
RESEARCH ARTICLE

Machine Learning Assisted Design of Highly
Active Peptides for Drug Discovery
Sébastien Giguère1*, François Laviolette1, Mario Marchand1, Denise Tremblay2,
Sylvain Moineau2, Xinxia Liang3, Éric Biron3, Jacques Corbeil4

1Department of Computer Science and Software Engineering, Université Laval, Québec, Canada, 2
Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada, 3 Faculty
of Pharmacy, Université Laval, Québec, Canada, 4 Department of Molecular Medicine, Université Laval,
Québec, Canada

* sebastien.giguere.8@ulaval.ca

Abstract
The discovery of peptides possessing high biological activity is very challenging due to the

enormous diversity for which only a minority have the desired properties. To lower cost and

reduce the time to obtain promising peptides, machine learning approaches can greatly as-

sist in the process and even partly replace expensive laboratory experiments by learning a

predictor with existing data or with a smaller amount of data generation. Unfortunately, once

the model is learned, selecting peptides having the greatest predicted bioactivity often re-

quires a prohibitive amount of computational time. For this combinatorial problem, heuristics

and stochastic optimization methods are not guaranteed to find adequate solutions. We fo-

cused on recent advances in kernel methods and machine learning to learn a predictive

model with proven success. For this type of model, we propose an efficient algorithm based

on graph theory, that is guaranteed to find the peptides for which the model predicts maxi-

mal bioactivity. We also present a second algorithm capable of sorting the peptides of maxi-

mal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an

iterative combinatorial chemistry procedure to speed up the discovery and the validation of

peptide leads. Moreover, the proposed approach does not require the use of known ligands

for the target protein since it can leverage recent multi-target machine learning predictors

where ligands for similar targets can serve as initial training data. Finally, we validated the

proposed approach in vitro with the discovery of new cationic antimicrobial peptides. Source

code freely available at http://graal.ift.ulaval.ca/peptide-design/.

Author Summary

Part of the complexity of drug discovery is the sheer chemical diversity to explore com-
bined to all requirements a compound must meet to become a commercial drug. Hence, it
makes sense to automate this chemical exploration endeavor in a wise, informed, and effi-
cient fashion. Here, we focused on peptides as they have properties that make them excel-
lent drug starting points. Machine learning techniques may replace expensive in-vitro
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laboratory experiments by learning an accurate model of it. However, computational mod-
els also suffer from the combinatorial explosion due to the enormous chemical diversity.
Indeed, applying the model to every peptides would take an astronomical amount of com-
puter time. Therefore, given a model, is it possible to determine, using reasonable compu-
tational time, the peptide that has the best properties and chance for success? This exact
question is what motivated our work. We focused on recent advances in kernel methods
and machine learning to learn a model that already had excellent results. We demonstrate
that this class of model has mathematical properties that makes it possible to rapidly iden-
tify and sort the best peptides. Finally, in-vitro and in-silico results are provided to support
and validate this theoretical discovery.

Introduction
Drug discovery faces important challenges in terms of cost, complexity and the amount of time
required to yield promising compounds. To avoid side effects, a valuable drug precursor must
have high affinity with the target protein while minimizing interactions with other proteins.
Unfortunately, only a few have such properties and these have to be identified from an astro-
nomical number of candidate compounds. Other factors, such as bioavailability and stability
have to be considered; but this combinatorial search problem, by itself, is very challenging [1].

For novel and less studied targets, screening compound libraries remain the method of
choice for rapid data generation. To fully exploit the great conformational and functional di-
versity, combinatorial peptide chemistry is certainly a powerful tool [2–4]. A major advantage
of using combinatorial peptide libraries over classic combinatorial libraries, where the scaffold
is fixed, is the possibility of generating enormous conformational and functional diversity
using a randomized synthesis procedure. This chemical diversity and functionality can be fur-
ther enhanced by the inclusion of non-natural amino acids [5]. Furthermore, having a peptide
scaffold can be very informative to screen for similarities in peptidomimetic libraries [6]. For
these reasons, this work will focus on using peptides as drug precursors.

However, it is important to note that combinatorial peptide chemistry cannot cover a signif-
icant part of the peptide diversity when peptides are longer than a few amino acids. For exam-
ple, 2g of a one-bead one-compound (OBOC) combinatorial library [7] composed of
randomly-generated peptides of nine residues will generate a maximum of six million com-
pounds, representing a vanishingly small fraction (less than 0.0016%) of the set of all 209 pep-
tides. Consequently, it is almost certain that the best peptides will not be present and most
synthesized peptides will have low bioactivity. Hence, drug discovery is a combinatorial prob-
lem which, unfortunately, cannot be solved using combinatorial chemistry alone. The process
of discovering novel compounds with both high bioactivity and low toxicity must therefore
be optimized.

Machine learning and kernel methods [8] have the potential to help with this endeavour.
These algorithms are extremely effective at providing accurate models for a wide range of bio-
logical and chemical problems: anti-cancer activity of small molecules [9], protein-ligand inter-
actions [10] and protein-protein interactions [11]. The inclusion of similarity functions,
known as kernels [8], provides a novel way to find patterns in biological and chemical data. By
incorporating valuable biological and chemical knowledge, kernels provide an efficient way to
improve the accuracy of learning algorithms.

This work explores the use of learning algorithms to design and enhance the pharmaceuti-
cal properties of compounds [12, 13]. By starting with a training set containing approximately
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100 peptides with their corresponding validated bioactivity (binding affinity, IC50, etc), we
expect that a state-of-the-art kernel method will give a bioactivity model which is sufficiently
accurate to find new peptides with activities higher than the 100 used to learn the model. This
is possible because each peptide that possesses a small binding affinity contains information
about subsequences of residues that can bind to the target. Learning a model can accelerate,
but not solve, this costly process. In-silico predictions are faster and cheaper than in-vitro
assays, however, predicting the bioactivity of all possible peptide to select the most bioactive
ones would require a prohibitive amount of computational time. Indeed, this transforms the
combinatorial drug discovery problem into an equally hard computational task.

We demonstrate that for a large class of kernel based models, it is possible to design an effi-
cient algorithm guaranteed to find the peptide of maximal predicted bioactivity. This algorithm
makes use of graph theory and recent work [14] on the prediction of the bioactivity and the
binding affinity between peptides and a target protein. This algorithm can be part of an itera-
tive combinatorial chemistry procedure that could speed up the discovery and the validation of
peptide leads. Moreover, the proposed approach can be employed without known ligands for
the target protein because it can leverage recent multi-target machine learning predictors [10,
14] where ligands for similar targets can serve as an initial training set. Finally, we demonstrate
the effectiveness and validate our approach in vitro by providing an example of how antimicro-
bial peptides with proven activity were designed.

Methods

The Generic String kernel
String kernels are symmetric positive semi-definite similarity functions between strings. In our
context, strings are sequences of amino acids. Such kernels have been widely used in applica-
tions of machine learning to biology. For example, the local-alignment kernel [15], closely relat-
ed to the well-known Smith-Waterman alignment algorithm, was used for protein homology
detection. It was however observed that kernels for large molecules such as proteins were not
suitable for smaller amino acid sequences such as peptides [14]. Indeed, the idea of gaps in the
local-alignment kernel or in the Smith-Waterman algorithm is well suited for protein homology,
but a gap of only a few amino acids in a peptide would have important consequences on its abili-
ty to bind with a target protein. Many recently proposed string kernels have emerged from the
original idea of the spectrum kernel [16] where each string is represented by the set of all its con-
stituent k-mers. For example, the string PALI can be represented by the set of 2-mers {PA, AL,
LI}. As defined by the k-spectrum kernel, the similarity score between two strings is simply the
number of k-mers that they have in common. For example, the 2-spectrum similarity between
PALI and LIPAT is 2, because they have two 2-mers in common (PA and LI).

To characterize the similarity between peptides, two different k-mer criteria were found to
be important. First, two k-mers should only contribute to the similarity if they are in similar
positions in the two peptides [17]. Second, the two k-mers should share common physico-
chemical properties [18].

Meinicke and colleagues [17] proposed to weight the contribution of identical k-mers with a
term that decays exponentially with the distance between their positions. If i and j denote the
positions of the k-mers in their respective strings, the contribution to the similarity is given by

exp
�ði� jÞ2

2s2
p

 !
; ð1Þ

where σp is a parameter that controls the length of the decay.
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Toussaint and colleagues [18] proposed to consider properties of amino acids when com-
paring similar k-mers. This was motivated by the fact that amino acids with similar physico-
chemical properties can be substituted in a peptide while maintaining the binding characteris-
tics. To capture the physicochemical properties of amino acids, they proposed to use an encod-

ing function c : A! R
d where ψ(a) = (ψ1(a), ψ2(a), . . ., ψd(a)), to map every amino acid

a 2 A to a vector where each component ψi(a) encodes one of the d properties of amino acid

a. In a similar way, we can define ck : Ak ! R
dk as an encoding function for k-mers, where

ckða1; a2; . . . ; akÞ¼def ðcða1Þ;cða2Þ; . . . ;cðakÞÞ; ð2Þ

by concatenating k physico-chemical property vectors, each having d components. Throughout
this study, the BLOSUM62 matrix was used in such a way that ψ(a) is the line associated to
the amino acid a in the matrix. It is now possible to weight the contribution of any two k-mers
a1, . . . , ak and a01; . . . ; a

0
k according to their properties:

exp
�kckða1; . . . ; akÞ � ckða01; . . . ; a0kÞk2

2s2
c

� �
; ð3Þ

where k∙k denotes the Euclidean distance.
More recently, the Generic String (GS) kernel was proposed for small biological sequences

and pseudo-sequences of binding interfaces [14]. The GS kernel similarity between an arbitrary
pair (x, x0) of biological sequences is defined to be

GSðx;x0; k;sp;scÞ¼def
Xk

l¼1

Xjxj�l
i¼0

Xjx0 j�l
j¼0

exp
�ði� jÞ2

2s2
p

 !
exp

�kclðxiþ1; ::; xiþlÞ � clðx0 jþ1; ::; xjþlÞk2
2s2

c

 !
: ð4Þ

Hence, the GS similarity between strings x and x0, is given by comparing their 1-mer, 2-mers, . . .up to

their k-mers, with the position penalizing term of Equation (1) and the physico-chemical contribution

term of Equation (3). The hyper-parameters k, σp, σc are chosen by cross-validation.

This GS kernel is very versatile since, depending on the chosen hyper-parameters, it can be
specialized to eight known kernels [14]: the Hamming kernel, the Dirac delta, the Blended
Spectrum [8], the Radial Basis Function (RBF), the Blended Spectrum RBF [18], the Oligo [17],
the Weighted degree [19], and the Weighted degree RBF [18]. It thus follows that the proposed
method, based on the GS kernel, is also valid for all of these kernels.

Recently [14], the GS kernel was used to learn a predictor capable of predicting, with reason-
able accuracy, the binding affinity of any peptide to any protein on the PepX database. The GS
kernel has also outperformed current state-of-the-art methods for predicting peptide-protein
binding affinities on single-target and pan-specific Major Histocompatibility Complex (MHC)
class II benchmark datasets and three Quantitative Structure Affinity Model benchmark data-
sets. The GS kernel was also part of a method that won the 2012 Machine Learning Competi-
tion in Immunology [20]. External validation showed that the SVM classifier with the GS
kernel was the overall best method to identify, given unpublished experimental data, new pep-
tides naturally processed by the MHC Class I pathway. The proven effectiveness of this kernel
made it ideal to tackle the present problem.

The machine learning approach
In the binary classification setting, the learning task is to predict whether a peptide has a specif-
ic property such as binding to a target molecule. In the regression setting, the learning task is to
predict a real value that quantifies the quality of a peptide, for example, its bioactivity, inhibito-
ry concentration, binding affinity, or bioavailability. In contrast to classification and regression,
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the task we consider here (described in the next section) is ultimately to predict a string of
amino acids.

In this paper, each learning example ((x, y), e) consists of a peptide x, a drug target y, which
is typically a protein (but other biomolecules could be considered), and a real number e repre-
senting the bioactivity of the peptide x with the target y. In classification, e 2 {+1, −1} denotes
whether (x, y) has the desired property or not. Since predicting real values is strictly more gen-
eral than predicting binary values, we focused on the more general case of real-valued predic-
tors. Those learning examples are obtained from in vitro or in vivo experiments. The learning
task is therefore to infer the value of e given new examples (x, y) that would not have been test-
ed through experiments.

A predictor is a function h that returns an output h(x, y) when given any input (x, y). In our
setting, the output h(x, y) is a real number that estimates the “true” bioactivity e between x and
y. Such a predictor is said to bemulti-target since its output depends on the ligand x and the
target y. A multi-target predictor is generally obtained by learning from numerous peptides,
binding to various proteins, for example, a protein family. For this reason, it can predict the
bioactivity of any peptide with any protein of the family even if some proteins are not present
in the training data [10, 14].

In contrast, a predictor hy(x) is said to be target-specific when it is dedicated to predict the
bioactivity of any peptide x with a specific protein y. A target-specific predictor is obtained by
learning only from peptides binding to a specific protein or from a multi-target predictor [10,
14]. For simplicity, we will focus on target-specific predictor but let us demonstrate how a tar-
get-specific predictor is obtained from a multi-target one.

Given a training set {((x1, y1), e1), . . ., ((xm, ym), em)}, a large class of learning algorithms
produce multi-target predictors h with the output h(x, y) on an arbitrary example (x, y) given
by

hðx;yÞ ¼
Xm
q¼1

aqkYðy;yqÞkX ðx;xqÞ; ð5Þ

where kY : Y � Y ! R and kX : X � X ! R are, respectively, the kernel functions between
proteins and peptides, and αq is the weight on the q-th training example. Since we use the GS
kernel for kX , we obtain the target-specific predictor

hyðxÞ ¼
Xm
q¼1

bqðyÞGSðx;xq; k; sp; scÞ: ð6Þ

Here the weight on the q-th training example is now given by βq(y). To obtain hy from a multi-
target predictor, we use bqðyÞ ¼ aqkYðy;yqÞ. When hy is target-specific predictor learned only

with peptides binding to y, we simply use βq(y) = αq. The remainder of this manuscript will
focus on target-specific predictor in the form of Equation 6. This makes the proposed solution
compatible for both target-specific and multi-target predictors. Also, since the weights on ex-
amples are given by β(y), we will see that the approach is valid regardless of the choice of kernel
for the target protein.

The weight vector a¼def ða1; . . . ; amÞ depends on the learning algorithm used, but many
algorithms produce prediction functions given by Equation (5), including the Support Vector
Machine, the Support Vector Regression, the Ridge Regression, and Gaussian Processes. Note
that all these learning methods require both kernels to be symmetric and positive semi-definite.
This is the case for the GS kernel. The proposed solution for drug design is thus compatible
with these popular bioinformatics learning algorithms [21]. However, some machine learning
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methods such as neural networks and its derivatives (deep neural networks) are not compatible
with the proposed methodology.

For the sake of comparison, we would like to highlight that when βq(y) = 1/m, k = 1, σp = 0,
and σc = 0 the predictor hy(x) in Equation (6) reduces to predict the probability of sequence x
given the position-specific weight matrix (PSWM) obtained from the training set. Since βq(y),
k, σp, and σc can be arbitrary, the class of predictors we consider here is much more general.

Indeed, a PSWM consists of a position frequency matrixM : jAj � l whereMi, j denotes
the frequency of the i-th amino acid at the j-th position of peptides in the dataset. Since a
PSWM assumes statistical independence between positions in the pattern, the probability that
a sequence belongs to a certain pattern is given by summing the corresponding entries inM.
PSWM are simple but have, however, been surpassed by modern machine learning algorithms
[22, 23] since they assume independence between positions in the pattern. Moreover, they do
not take into account the quantified bioactivity nor the similarities between amino acids. In ad-
dition, they require peptides to be aligned or of the same length. The method we present here
have none of these serious limitations by allowing more sophisticated predictors to be learned.

The combinatorial search problem
The main motivation for learning a predictor from training data is that, once an accurate pre-
dictor is obtained, finding druggable peptides would be greatly facilitated. It is true that replac-
ing or reducing the number of expensive laboratory experiments by an in silico prediction will
reduce costs. However, peptides having a low bioactivity do not qualify as drug precursors. In-
stead, we should focus on identifying the most bioactive ones. The computational problem is
thus to identify and sort peptides according to a specific biological function. LetA be the set of

all amino acids, andAl be the set of all possible peptides of length l. Then, finding the peptide

x? 2 Al that, according to hy, has the maximal bioactivity with y, amounts at solving

x?
y ¼ arg max

x2Al
hyðxÞ: ð7Þ

This combinatorial problem is complex because, according to the predictor hy, the contribution
of an amino acid at a certain position also depend on the k − 1 adjacent amino acids. This is the
case since string kernel use k-mers to compare sequences. For that reason, each amino acid of
the peptide cannot be optimized independently, but globally. Moreover, since the number of
possible peptides grows exponentially with l (the length of the peptide), a brute force algorithm

has an intractable complexity ofOðjAjl∙OðhyÞÞ whereOðhyÞ denotes the worst case time com-

plexity for computing hy(x), the output of the predictor on peptide a x. Such an algorithm be-
comes impractical for any peptide exceeding 6 amino acids.

When facing such task, heuristics and stochastic optimization methods were generally the
methods of choice [24, 25]. However, these methods often require prohibitive CPU time and
are not guaranteed to find the optimal solution. In addition, these approaches are not capable
of sorting the best solutions since they are designed to find a single maximum.

In the next section, we present an efficient algorithm guaranteed to solve Equation (7). We
also present a second algorithm capable of sorting in decreasing order the peptides maximizing
Equation (7). Both algorithms have low asymptotic computational complexity, yielding tracta-
ble applications for the design and screening of peptides.

Finding the peptide of maximal bioactivity
Here, we assume that we have, for a fixed target y, a prediction function hy(x) given by Equa-

tion (6). In this case, we show how the problem of finding, the peptide x?
y 2 Al of maximal
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bioactivity reduces to the problem of finding the longest path in a directed acyclic graph
(DAG). Note that, throughout this manuscript, we will assume that the length of a path is
given by the sum of the weights on its edges. To solve this problem, we construct a DAG with a

source and a sink vertex such that for all possible peptides x 2 Al, there exists only one path
associated to x that goes from the source to the sink. Moreover, the length of the path associat-
ed to x is exactly hy(x). Thus, if the size of the constructed graph is polynomial in l, any algo-
rithm that efficiently solves the longest path problem in a DAG will also efficiently find the
peptide of maximal bioactivity. A simplification of the graph is shown in Fig. 1 to assist in the
comprehension of the formal definition that follows.

A directed bipartite graph is a graph whose vertices can be divided into two disjoint sets
such that every directed edge connects a vertex of the first set to the second set. The construc-
tion of the graph will proceed as follows.

Let k be the maximal length of k-mers considered by the GS kernel. Let Ui¼defAk � fig, in
other words, the set Ui contains all tuples (s, i) where s is a k-mer and i an integer. Let Gi = ((Ui,
Ui+1), Ei) be the i-th directed bipartite graph of some set where the set of directed edges Ei is
defined as follows. Similarly as in the de Bruijn graph, there is a directed edge ((s, i), (s0, i+1))
from (s, i) in Ui to (s0, i+1) in Ui+1 if and only if the last k − 1 amino acids of s are the same as
the first k − 1 amino acids of s0. For example, in the graph of Fig. 1, there is an edge from (ABA,
1) to (BAA, 2) with k = 3. Note that 8i 2 N, directed edges in Gi only go from vertices in Ui to

Figure 1. Illustration of the 3-partite graphGhy with k = 3 and a two letters alphabetA ¼ fA;Bg. In this graph, every source-sink path represent a
peptide of size 5 (l = n + k − 1) based on the alphabet {A, B}.

doi:10.1371/journal.pcbi.1004074.g001
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vertices in Ui+1. There are exactly jAj edges that leave each vertex in Ui and there are exactly

jAj edges that point to each vertex in Ui+1. Moreover, for any chosen integer k, jUij ¼ jUiþ1j ¼
jAkj and jEij ¼ jAkþ1j. Note that there is a one-to-one correspondence between a sequence in

Akþ1 and a single edge path from a vertex in Ui to a vertex in Ui+1.
We define a n-partite graph as the union of n − 1 bipartite graphs:

G1 [ . . . [ Gn�1¼def ððU1;U2; . . . ;Un�1;UnÞ; E1 [ . . . [ En�1Þ:

Finally, let Ghy be a n-partite graph with the addition of a source node λ and a sink node t.
We choose the letter λ for the source node since it can be interpreted as the empty string (a 0-
mer) node. There is a directed edge from λ to all nodes of U1 and from all nodes of Un to t. For
example, the graph illustrated in Fig. 1 is a 3-partite graph with a source and a sink node when
the k-mer are of size 3 and the alphabet has two letters: A and B.

Throughout this manuscript, we will only focus on paths starting at λ, the source node, and
ending at t, the sink node. For this reason, by choosing n = l − k + 1 we obtain the one-to-one

correspondence between each peptide ofAl and each path λ, u1, . . ., un, t where ui 2 Ui. For
example, in Fig. 1 the peptide ABAAA of size l = 5 is represented by the path λ, (ABA, 1),
(BAA, 2), (AAA, 3), t.

Let us now describe how edges in Ghy are weighted in order for the length of a path associat-
ed to x to be exactly hy(x), the predicted bioactivity of x. Using the definition of the GS kernel,
given at Equation (4), and the general class of predictors, given by Equation (6), we can rewrite
hy(x) as

hyðxÞ ¼
Xm

q¼1
bqðyÞ

Xk

p¼1

Xjxj�p
i¼0

Xjxq j�p
j¼0

exp
�ði� jÞ2

2s2
p

 !
exp

�kcpðx½iþ1�; ::;x½iþp�Þ � cpðxq ½jþ1�; ::;xq ½jþp�Þk2
2s2

c

 !
:

For any k-mers s and any i 2 {1, . . ., n}, we define

Wðs; iÞ¼def
Xm

q¼1
bqðyÞ

Xk

p¼1

Xjxq j�p
j¼0

exp
�ðði� 1Þ � jÞ2

2s2
p

 !
exp

�kcpðs1; . . . ; spÞ � cpðxq ½jþ1�; ::;xq ½jþp�Þk2
2s2

c

 !

ð8Þ

as the weight on edges heading to the node ðs; iÞ 2 Ak � f1; . . . ; ng. The functionW weight all edges of

Ghy except those heading to the sink vertex t. When k> 1, edges ((s, n), t), heading to the sink vertex t, are

weighted by the function

WtðsÞ ¼
Xk�1
j¼1

Wðsjþ1 . . . sk; nþ jÞ; ð9Þ

otherwise,Wt(s) = 0 when k = 1.
For n = l − k + 1, we now have that

hyðxÞ ¼Wtðxn; ::; xlÞ þ
Xn
i¼1

Wðxi; ::; xiþk�1; iÞ:

Therefore, every path from the source to the sink in Ghy represents a unique peptide x 2 Al

and its estimated bioactivity hy(x) is given by the length of the path.
The problem of finding the peptide of highest predicted activity thus reduces to the problem

of finding the longest path in Ghy. Despite being NP-hard in the general case, the longest path
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problem can be solved by dynamic programming inOðjVðGhyÞj þ jEðGhyÞjÞ for a directed acy-
clic graph, given a topological ordering of its vertices. By construction, Ghy is clearly acyclic and
its vertices can always be topologically ordered by visiting them in the following order: λ, U1,

. . . , Un, t. Since G
hy has njAjk þ 2 vertices and 2jAjk þ ðn� 1ÞjAjkþ1 edges, the complexity of

the algorithm will be dominated by the number of edges. Therefore, the proposed algorithm

has a complexity ofOðnjAjkþ1Þ. Recall that k is a constant and l is the length of the best peptide
we are trying to identify. Thus, nmust be equal to l −k + 1.

Note that Equation (8) has to be evaluated for each edge of the graph. The dynamic pro-
gramming algorithm proposed for the computation of the GS kernel [14] can easily be adapted
to efficiently evaluate this equation. In that case, the complexity of the weight function is re-
duced toOðm ∙ l ∙ kÞ.

Small values of k are motivated by the fact that kckða1; ::; akÞ � ckða01; ::; a0kÞ k2 is a mono-
tonically increasing function of k. Equation (3) will thus vanish exponentially fast as k in-
creases. Long k-mers will thus have negligible influence on the estimated bioactivity,
explaining why small values of k� 6� l are empirically chosen by cross-validation. Therefore,
the time complexity of the proposed algorithm is orders of magnitude lower than the brute

force algorithm which is inOðjAjlÞ since k� 6� l in practice. The pseudo-code to find the
longest path in Ghy is given in Box 1.

Box 1. Algorithm for finding the longest path between the source node λ
and the sink node t inGhy

length_to = array with njAjk þ 2 entries initialized to −1
predecessor = array with njAjk þ 2 entries

for all s 2 Ak do . Edges leaving the source node
length_to[s, 1] W(s,1)

end for
for i = 2! n do . Edges from the core of Ghy

for all s 2 Ak do
for all a 2 A do

s0  s2, . . ., sk, a . Note that s0 is a k-mers
If length_to[s0, i]�length_to[s, i −1] + W(s0, i) then

length_to[s0, i] length_to[s, i − 1] + W(s0, i)
predecessor[s0, i] s

end if
end for

end for
end for
max_length −1
longest_path λ

for all s 2 Ak do . Edges heading to the sink node
If max_length� length_to[s, n] + Wt(s) then

max_length length_to[s, n] + Wt(s)
longest_path s

end if
end for
for i = n! 2 do . Backtrack using the predecessors
s1, . . ., sk predecessor[longest_path[1:k], i]
longest_path s1, longest_path

end for
return longest_path
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Finding the K peptides of maximal bioactivity
In the previous section, we demonstrated how the problem of finding the peptide of greatest
predicted bioactivity was reduced to the problem of finding a path of maximal length in the
graph Ghy. By using the same arguments, finding the peptide with the second greatest predicted
activity reduces to the problem of finding the second longest path in Ghy. By induction, it fol-
lows that the problem of finding the K peptides of maximal predicted activity reduces to the
problem of finding the K-longest paths in Ghy. The closely-related K-shortest paths problem
has been studied since 1957 and attracted considerable attention following the work of
Yen [26]. Yen’s algorithm was later improved by Lawler [27]. Both algorithms make use of a
shortest path algorithms to solve the K-shortest paths problem. By exploiting some restrictive
properties of Ghy, Yen’s algorithm for the K-shortest paths was adapted, shown in Box 2, to
find the K-longest paths in Ghy. It uses a variant of the longest path algorithm presented in the
previous section, that allows a path to start from any node of the graph. Lawler improvement
to the algorithm is not part of the presented algorithm to avoid unnecessary confusion but is
part of the implementation we provide. The time complexity of the resulting algorithm is
competitive with the latest work on K-shortest paths algorithms [28, 29].

The algorithm of Box 2 was implemented in a combination of both C and Python, the
source code is freely available at http://graal.ift.ulaval.ca/peptide-design/. To validate the imple-
mentation and prevent potential flaws, it was successfully used to exhaustively sort all possible
peptides of length 1 to 5 with various values of k, σp, and σc.

Having the K best peptides sorted according to their predicted bioactivity will provide
valuable information with the potential of accelerating functional peptide discovery. Indeed,
the best peptide candidates can be synthesized by an automated peptide synthesizer and tested
in vitro. Such a procedure will allow rapid in vitro feedback and minimize turnaround time.

Box 2 Algorithm for finding the K-longest paths inGhy

A = array with K entries initialized with the empty string
B = max-heap to store potential paths and their lengths
A[0] LongestPath (Ghy, λ, t)
for i = 0! K − 1 do
for all (a, j) 2 (λ, (A[i][0:k], 1), . . ., (A[i][l − k:l], n)) do

. Nodes of the previous path
(V, E) Ghy

root A[i][0:j+k]
for r = 0! i do

If A[r][0:j+k] = root then
E E\(A[r][j:j+k], j)

end if
end for
x root + LongestPath((V, E), (a, j), t)
if x =2 B [ A then

B.push(x, hy(x)) . Add the string and its length to the max-heap
end if

end for
A[i + 1] B.pop() . B’s longest path becomes the i-th longest path

end for
return A
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Also, in the next section, we will describe how the K best predicted peptides can be utilized to
predict a binding motif for a new, unstudied protein. Such a motif should assist researchers
in the early study of a target and for the design of peptidomimetic compounds by providing
residue preferences.

From K-longest paths to motif
It is easy to use the K-longest paths algorithm to predict a motif by simply loading the K pep-
tides to an existing motif tool. In this case, the motif is a property of the learned model hy(x) as
opposed to a consensus among known binding sequences. When hy(x) is obtained from a
multi-target model h(x, y), it is then possible to predict affinities for proteins with no known li-
gand by exploiting similarities with related proteins. It is therefore feasible to predict a binding
motif for a target with no known binders. To our knowledge, this has never been realized
successfully.

Protocol for split and pool peptide synthesis
Split and pool combinatorial peptide synthesis is a simple but efficient way to synthesize a very
wide spectrum of peptide ligands. It has been used for the discovery of ligands for receptors
[30, 31], for proteins [32–35] and for transcription factors [36, 37]. To synthesize several pep-
tides of length l using the 20 natural amino acids, the standard approach is to use one reactor
per natural amino acid and a pooling reactor. At every step of the experiment, all reactors are
pooled into the pooling reactor which is then split, in equal proportions, back into the 20

amino acid reactors. Within this standard approach, each peptide inAl has an equal probabili-
ty of being synthesized. Since the number of polystyrene beads (used to anchor every peptide)

is generally orders of magnitude smaller than jAjl, only a vanishingly small fraction of the pep-

tides inAl can be synthesized in each combinatorial experiment.
Clearly, not every peptide has an equal probability of binding to a target. More restrictive

protocols have been proposed to increase the hit ratio of this combinatorial experiment. For ex-
ample, one could fix certain amino acids at specific positions or limit the set of possible amino
acids at this position (for example, only use hydrophobic amino acids). Such practice will im-
pact the outcome of the combinatorial experiment. One can probably increase the hit ratio by
modifying (wisely) the proportion of amino acids that can be found at different positions in the
peptides. To explore more thoroughly this possibility, let us define a (combinatorial chemistry)
protocol P by a l-tuple containing, for each position i in the peptide of length l, an independent
distribution P iðaÞ over the 20 amino acids a 2 A. Hence, we define a protocol P by

P¼def ðP1; . . . ;P lÞ: ð10Þ

Consequently, the peptides produced by this protocol will be distributed following the joint
distribution P1 � . . . � P l. Hence, the probability of synthesizing a peptide x of size l is given
by

PðxÞ ¼
Yl
i¼1

P iðxiÞ: ð11Þ

Note that P formally defines a position-specific weight matrix (PSWM) that can be illustrated
as a motif. Moreover, this family of protocols is easy to implement in the laboratory since, at
each step i, it only requires splitting the content of the pooling reactor in proportions equal to
the distribution P i over amino acids. For example, if at position i, we wish to sample uniformly
over each amino acid, then we will use P iðaÞ ¼ 1=20 for all a 2 A. If on the other hand, we
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wish, at position i, to sample amino acids C, D, or E with equal probability and the rest of the
amino acids with probability 0, then we use P iðaÞ ¼ 1=3 for a 2 {C, D, E} and P iðaÞ ¼ 0 for a
different from either C, D, or E.

Expected outcome of a library given a protocol
We present a method for efficiently computing exact statistics on the screening outcome of a
peptide library synthesized according to a protocol P. Specifically, we present an algorithm to
compute the average predicted bioactivity and its variance over all peptides that a protocol can
synthesize. Note that it is intractable to compute these statistics by predicting the activity of
each peptide.

Such statistics will, for example, assist chemists in designing a protocol with a greater hit
ratio and avoid superfluous experiments. Furthermore, we will demonstrate in the next sec-
tion that the computation of these statistics can be part of an iterative procedure to accelerate
the discovery of bioactive peptides. Indeed, having the average predicted bioactivity data will
help with the design of a protocol that synthesizes as many potential active candidates as
possible. In addition, the predicted bioactivity variance will allow for better control of the
exploration/exploitation trade off of the experiment. Finally, as described in the previous
section, a widely used practice for optimizing peptides is to assign residues at certain positions
or restrict them to those that have specific properties such as charge or hydrophobicity. It is
now possible to quantify how such procedure will impact the bioactivity of combinatorially
synthesized peptides.

The proposed approach makes use of the graph Ghy, the protocol P, and a dynamic pro-
gramming algorithm that exploits recurrences in the factorization of first and second order
polynomials. This allows for the efficient computation of the first and second moment of hy
when peptides are drawn according to the distribution P. Then, the average and variance can
easily be obtained from the first two moments. Details of the approach and the algorithm are
given in supplementary material (see S1 Text).

Application in combinatorial drug discovery
We propose an iterative process that makes use of the proposed algorithms to accelerate the
discovery of bioactive peptides. The procedure is illustrated in Fig. 2. First, an initial set of ran-
dom peptides is synthesized, typically using a split and pool approach. The peptides are assayed
in laboratory to measure their bioactivities. At this point, most peptides are poor candidates.
They are then used as a training set to produce a predictor hy. Next, hy is used for the genera-
tion of K bioactive peptides by finding the K-longest paths in Ghy as described previously. A
protocol P is constructed from these K bioactive peptides to assist the next round of combina-
torial chemistry. Then, the algorithm described in the previous section is used to predict statis-
tics on the protocol P. This ensures that the protocol meets expectations in terms of quality
(average predicted bioactivity) and diversity (predicted bioactivity variance). To lower costs,
one should proceed to synthesize and test the library only if expectations are met. This process
can be repeated until the desired bioactivity is achieved.

Results/ Discussion

Data
Two public datasets were used to test and validate our approach. The first dataset consisted of
101 cationic antimicrobial pentadecapeptides (CAMPs) from the synthetic antibiotic peptides
database [38]. Peptide antibacterial activities are expressed as the logarithm of bactericidal

Machine Learning Assisted Design of Highly Active Peptides

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004074 April 7, 2015 12 / 21



potency which is the average potency over 24 bacteria such as Escherichia coli, Bacteroïdes fra-
gilis, and Staphylococcus aureus. The average antibacterial activity of the CAMPs dataset was
0.39 and the best peptide had an activity of 0.824.

The second dataset consisted of 31 bradykinin-potentiating pentapeptides (BPPs) reported
in [39]. The bioactivities are expressed as the logarithm of the relative activity index compared
to the peptide VESSK. The average bioactivity of the BPPs dataset was 0.71 and the best peptide
had an activity of 2.73.

Improving the bioactivity of peptides
To assess the capability of the proposed approach to improve upon known peptides, two exper-
iments were carried out using the CAMPs and BPPs peptide datasets. For both experiments, a
predictor of biological activity was learned by kernel ridge regression (KRR) for the each data-
sets: hCAMP and hBPP. Hyper-parameters for the GS kernel (k, σc, σp) and the kernel ridge re-
gression (λ) were chosen by standard cross-validation: k = 2, σc = 6.4, σp = 0.8, and λ = 6.4 for
hCAMP and k = 3, σc = 0.8, σp = 0.2, and λ = 0.4 for hBPP.

In silico validation
Using the K-longest path algorithm and the learned predictors, we generated the K peptides (of
the same length as those of the training data) having the greatest predicted biological activity.

Figure 2. Iterative process for the design of peptide ligands.

doi:10.1371/journal.pcbi.1004074.g002

Machine Learning Assisted Design of Highly Active Peptides

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004074 April 7, 2015 13 / 21



For the CAMPs dataset, the proposed approach predicted that peptideWWKWWKRLRRLFLLV
should have an antibacterial potency of 1.09, a logarithmic improvement of 0.266 over the best pep-
tide in the training set (GWRLIKKILRVFKGL, 0.824), and a substantial improvement over the aver-
age potency of that dataset (average of 0.39). The antimicrobial activity of the top 100,000 peptides
are showed in Fig. 3.We observe a smooth power law with only a few peptides having outstanding
biological activity, as expected. As we will see in the next section, peptides at the top of the curve,
hence having the best bioactivities, are very unlikely to be found by chance.

On the BPPs dataset, the proposed approach predicted that the pentapeptide IEWAK
should have an activity of 2.195, slightly less than the best peptide of the training set (VEWAK,
2.73, predicted as 2.192). However, the predicted activity of IEWAK is much better than the av-
erage peptide activity of the dataset, which is 0.71. One may ask why IEWAK has a lower pre-
dicted biological activity than VEWAK, which was part of the training data. It is common for
machine learning algorithms to sacrifice accuracy on the training data to prevent overfitting.
Despite this small discrepancy, the model is very accurate on the training data (correlation co-
efficient of 0.97). Another possible explanation for this discrepancy is that the biological activi-
ty of VEWAK could be slightly erroneous as the learning algorithm could not find a simple
model given such an outlier. It seems that the predicted activity of VEWAK is more coherent
with the whole data than its measured activity.

Hence, our proposed learning algorithm predicts new peptides having biological activities
equivalent to the best of the training set and, in some cases, substantially improved activities.
The next section present an in vitro experiment that clearly demonstrate that in a real world
test, our approach can generate bioactive peptides.

Figure 3. The 100,000 peptides with highest antimicrobial activity found by the K-longest path
algorithm.

doi:10.1371/journal.pcbi.1004074.g003

Machine Learning Assisted Design of Highly Active Peptides

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004074 April 7, 2015 14 / 21



In vitro validation
To further validate the approach, a number of antimicrobial peptides identified during the in
silico validation were synthesized. Their antimicrobial activity against Escherichia coli and
Staphylococcus aureus were measured in a growth inhibitory assay. Details on the synthesis
and assay are given in the supplementary material (see S1 Text). The peptides were obtained
using hCAMP, the same predictor used during the previous validation.

The two most active peptides of the CAMPs dataset (Peptide #5 and #6) were synthesized
for comparison. We also synthesized one peptide with poor activity (Peptides #7) as a control.
We used the proposed approach with the predictor hCAMP to generate a list of K = 1,000 pep-
tide candidates with the highest predicted activity. From this list, we greedily selected three
peptides such that they all differed by at least 4 amino acids from each others. This was done to
maximize the chemical diversity among them. We then tested these peptides (Peptides #2, #3,
#4) in a growth inhibitory assay. Results from the minimal inhibitory concentration assay are
shown in Table 2. Two of the three candidates had activities equal to the best peptide of the
CAMPs dataset. We were intrigued by the failure of Peptide #4 and after investigation, the
weak activity was due to poor water solubility. In a second series, we ensured that a filter for
water solubility was employed. In this second series of tests, Peptide #1 showed (at least against
E. coli) better activity than any of the original candidates from the CAMPs dataset, demonstrat-
ing that, in this limited biological experiment, we could improve the putative candidates using
the proposed machine learning methodology. Finally, all predicted antimicrobial peptides are
significantly different from those of the training set, sharing only 40% similarity with their
most similar peptide in the CAMPs dataset.

Simulation of a drug discovery
Previously, we described a methodology (illustrated in Fig. 2) that uses machine learning to
guide the combinatorial chemistry search for finding peptides with high bioactivity. However,
before conducting such an expensive and time-consuming experiment, it is reasonable to first
investigate, in silico, if the proposed methodology could find peptides having high bioactivity.

Hence, to validate the proposed methodology, we replaced the laboratory experiments that
would quantify the bioactivity level of peptides by an oracle for each dataset. We choose to use
hCAMP and hBPP as oracle as they represent, so far, the best understanding of the studied phe-
nomena. These oracles will be used to quantify the bioactivity level of randomly generated pep-
tides and those proposed by our methodology. Note that, examples used to learn the oracles
are not available to our algorithm during the validation. Consequently, the validation method
used was the following.

1. We randomly generated R peptides on a computer instead of using combinatorial
chemistry.

2. To measure the bioactivities, we replaced the laboratory experiments by the oracle.

3. We used these random peptides of low bioactivities to learn a second predictor hrandom.

4. The predictor hrandom is used to initiate the graph-based approach. We then obtained the K
potentially best peptides.

5. The new peptides bioactivities are validated by the oracle (instead of performing laboratory
experiments).

6. Finally, we compared the bioactivities of the initial set of peptides (randomly generated)
and those proposed by our approach.
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Finding peptides with high bioactivity The testing methodology was conducted twice on
both the CAMPs and the BPPs datasets. Once by generating R = 100 peptides at Step 1 and
considering the K = 100 best predicted peptides at Step 4 of the methodology, and then by
starting over the validation with R = 1,000 and K = 1,000. Statistics on the random peptides
and those proposed by our approach are shown in Table 1.

As expected, on both datasets, the number of peptides drawn (R) had no impact on the aver-
age activity of randomly drawn peptides. Also, on both datasets, increasing R, the number of
random peptides, had no significant influence on the bioactivity of the best peptide found. This
support the main hypothesis upon which this work is based, random peptides will consistently
be of low activity. This also indicates that combinatorial chemistry alone does not allow one to
find the best peptides. It requires hints to orient its search. The next paragraph points out that
our machine learning approach can provide such hints.

Using the same R = 100 (low bioactivity) random peptides to initiate our method (i.e. train
the predictor hrandom), we were able to reach an antimicrobial potency of 0.83 (according to or-
acle, not to the prediction of hrandom). Such antimicrobial potency is similar to the best peptide
of the (unseen) CAMPs dataset and much better than the best of the R = 100 random peptides.
By increasing to R to 1,000, we found a peptide having a potency of 1.09 according to the ora-
cle. This peptide surpasses the best known peptide of the CAMPs dataset and is also far superi-
or to the best of the R = 1,000 random peptides. On the BPPs dataset, the proposed approach
also considerably outperformed the random approach on both the best peptide found and the
average bioactivity. Finally, on both datasets, increasing the number of initial peptides from
R = 100 to R = 1,000 was more beneficial on the bioactivity measures than the
random approach.

Comparing hrandom and the oracle accuracies on the CAMPs and BPPs databases To pro-
vide additional support for its accuracy, predictor hrandom was used to predict the bioactivity
values of unseen but in-vitro validated peptides of the CAMPs and BPPs databases. The Pear-
son correlation coefficient (PCC, also known as the Pearson’s r) was computed between hrandom
predictions and the values in both databases. Since, in this simulation, hrandom was learned only
with random peptides that, as pointed out above, have low bioactivity, it is interesting to evalu-
ate its accuracy on these databases.

Correlation coefficients are shown in the last column of Table 1. When initiated with R =
1,000 random peptides, it achieves a correlation coefficient of 0.90 (CAMPs) and 0.93 (BPP).
In comparison, the oracle achieved a correlation coefficient of 0.91 (CAMPs) and 0.97 (BPP)
on the same peptides. These were however used to train the oracle. Given that hrandom is bound

Table 1. Results from the drug discovery simulation.

Value of R and K R Randomly Picked K Best Predicted hrandomDataset

Average Max. Average Max. Correlation Coef.

CAMPs 100 −0.58 0.17 0.76 0.83 0.51

1000 −0.59 0.18 1.07 1.09 0.90

BPPs 100 0.31 1.39 1.50 2.04 0.67

1000 0.26 1.36 1.66 2.20 0.93

Bioactivity comparison between the standard combinatorial screening (R random picked peptides) and the proposed approach (K best predicted peptides),

initiated with the same R random peptides. Values are logarithm of bactericidal potencies. The correlation coefficients of hrandom were computed using

the oracle.

doi:10.1371/journal.pcbi.1004074.t001
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to be less accurate than the oracle, these results demonstrate the capability of our approach to
learn a predictor using low bioactivity peptides to obtain highly active ones.

Fig. 4 shows the correlation coefficient of hrandom on the CAMPs data when varying R, the
number of random peptides used for training. Near optimal accuracy is reached when hrandom
is initiated with approximately R = 300 peptides. This suggests that the proposed method can
achieve excellent performance with a database of modest size.

Table 2. In-vitro minimal inhibitory concentration assay.

# Predicted MIC (μg/ml) Most Similar Peptide in the Training Set

Peptide Sequence E. coli S. aureus Peptide Sequence % Similarity

1 YWKKWKKLRRIFMLV 2 8 LWKLFKKIRRVLRVL 40.0

2 WWKRWKKLRRIFLML 4 4 LWKLFKKIRRVLRVL 40.0

3 WWKRWKRIRRIFMMV 4 8 LWKLFKKIRRVLRVL 40.0

4 WWKWWKRLRRLFLLV 16 16 LWKLFKKIRRLLKVL 46.6

5 KWKLFKGIRAVLKVL 4 8 - -

6 GWRLIKKILRVFKGL 4 4 - -

7 KWKLFLGILAVLKVL > 32 > 32 - -

Minimal inhibitory concentration (MIC) from in vitro CAMPs assay. We predicted peptides 1 to 4, peptides 5 to 7 are controls from the training set. The

ordering of the peptides do not reflect their predicted bioactivities.

doi:10.1371/journal.pcbi.1004074.t002

Figure 4. Correlation coefficient of hrandom predictions on the CAMPs data while varying R, the
number of random peptides used as training set.

doi:10.1371/journal.pcbi.1004074.g004
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Binding motifs results and comparison with PSWM
The results presented here serve to demonstrate the ability of the proposed approach to predict
potential functional motifs and to compare to position-specific weight matrix (PSWM) as they
can be illustrated as a motif.

For the CAMPs dataset, we used hCAMP as oracle and hidden all peptides in this dataset
from the rest of the procedure. Using the oracle, we predicted the best K = 1,000 peptides and
generated a bioactivity motif using these candidates (top panel of Fig. 5). Our goal was to assess
how much of that reference motif we could rediscover if we were to hide all the CAMPs dataset
during the validation.

Using only the predictor hrandom, trained on R = 1,000 randomly generated peptides, we
generated the motif representing the K = 1,000 best predicted peptides (according to hrandom).
The motif is shown in middle panel of Fig. 5. We were able to recover all the reference motif
signal using only weakly active peptides and hrandom. To push the analysis even further, we
also computed the motif when hrandom is trained with only R = 100 random peptides. Even
then (motif not shown), for 12 of the 15 residue positions, we were able to correctly
identify the dominant amino acid property (polar, neutral, basic, acidic, hydrophobic).
This can be achieved since the GS kernel encodes amino acids physico-chemical properties.

Figure 5. CAMP bioactivity motifs. Top motif: the best 1,000 peptides obtained from the oracle. Middle motif: the best 1,000 peptides obtained from hrandom.
Bottommotif: the best 1,000 out of 1,000,000 random peptides.

doi:10.1371/journal.pcbi.1004074.g005
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This provides evidence that the proposed approach could uncover complex signals for new,
poorly understood, proteins. For example, one could learn a multi-target predictor for peptides
binding to the major histocompatibility complex [14]. Since these molecules are highly poly-
morphic, it would be interesting to predict antigen binding motifs for a specific segment of a
population or even a single patient. This would have applications in the design of epitope based
vaccines [40] and provide additional insight into autoimmune diseases.

To compare our approach to PSWM, we took the same R = 1,000 randomly picked peptides
used to train the predictor hrandom and generated a PSWM. The signal in PSWMmotif was
very poor, generating a meaningless motif (not shown). We increased the number of random
peptides to R = 1,000,000 and only selected the best K = 1,000 to produce a PSWM whose
motif is shown in the bottom panel of Fig. 5. Despite this big advantage, the motif of the
PSWM shows minimal information.

This clearly illustrates the potential of the proposed approach for accelerating the discovery
of potential peptidic effectors and, possibly, for achieving a better understanding of the binding
mechanisms of polymorphic molecules.

Conclusion and Outlook
We proposed an efficient graph-based algorithm to predict peptides with the highest biological
activity for machine learning predictors using the GS kernel. Combined with a multi-target
model, it can be used to predict binding motifs for targets with no known ligands.

To increase the hit ratio of combinatorial libraries, we demonstrated how a combinatorial
chemistry protocol relates to a PSWM. This allowed us to compute the expected predicted bio-
activity and its variance that can be exploited in combinatorial chemistry. These steps can be
part of an iterative drug discovery process that will have immediate use in both the pharmaceu-
tical industry and academia. This methodology will reduce costs and the time to obtain lead
peptides as well as facilitating their optimization. Finally, the proposed approach was validated
in a real world test for the discovery of new antimicrobial peptides. These in vitro experiments
confirmed the effectiveness of the new peptides uncovered.

The K-best peptides were shown to be valuable for the design of split and pool libraries.
However, in such libraries, it is unclear how we should prioritize high activity candidates (aver-
age) over the chemical diversity (variance). This exploration/exploitation trade-off warrants
further investigation. The fast computation of the bioactivity average and variance given a
combinatorial chemistry protocol will certainly help to exploit this trade-off. Moreover, the
method could easily be adapted to optimize multiple objectives simultaneously, for example,
the bioactivity at the expense of mammalian cell toxicity or bioavailability when such data are
available. In addition, the method could be expanded to cyclic peptides and chemical entities
commonly found in clinical compounds. Finally, this method shows great promise in immu-
nology, where antigen binding motifs for unstudied major histocompatibility complexes could
be uncovered using a multi-target predictor.

Supporting Information
S1 Text. Supplementary material.
(PDF)
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