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 Abstract: There is increasing evidence that dysregulated epigenetic mechanisms of gene expression 
are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review 
presents a comprehensive summary of the current state of research on the role of epigenetics in the 
pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also re-
viewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of 
ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hy-
permethylation. There is evidence that there is increased histone deacetylation in ADHD patients. 
Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. 
Some currently used drugs for treating ADHD, in addition to their more well-established mecha-
nisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials 
of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnor-
mal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. 
Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD. 
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1. INTRODUCTION  

Attention deficit hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder that affects children, adolescents, 
and adults around the world [1]. ADHD in children is char-
acterized by inattention, hyperactivity, impulsivity, or a 
combination of these symptoms, which adversely affect eve-
ryday functions like learning to read and making friends [2]. 
ADHD is the most common neuropsychiatric disorder 
among children affecting 9.5% of all US children between 6 
and 17 years old [2]. Initially, it was thought that ADHD is 
solely a childhood disorder and the diagnosis of adult ADHD 
was uncertain. However, now it has been established that 
among 40 to 60% of children with ADHD, the disorder per-
sists into adulthood [3]. ADHD in adults differs from that in 
children partly because of a greater reduction in hyperactivi-
ty symptoms than symptoms of inattention. Reduction in 
hyperactivity can manifest as restlessness, while the persist-
ing symptoms of inattention can manifest as difficulties in 
performing tasks like keeping appointments and meeting 
deadlines. ADHD in adults can result in work problems like 
frequent job changes, interpersonal problems like marital 
issues, and coexisting psychiatric disorders like major de-
pression and anxiety disorders (ADs) [3]. 

2. ROLE OF HEREDITARY FACTORS IN ATTEN-
TION DEFICIT HYPERACTIVITY DISORDER 

Family, twin, and adoption studies indicate that ADHD 
has a marked hereditary component [2]. The heritability of  
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the disorder has been estimated to be 76%, making it one of 
the most heritable psychiatric disorders [4]. Genome-wide 
association studies (GWAS) have identified several genes 
associated with ADHD. These include common variants as 
well as rare variants [5, 6]. There is thought to be genetic 
overlap between ADHD and other neuropsychiatric disorders 
like schizophrenia, bipolar disorder, and ADs [5]. However, 
precisely how the genetic variants contribute to the disorder 
is unclear, and to date, genetic testing has not made it into 
clinical practice [6, 7]. In recent years there is also increasing 
evidence that epigenetic mechanisms of gene expression are 
dysregulated in ADHD patients, a field that has been re-
viewed elsewhere [8, 9]. The present article updates the data 
on the role of epigenetics in ADHD and discusses the poten-
tial pharmacological modification of dysregulated epigenetic 
mechanisms in the treatment of this disorder. The cited liter-
ature was retrieved from searches in PubMed and Google 
Scholar. 

3. CURRENT TREATMENT OF ATTENTION DEFI-
CIT HYPERACTIVITY DISORDER 

Drugs used for the treatment of ADHD include CNS 
stimulants like amphetamines and methylphenidate. These 
drugs are generally recommended as first-line pharmacologi-
cal treatment.  

They act by increasing extracellular levels of the neuro-
transmitters dopamine and norepinephrine in the synaptic cleft 
[10]. Drugs that do not stimulate the CNS include atomoxe-
tine, extended-release clonidine, and extended-release guan- 
facine [10]. Atomoxetine inhibits the reuptake of norepineph-
rine and dopamine. Clonidine is a centrally acting α2 adrener-
gic receptor agonist, and guanfacine stimulates postsynaptic 
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α2A receptors [10]. Psychotherapy is also very important in the 
treatment of patients with ADHD and is known to comple-
ment pharmacotherapy [1]. 

4. OUTLINE OF EPIGENETICS 

Epigenetics, other than, or in addition to, genetics, is at 
present an active area of research in both biology and medi-
cine. It involves molecular mechanisms like DNA methyla-
tion, DNA hydroxymethylation, histone modifications, and 
non-coding RNA (ncRNA)-mediated regulation of gene ex-
pression. Epigenetic mechanisms of gene expression can be 
modulated by factors in the environment, and epigenetic 
mechanisms of gene expression are thought to be a link be-
tween the genome and the environment [11]. There is in-
creasing evidence that epigenetic mechanisms of gene ex-
pression are dysregulated in human disease, especially com-
mon chronic disorders. Indeed, epigenetics has been referred 
to as the epicenter of modern medicine [12]. There is also 
increasing evidence that abnormal epigenetic mechanisms of 
gene expression contribute to the pathogenesis of common 
psychiatric disorders [13, 14]. 

5. SCOPE FOR EPIGENETICS IN ATTENTION DEF-
ICIT HYPERACTIVITY DISORDER 

Several lines of evidence suggest that abnormalities in 
epigenetic mechanisms of gene expression are involved in 
the pathogenesis of ADHD: 1. There are differences between 
the two sexes with regard to ADHD, with males being more 
commonly affected than females [5]. 2. The concordance 
rate in monozygotic twins for ADHD falls far short of 100%, 
suggesting a role for epigenetic factors in its pathogenesis. 
The concordance rate in monozygotic twins has been esti-
mated to range from 59 to 92% [15]. 3. Environmental fac-
tors are known to be involved in the pathogenesis of ADHD. 
Such factors can more easily act by altering epigenetic 
mechanisms of gene expression than the DNA sequence of 
genes, suggesting a role for epigenetic mechanisms in the 
pathogenesis of ADHD. 4. As described below, there is ex-
perimental evidence for abnormal epigenetic mechanisms of 
gene expression in patients with ADHD. 5. As described 
below, some of the currently used drugs for treating ADHD 
have been shown to alter epigenetic mechanisms of gene 
expression. 

6. ROLE OF DNA METHYLATION IN THE PATHO-
GENESIS OF ATTENTION DEFICIT HYPERACTIV-

ITY DISORDER 

Several studies have found abnormalities in DNA meth-
ylation associated with ADHD. Zhang et al. [22] exposed 
male C57BL/6 mice to 2mg/kg of nicotine for 5 weeks and 
then mated them with wild-type females (Table 1). The off-
spring of male mice were subjected to behavioral tests at 8 
weeks after birth. It was found that paternal nicotine expo-
sure led to hyperactivity of the offspring. It was also found 
that paternal nicotine exposure caused a rise in total DNA 
methylation of Dat, the gene encoding the dopamine trans-
porter (DAT1) in murine spermatozoa, and the hypermethyl-
ation could imprint in the brains of the offspring mice, lead-

ing to hyperactivity in the offspring. Abnormalities in DNA 
methylation have also been found in peripheral tissues of 
ADHD patients in comparison to control subjects (Table 2). 
Of note, many of the studies cited in Table 2 and investigat-
ing DNA methylation found hypermethylation of DNA, an 
epigenetic change that correlates with a decrease in gene 
expression. For example, Meijer et al. [34] observed no 
epigenome-wide significant differences in single CpG site 
methylation between patients with persistent ADHD and 
healthy controls or patients with remittent ADHD. However, 
hypermethylated regions in the APOB and LPAR5 genes 
were associated with ADHD persistence compared with 
ADHD remittance. Sigurdardottir and colleagues [41] at-
tempted to determine possible differences in norepinephrine 
transporter (NET) promoter methylation between 23 ADHD 
patients and 23 healthy controls. The authors found signifi-
cant differences in methylation levels at many CpG sites 
between the two groups. A defined segment of the NET 
promoter (region 1) was found to be hypermethylated in 
ADHD patients in comparison to controls. 

6.1. Role of Histone Modifications in the Pathogenesis of 
Attention Deficit Hyperactivity Disorder 

Relatively little work has been done on the role of his-
tone modifications in the pathogenesis of ADHD. Ookubo 
and colleagues [18] examined epigenetic changes in the de-
veloping brain of thyroid hormone receptor-β deficient mice, 
a mouse model of ADHD. The authors found that the expres-
sion of acetylated histone H3 was low in the dorsal raphe of 
the mice, and histone deacetylase (HDAC) 2/3 proteins were 
widely increased in the mesolimbic system of the mice. Xu 
et al. [43] conducted a pair-matching case-control study of 
epigenetic abnormalities in blood samples obtained from 
Chinese Han children. The authors found that there was in-
creased expression of HDAC1 in the ADHD patients com-
pared to healthy controls, suggesting to the authors that there 
was decreased histone acetylation in the patients. 

6.2. Role of Non-coding RNAs in the Pathogenesis of At-
tention Deficit Hyperactivity Disorder 

The role of ncRNAs in the pathogenesis of ADHD has 
also received attention. To date, attention has mainly fo-
cussed on one type of ncRNAs, microRNAs (miRNAs), 
which are ncRNAs comprising 19-24 bases. miRNAs typi-
cally silence gene expression by inhibiting the translation of 
messenger RNA (mRNA) into protein. As shown in Table 1, 
in preclinical models of ADHD, abnormalities of miRNAs 
have been detected. As shown in Table 2, to date, several 
miRNAs have also been found to be dysregulated in ADHD 
patients in comparison to control subjects. At present, we are 
in the early stages of this research area. However, the availa-
ble data suggests that dysregulated miRNAs modulate the 
expression of genes like those encoding DAT1 and dopa-
mine receptor 1 (DRD1) that have been associated with the 
pathogenesis of ADHD. Dysregulation of such miRNAs 
could alter the normal functioning of these molecules in the 
brain contributing to the development of ADHD. It also ap-
pears that there are alterations of levels and functioning of 
miRNAs in animal models of ADHD and in peripheral tis-
sues of ADHD patients. Hence, peripheral miRNA levels 
could potentially serve as biomarkers for ADHD. 
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Table 1.  Epigenetic changes in preclinical models of attention deficit hyperactivity disorder.  

Tissue/Model Epigenetic Change References 

Prefrontal cortex of rat miRNA let-7d involved in ADHD [16]  

Cerebral cortex of mice Chronic exposure of male mice to ethanol before mating produces ADHD-
like features in offspring probably epigenetically 

[17] 

Developing brain of THR-β deficient 

mice 

Decreases expression of acetylated histone H3 in dorsal raphe; Increases 

expression of HDACs 2/3 in mesolimbic system 

[18] 

Rat prefrontal cortex Abnormal expression of miRNAs [19] 

Rat hippocampus Different expression of miRNAs [20] 

Rat lateral ventricle Aberrant miR-384-5p affects learning and memory [21] 

C57BL/6 mice 

 

Paternal nicotine exposure induces hyperactivity in offspring by hypermeth-
ylation of DAT gene 

[22] 

In Silico Prediction that several candidate SNPs in miRNA target genes may play 
major roles in ADHD 

[23] 

Abbreviations: DAT: Dopamine transporter; HDAC: Histone deacetylase; miRNAs: microRNAs; SNPs: Single nucleotide polymorphisms; THR-β: Thyroid hormone receptor- β. 

 

6.3. Epigenetic Effects of Currently-used Drugs in Atten-
tion Deficit Hyperactivity Disorder 

It is interesting that some of the currently used drugs for 
treating ADHD, in addition to their well-established mecha-
nisms of action, alter epigenetic mechanisms of gene expres-
sion (Table 3). For example, the sympathomimetic drug and 
CNS stimulant amphetamine have been shown to decrease 
global DNA methylation [58] and increase histone H4 acetyla-
tion [56,57] in the brain. Amphetamine has also been shown to 
affect the expression of miRNAs in preclinical studies [62]. 
Biagoni et al. [63] found that exposure of C57 black/6J mice 
to high and/or prolonged doses of methamphetamine produces 
a long-lasting increase in striatal α-synuclein levels. This was 
found to be associated with persistent demethylation of the α-
synuclein gene promoter in the corpus striatum. The CNS 
stimulant methylphenidate was shown to influence DNA 
methylation of the dopamine D4 receptor gene in an 8 week 
open-label trial in youth with ADHD [61] and the expression 
of long non-coding RNAs (lncRNAs) in the prefrontal cortex 
in rats [59]. Atomoxetine has been shown to affect serum lev-
els of miRNA-let-7 in children with ADHD [53]. More details 
of the epigenetic effects of currently used drugs in ADHD are 
given in Table 3. 

6.4. Clinical Trials of Epigenetic Drugs in Attention Defi-
cit Hyperactivity Disorder 

The antiepileptic and mood-stabilizing drug valproic acid 
(VA), and its sodium salt sodium valproate, are known to have 
HDAC inhibiting effects at therapeutic concentrations [64]. In 
this context, it is of interest that VA has been shown to have 
beneficial effects in ADHD patients. Miyazaki and colleagues 
[65] showed that extended-release sodium valproate gives a 
favorable response in 3 ADHD patients with giant somatosen-
sory evoked potentials. Blader and co-workers [66] showed 
that sodium valproate reduces aggression in children with 
ADHD. Toriolli et al. [67] showed that VA reduces ADHD 
symptoms in boys with fragile X syndrome. Another epigenet-
ic drug undergoing preclinical and clinical trials for ADHD 

treatment is vafidemstat, which is developed by the pharma-
ceutical company Oryzon [68]. Vafidemstat is a KDM1A in-
hibitor. KDM1a is a flavin adenine dinucleotide (FAD)-
dependent amine oxidase that acts primarily as a lysine deme-
thylase. KDM1A is thought to be involved in many biological 
processes, including neurogenesis and the regulation of neuron 
progenitor cell proliferation and terminal differentiation. Re-
cent data from a phase IIa clinical trial support vafidemstat as 
an emerging therapeutic option for the treatment of agitation 
and aggression in psychiatric disorders, including ADHD [68]. 
More details on clinical trials of epigenetic drugs in ADHD 
are given in Table 4. 

6.5. Clinical Implications of the Role of Epigenetics in 
Attention Deficit Hyperactivity Disorder 

From the above, it is apparent that dysregulated epigenet-
ic mechanisms of gene expression contribute to the patho-
genesis of ADHD. However, much more work needs to be 
done in order to get a clearer picture of the role of epigenet-
ics in ADHD. Regarding the epigenetics of ADHD, a rele-
vant issue is whether data in the brains of patients can be 
inferred from data in their peripheral tissues like blood and 
saliva (Table 2). Ideally, the study of epigenetic changes in 
ADHD patients should be done on their brain tissues. How-
ever, due to practical reasons, this is difficult. On the other 
hand, data on epigenetic mechanisms from peripheral tissues 
are known to provide useful information on epigenetic 
mechanisms in brain tissues [69]. There are websites availa-
ble that enable the interpretation of epigenetic data from pe-
ripheral tissues in the context of the brain [70, 71]. 

Better knowledge of the role of epigenetics in the patho-
genesis of ADHD could help in the clinical management of 
ADHD patients in two ways. One way pertains to the clinical 
diagnosis of ADHD patients. At present, patients with 
ADHD are diagnosed based on clinical grounds, namely, 
history and clinical examination [1]. Biomarkers for the di-
agnosis and prognosis of ADHD will be useful for the clini-
cal practitioner. One possible type of biomarkers are 
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Table 2.  Epigenetic changes in human peripheral cells in attention deficit hyperactivity disorder. 

Tissue Epigenetic Change  References 

Blood DNA methylation related to early childhood malnutrition implicated in ADHD  [24] 

Blood, Saliva Hypermethylation of DRD4 gene associated with deficits in ADHD [25] 

 Blood Methylation of 5-HT3A gene linked with ADHD [26] 

Saliva Methylation of VIPR2 associated with ADHD [27] 

Buccal cells DNA methylation related to event-related brain potentials and ADHD behavior [28] 

Blood Potential role for DNA methylation in genes related to cortical circuits [29] 

Blood DNA methylation related to GABA, DA, and 5-HT genes implicated in ADHD [30] 

Blood Peripheral DAT1 promoter methylation may predict striatal DAT availability in ADHD. [31] 

Blood cells Identification of risk variants for ADHD that correlate with differential cis-methylation [32] 

Blood Many DMRs detected [33] 

Blood DNA methylation associated with ADHD traits [34] 

PBMCs One CpG site and 4 regions differentially methylated [35] 

Saliva Possible DNA methylation biomarkers for ADHD [36] 

Umbilical cord blood Methylation of GFI1 is a mediator of association between prenatal smoking and ADHD at 6 years [37] 

Blood 
DNA methylation in LIME1 and  

SPTBN2 is associated with ADHD 
[38] 

Blood DNA methylation changes may be useful biomarkers [39] 

Blood/Saliva Association between COMT gene methylation and response to treatment in ADHD [40] 

Blood Association of NET methylation with in vivo NET expression and ADHD symptoms [41] 

Blood DNA methylation in TARBP1 gene associated with ADHD [42] 

Blood Increases expression of HDAC1 [43] 

Blood Changes in several miRNA levels [44] 

Serum Elevated miRNA Let-7d level [45] 

PBMCs Pri-miR-34b/c and miR-34b/c associated with ADHD [46] 

Blood AGO1, a miRNA biosynthesis candidate gene, associated with ADHD [47] 

Blood miRNAs may be useful as biomarkers [48] 

Serum Low levels of miR-142-3p and miR-378 [49] 

Blood miRNAs are involved in ADHD pathogenesis [50] 

PBMCs Aberrant profiles of expression of miRNAs [51] 

Serum Aberrant expression of miRNAs [52] 

Serum Changes in expression of miRNA-let-7 [53] 

Leukocytes Expression of miRNAs affects brain development [54] 

Blood Three miRNAs differentially expressed [55] 

Abbreviations: COMT: Catechol-O-methyltransferase; DAT1: Dopamine transporter; DMR: Differentially methylated regions; DRD4: Dopamine receptor 4 subtype; GABA: Gam-
ma amino butyric acid; HDAC1: Histone deacetylase 1; 5-HT: Serotonin; miRNAs: microRNAs; NET: Norepinephrine transporter; TARBP1: TAR (HIV1) RNA-binding protein1; 
VIPR2: Vasoactive intestinal polypeptide receptor-2. 
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Table 3.  Epigenetic effects of currently used drugs in attention deficit hyperactivity disorder. 

- Effect  References 

Amphetamine Produces increased H4 acetylation in mouse striatum [56] 

Amphetamine Enhances global H4 acetylation in rat striatum [57] 

Amphetamine Causes a decrease in global DNA methylation  [58] 

Methylphenidate Distinct lncRNA expression profiles in the PFC of rats [59] 

Methylphenidate DAT1 methylation associated with response [60] 

Methylphenidate Interaction between effect of CpG7 methylation and prenatal  

maternal stress and treatment response 

[61] 

Atomoxetine Changes in serum miRNA-let-7 in children with ADHD [53] 

Methamphetamine  Demethylation of SCNA gene promoter  [63] 

Abbreviations: DAT1: Dopamine transporter 1; H4: Histone 4; lncRNA: Long non-coding RNA; PFC: Prefrontal cortex; SCNA: α-synuclein. 

 
Table 4.  Clinical trials of epigenetic drugs in attention deficit hyperactivity disorder. 

Drug Class  
HDAC Class Target of 

Drugs  
Finding  References 

ER- 

Valproate 
HDACi I, IIa Favorable response of ADHD with giant SEP  [65] 

Sodium valproate  HDACi I, IIa Reduces aggression  [66] 

VA HDACi I, IIa Reduces ADHD symptoms in FXS boys [67] 

Vafidemstat LSD1 inhibitor NA Reduces agitation/aggressiveness [68] 

Abbreviations: ER-Valproate: Extended release valproate; FXS: Fragile X syndrome; HDAC1: Histone deacetylase1; LSD1: Lysine demethylase 1; NA: Not applicable; SEP: Soma-
tosensory evoked potentials; VA: Valproic acid. 

 
epigenetic biomarkers, and efforts are being made to identify 
such biomarkers [9, 72]. Another way by which the know- 
ledge of epigenetics could impact the clinical management of 
ADHD patients would be the use of new drugs that act by 
correcting dysregulated epigenetic mechanisms of gene ex-
pression. As mentioned above and as given in Table 2, DNA 
hypermethylation and increased activity of HDAC1 have 
been detected in peripheral tissues of ADHD patients. In this 
light, drugs that decrease DNA methylation and HDAC ac-
tivity may be useful. Indeed as given in Table 4, the antiepi-
leptic and mood-stabilizing drug VA has shown favorable 
results in ADHD patients. As mentioned above, VA at thera-
peutic concentrations has HDAC inhibiting activity [64]. 
However, VA also has other possible mechanisms of action, 
like inhibition of nerve conduction. Moreover, it is a non-
specific inhibitor of HDACs targeting class I and class IIa 
HDACs. More specific HDACi could show greater clinical 
efficacy. HDACi, in addition to causing histone acetylation 
due to inhibition of HDACs, are also known to cause DNA 
demethylation. This effect could be due to perturbation of 
the dynamic interplay between the acetylation of histone tails 
and DNA methylation [73]. This effect could also be due to 
raised levels of the demethylating enzyme ten-eleven-
translocation methylcytosine dioxygenase 1 (TET1) [74]. 
Since, as discussed above, there is DNA hypermethylation in 
ADHD patients, this effect could also contribute to the pos-
sible efficacy of HDACi in ADHD. 

An important issue regarding the use of VA is possible 
adverse effects (AE) on the brain. These can occur prenatal-
ly, during infancy, and during childhood [75, 76]. Among all 
antiepileptic drugs, VA has the greatest potential to cause 
these AE [75]. Indeed, some children treated with VA can 
develop clinical features resembling those of ADHD [77]. 
The exact mechanism of the AE on the brain due to VA is 
not clear, but could, in fact, involve epigenetic mechanisms 
[78]. In this light, the use of other HDACi with greater safety 
profiles and HDAC specificity than VA may be warranted. 
Indeed, the clinical use of HDACi in the treatment of pa-
tients with psychiatric disorders is being actively investigat-
ed [79]. 

CONCLUSION 

There is accumulating evidence that abnormal epigenetic 
mechanisms of gene expression are involved in the patho-
genesis of ADHD. These abnormalities include abnormal 
DNA methylation, histone modifications, and ncRNA-
mediated regulation of gene expression. However, at present, 
we are in the early stages of this field of research. A better 
and deeper knowledge of the abnormalities of epigenetic 
mechanisms in ADHD could lead to improvements in the 
clinical care of ADHD patients with the development of epi-
genetic biomarkers of the disease process and new drugs that 
target and correct the epigenetic abnormalities.  
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