
fluctuations or dyskinesias were evident from video monitoring.
We measured MMSE scores to confirm that no subjects were
demented (Supplementary Table 1).

MEG, electrocardiogram (ECG), and electrooculogram
(EOG) recordings were performed in LEVODOPA-OFF and
LEVODOPA-ON conditions while each subject sat upright in
an eyes-open resting-state. A 306-channel whole-head system
(Vectorview; Elekta Neuromag Oy; Helsinki, Finland) within
a magnetically shielded room (Ak3b Series; VAC; Hanau,
Germany) streamed recordings at 1 kHz sampling rate (0.03–
330 Hz bandpass analog filter). We digitized the head surface
and fiducials for coregistration to MRI data. Subjects were asked
to fixate on a particular point on the wall. We did not perform
eye tracking. The head position was monitored continuously
using head coils. External, internal, and movement-related
noise was suppressed using temporally extended signal space
separation (correlation limit: 0.98; data buffer length: 10 s) and
movement correction algorithms in Maxfilter software (Elekta
Neuromag Oy, Helsinki, Finland) (Taulu et al., 2004; Taulu and
Simola, 2006). T1-weighted anatomical MRIs were acquired
using an FSPGR sequence on 1.5-T GE scanners (GE Healthcare,
Milwaukee, WI). All acquired MRIs were then processed using
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the automated reconstruction processing stream in FreeSurfer
software (Dale et al., 1999; Fischl et al., 1999), which produces
standard images with uniform and normalized intensities, and
1 mm isotropic resolution.

We inspected signals in Fieldtrip toolbox1 and rejected noisy
channels and noisy 5 s epochs (ft_reject_visual), defining “noisy”
as having an average 50–330 Hz power greater than 1.5 standard
deviations above the mean. This frequency-domain approach
targeted epochs contaminated with potential muscle artifacts and
spike artifacts, and was used in place of a standard time-domain
threshold for artifact detection. We subsequently imported
signals into Brainstorm software (Tadel et al., 2011)2, along with
the indices of rejected epochs and channels, and removed cardiac
and blink artifacts using signal space projection with ECG and
EOG events (Tesche et al., 1995). We coregistered the surface of
the MRI with MEG sensor headpoints, and mapped MEG planar
gradiometer signals onto a the cortical surface (downsampled to
15,000 vertices) using an overlapping spheres head model (Huang
et al., 1999), no noise modeling, and whitened minimum norm
estimate (Tadel et al., 2011) with sources constrained to be normal
to the cortical surface. Other parameters had default Brainstorm
values (signal-to-noise ratio: 3; noise covariance regularization:
0.1; depth weighting order: 0.5; maximal depth weighting: 10).
We manually selected a region consisting of 40 vertices over
the motor hand knob on each hemisphere in each subject (see
Supplementary Table 3 for average MNI coordinate of vertex
groups), and lowpass filtered the resulting data to remove high
frequencies (Butterworth filter, order: 18, half-power frequency:
48 Hz). Source-space signals from each vertex in each region were
split into 5 s long snippets with 50% overlap. After normalizing
snippets to zero mean and unit variance, we calculated power
spectra using Welch’s method (Hamming window length: 1 s;
overlap: 50%; frequency resolution: 0.5 Hz). We averaged the
power spectra from vertices within each vertex group, resulting
in one power spectrum estimate per snippet per hemisphere in
each subject. Source-space analyses excluded subjects 2, 5, and 9
due to strong artifacts from muscle, tremor, or corrupted MRI,
respectively. Each subject had approximately 3 min of resting
state data from each hemisphere and for each medication state.

Linear support vector machines (SVM) were constructed
and trained on frequency band power to distinguish between
LEVODOPA-OFF and LEVODOPA-ON within-subject. Subject-
specific SVMs were trained and tested using power from 7–13,
13–20, 20–30, 35–45 Hz (Priori et al., 2004), avoiding high
frequency artifacts and providing four bands that included
frequencies previously investigated in PD neurophysiology
(Priori et al., 2004; de Hemptinne et al., 2015). We standardized
SVM feature inputs to the same scale (i.e., zero mean, unit
variance) and constructed a linear SVM (fitcsvm on MATLAB
R2018a; kernel scale: 1; standardize: false; kernel function:
linear). To train the SVM, we separated the dataset into 10-
fold and used 90% of the data for training and 10% of the
data for testing for all possible combinations of folds. To ensure
distinct training and testing datasets during cross-validation,

1https://www.fieldtriptoolbox.org/
2http://neuroimage.usc.edu/brainstorm

we did not shuffle the data prior to assigning folds. We used
one-dimensional Bayesian optimization to select the SVM box
constraint (i.e., the soft margin SVM hyperparameter “C”),
which was the only hyperparameter needed for linear SVM. We
selected the box constraint value within the range of 1e−6 to
1e+6 that minimized 10-fold cross validation loss of the trained
SVMs (bayesopt in MATLAB 2018a; acquisition function name:
expected improvement plus; maximum objective evaluations:
30). Therefore, optimal box constraint values differed across
subjects, but not across folds within subjects. We balanced the
number of snippets for LEVODOPA-OFF and LEVODOPA-ON,
such that there were equal numbers of snippets from each class
available for training and testing. Linear regression between SVM
accuracy and individual motor factor score changes quantified
the degree to which neurophysiological profile changes reflected
the clinical changes with medication state.

RESULTS

Motor Factor Score Response to L-Dopa
Categorizing the MDS-UPDRS Part III scores into sub-items
based on motor factors revealed a variety of motor profiles
across subjects (Figure 1A). Right and left upper extremity
bradykinesia (factors 4 and 5) had the highest weighted average
factor scores at baseline (Figure 1B), although the median
scores were only slightly smaller for midline, rigidity, and lower
extremity bradykinesia (factors 1, 3, and 7). Tremor factors
(factors 2 and 6) had the lowest weighted average factor scores.
Short-duration levodopa significantly improved all factors except
factor 6 (postural/kinetic tremor) (Wilcoxon signed rank test
at α = 0.05; Bonferroni correction for seven comparisons)
(Figure 1B). Nevertheless, responses were more pronounced for
left upper extremity bradykinesia than for midline function, rest
tremor, and rigidity (Figure 1C; Friedman F-test: p = 3.7e−4,
df = 6; post hoc Wilcoxon signed rank test at α = 0.05;
Benjamin-Hochberg correction for 21 multiple comparisons
critical p: 0.014). We calculated a Spearman correlation matrix
of the degree of SDR across factor scores, showing SDRs were
uncorrelated across all motor factors (Supplementary Figure 1).

Magnetoencephalographic Response to
L-Dopa
Within-subject linear SVMs distinguished LEVODOPA-OFF
from LEVODOPA-ON at median classification accuracies
ranging from 0.53 to 1.0 (Figure 2A), with fold classification
accuracies being consistently above chance (>0.5) in most
subjects (10/17). Within-subject receiver operating characteristic
(ROC) curves were above the chance line in 14/17 subjects
(Figure 2B). Linear SVMs identified the linear combination
of bilateral motor cortical power from four frequency bands
(i.e., [7–13 Hz], [13–20 Hz], [20–30 Hz], [35–45 Hz]) that best
distinguished medication state, producing weights for each
frequency band related to its importance in classification. MEG
SDR response profiles, as represented by these frequency band
weights, exhibited marked inter-subject diversity (Figure 2C)
despite within-subject weights being relatively consistent during
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FIGURE 1 | Clinical heterogeneity of responses to L-Dopa therapy across subjects. (A) MDS-UPDRS motor factor score profiles of short-duration L-Dopa responses
across all subjects. Color-coding by motor factors represents the raw sum of item scores that belonged in a given motor factor according to (Goetz et al., 2008).
Motor factors 1–7 consisted of 8, 6, 5, 3, 3, 4, and 4 MDS-UPDRS Part III items, respectively (see Supplementary Table 2). (B) Factor scores expressed as
weighted averages of the individual items, where weightings were obtained from Goetz et al. (2008) (see Supplementary Table 2). Weighted average scores are
shown in the same scale as individual MDS-UPDRS items (i.e., 0—Normal, 1—Slight, 2—Mild, 3—Moderate, 4—Severe). Asterisks denote factors in which SDR
was significant in terms signed rank tests and Bonferroni correction for seven multiple comparisons. (C) Change in weighted average scores. Significant differences
from post hoc Wilcoxon signed rank tests with Bejamin-Hochberg correction are denoted by either “#” (if different from postural tremor) or “+” (if different from left
upper extremity bradykinesia).

cross-validation tests in 13/17 subjects (Figure 2C). Feature
weights were consistent across folds for most subjects, although
certain subjects exhibited highly variable feature weights
across folds (e.g., Subjects 10, 18, and 19). Without correction
for multiple comparisons, there was a linear relationship
between classification accuracy and SDR of lower limb
bradykinesia across all 17 trained SVMs (R2 = 0.343; unadjusted
p = 0.014; Figure 2D), although no motor factor correlated with
classification accuracy after Bonferroni correction.

DISCUSSION

Despite the growing recognition of the need for personalized PD
therapies (Espay and Lang, 2018; Marras et al., 2020), there is
limited quantitative information on therapeutic response in the
context of multi-faceted clinical and neurophysiological profiles.
Our quantification of response profiles revealed substantial
inter-subject variability in motor and magnetoencephalographic

responses during SDR. Our results contribute quantitative
characterizations of the multi-faceted PD response during SDR,
further substantiating the established clinical observation that
L-Dopa is most effective for bradykinesia and less often effective
for postural tremor and midline motor signs including freezing
of gait (Sethi, 2008). The results additionally motivate the use
of factor scores to clarify the nature of responses to other
therapies that can complement L-Dopa in personalized disease
management. This is particularly important given that the
symptoms associated with most severe impairment in advanced
PD are those which do not respond well to L-Dopa (Hely et al.,
2005). Notably, motor factor scores did not correlate with each
other, and this independence amongst scores challenges the use of
summated MDS-UPDRS III ratings as a primary clinical outcome
measure, as motor factor scores may provide distinct clinical
information about therapeutic response. While our PD cohort
was of comparable size to previous MEG studies (Heinrichs-
Graham et al., 2014; Cao et al., 2020; Vinding et al., 2020),
future studies that leverage the factor score methodology in
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FIGURE 2 | Individual profiles of MEG responses in terms of frequencies that best distinguished between LEVODOPA-OFF and LEVODOPA-ON within subjects.
(A) Accuracy of within-subject linear support vector machine (SVM) in distinguishing between LEVODOPA-OFF and LEVODOPA-ON with 10-fold cross validation.
Each dot is a separate fold. An accuracy of 0.5 is a random-chance prediction (black dashed line). (B) Average Receiver Operating Characteristic (ROC) curves
across folds for each subject (colored lines) and the grand average ROC curve across subjects (black solid line). The dashed black diagonal line denotes the chance
line. (C) MEG response profiles in terms of frequency band weights for each individual subject across all folds (colored lines) and averages across folds (bold black
lines). Features were standardized to zero mean and unit variance. Positive weights reflect increase due to medication. Error bars denote the standard deviation of
weights across folds. (D) Linear regression between median classification accuracy from (A) and clinical change in factor scores. Dashed lines show the linear fit for
each factor. Shaded areas show the 95% confidence interval of the linear fit (p-values and confidence intervals not adjusted for multiple comparisons). Subjects 2, 5,
and 9 were not included in SVM analysis due to prominent muscle, tremor, or imaging artifacts, respectively.

larger cohorts will be crucial to expand the needed quantitative
information of therapeutic response in SDR, long-duration
L-Dopa response (Anderson and Nutt, 2011; Cilia et al., 2020),
and other interventional therapies.

Linear SVM identified the frequency bands that best
distinguished LEVODOPA-OFF from LEVODOPA-ON, and
frequency band weights revealed substantial inter-subject
variability in MEG changes during SDR. Previous resting state
MEG studies that investigated spectral power changes in motor
cortex averaged changes across subjects and reported either an
increase in spectral power [i.e., at either 14–30 Hz (Heinrichs-
Graham et al., 2014) or 18–30 Hz (Cao et al., 2020)] or no change
in spectral power (i.e., at 13–30 Hz; Vinding et al., 2020) during
SDR. In contrast to the approach of averaging changes across

subjects, we leveraged within-subject classifiers and the entire
MEG time series to reveal within-subject response profiles.
These within-subject response profiles suggested that subjects
exhibited spectral changes due to SDR, and these changes had
distinct frequency profiles rather than occurring at a single
consistent frequency as assumed by traditional analysis methods.
Indeed, while some subjects had response profiles that resembled
those of other subjects (e.g., Figure 2C, Subjects 1 and 13 or
Subjects 14 and 16), no single profile generalized across all
subjects (Supplementary Figure 2). Notably, our use of subject-
specific box constraints may prevent direct comparison of the
magnitudes of feature weights across subjects, and preliminary
comparisons of individual feature weights to motor factor scores
showed no correlation.
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In general, we did not identify strong relationships between
classification accuracy and clinical motor scores, as only
lower extremity bradykinesia correlated with classification
accuracy prior to multiple comparison correction. This result is
informative, suggesting that subject-specific changes in motor
cortical frequency band power are insufficient to predict
clinical changes due to SDR in heterogeneous cohorts. The
findings motivate evaluation of alternative sets of candidate
biomarkers, such as bursts of oscillatory activity (Vinding
et al., 2020) and neural states derived from Hidden Markov
Models of whole-brain signals (Hirschmann et al., 2020).
The subject-specific classification method used here can be
readily adapted to evaluate other sets of candidate features.
Nevertheless, a number of caveats can complicate interpretation
of classifier accuracy (Haynes, 2015; Hebart and Baker, 2018),
and related multivariate methods such as representational
similarity analysis (Kriegeskorte, 2008; Guggenmos et al., 2018)
may provide complementary information to evaluate sets of
candidate biomarkers in terms of direct profile differences
between conditions.

An experimental limitation was the lack of counterbalance
between the MEG data in LEVODOPA-OFF and LEVODOPA-
ON conditions, which were always collected on the same visit
in the same order. Thus, factors not related to the medication
may have influenced classification (e.g., environment, subject
familiarity with protocol). Addressing this important and
challenging limitation may require alternative study designs
involving multiple sessions per subject (e.g., training and
testing on data recorded from different days). Furthermore,
an inherent limitation of the present design is the potential
difference in movement-related noise levels between
LEVODOPA-OFF and LEVODOPA-ON conditions despite
head movement compensation through continuous head
localization. Additionally, the present analysis included both
hemispheres to compare predictions against the largely bilateral
set of clinical factor scores considered, thus neglecting potential
relationships between the lateralized clinical factors of upper
extremities and the laterality of MEG in PD (Heinrichs-Graham
et al., 2017). Finally, while our recording duration (∼3 min) was
consistent with prior resting-state spectral analyses (Pollok et al.,
2012; Hall et al., 2014; Cao et al., 2020; Vinding et al., 2020), other
relevant metrics, such as resting-state canonical brain networks,
may require longer recording durations (Liuzzi et al., 2017).

We limited our classifications to linear SVMs and a small
feature space that facilitated interpretability. Nevertheless, we
recognize that other classification algorithms may be more
appropriate to exploit specific relationships between features.
While preliminary visual inspection of features did not reveal
salient relationships to exploit, higher classification accuracy
may be possible using non-linear kernel-based SVMs, or using
alternative methods such as classification and regression trees.
With more sophisticated methods, alternative techniques for
interpretation are warranted (Haufe et al., 2014). Notably,
while our hyperparameter space was unidimensional, the
use of Bayesian optimization is readily applicable when
the hyperparameter space is multidimensional. Despite the
limitations noted, the present study contributes quantitative

information regarding inter-subject variability of clinical and
neurophysiological SDR profiles. The study further demonstrates
the potential for classification approaches to evaluate candidate
multi-faceted biomarkers relative to the spectrum of PD clinical
phenotypes (Marras et al., 2020).
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