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Purpose. We evaluated the efficacies of the adaptive steepest descent projection onto convex sets (ASD-POCS), simultaneous
algebraic reconstruction technique (SART), filtered back projection (FBP), and maximum likelihood expectation maximization
(MLEM) total variation minimization iterative algorithms for reducing exposure doses during digital breast tomosynthesis
for reduced projections. Methods. Reconstructions were evaluated using normal (15 projections) and half (i.e., thinned-out
normal) projections (seven projections). The algorithms were assessed by determining the full width at half-maximum (FWHM),
and the BR3D Phantom was used to evaluate the contrast-to-noise ratio (CNR) for the in-focus plane. A mean similarity
measure of structural similarity (MSSIM) was also used to identify the preservation of contrast in clinical cases. Results. Spatial
resolution tended to deteriorate in ASD-POCS algorithm reconstructions involving a reduced number of projections. However,
the microcalcification size did not affect the rate of FWHM change. The ASD-POCS algorithm yielded a high CNR independently
of the simulated mass lesion size and projection number. The ASD-POCS algorithm yielded a high MSSIM in reconstructions
from reduced numbers of projections. Conclusions. The ASD-POCS algorithm can preserve contrast despite a reduced number of
projections and could therefore be used to reduce radiation doses.

1. Introduction

Digital tomosynthesis combines the benefits of digital imag-
ing [1, 2] with the tomographic benefits of computed tomog-
raphy to provide three-dimensional (3D) structural informa-
tion. This technique can easily be performed in conjunction
with radiography to reduce both the radiation doses and
associated costs. Digital breast tomosynthesis (DBT) thus
provides 3D structural information by reconstructing an
entire image volume from a sequence of projection-view
mammograms acquired within a small number of projection
angles over a limited angular range. As DBT reduces the
camouflaging effects of overlapping fibroglandular breast
tissue, thereby improving the conspicuity of subtle lesions, its
use could potentially improve the rate of early breast cancer
detection [2–4]. Several digital mammography-based DBT

systems have been developed [5], and this technology is the
focus of currently ongoing preliminary clinical studies [2, 6].

In previous studies of DBP, Wu et al. evaluated the con-
ventional reconstruction algorithm (filtered back projection;
FBP [7]), statistical iterative reconstruction (IR) algorithms
(maximum likelihood expectation maximization; MLEM
[3]), and simultaneous IR algorithms (the simultaneous
iterative reconstruction technique; SIRT [8]). The results led
Wu and colleagues to conclude that the MLEM algorithm
provides a good balance of image quality between low- and
high-frequency features [3]. Other reports have explored
various DBT reconstruction methods [7, 9, 10] or have pro-
posed options for suppressing irrelevant plane information
and enhancing DBT image quality [11, 12]. Specifically, DBT
reconstruction involves inconsistent images limited by a
low signal-to-noise ratio consequent to the superposition of
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Figure 1: The total variation minimization concept based on the adaptive steepest descent projection onto the convex sets reconstruction
algorithm for digital breast tomosynthesis.
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Figure 2:The adaptive steepest descent projection onto the convex sets algorithm in the form of a pseudocode. 𝛽: the ART operator depends
on the relaxation parameter. 𝛽𝑟𝑒𝑑: the ART-relaxation parameter is reduced by a constant fraction. 𝛼: total variation (TV) hyperparameter.
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Figure 3: Areas where the full width at half-maximum and contrast-to-noise ratio were measured in a reconstructed image of the BR3D
Phantom (in-focus plane).

several low-exposure projection images. The concurrent loss
of plane-relevant details yields reconstructed images with
poor contrast.

Two research objectives have been identified as a con-
sequence of the increasing spread of DBT in clinical prac-
tice: estimation of the risk of radiation-induced cancer and
characterization of the image qualities of DBT systems to
understand the similarities and differences with respect to
standard two-dimensional (2D) full-field digital mammogra-
phy (FFDM). Although both objectives remain under debate
[13], Ferreira et al. [14] demonstrated an increase in the risk
of induced lung cancer with the DBT scan relative to FFDM,
especially if the beam energy has not been optimized in terms
of the image quality and absorbed dose [15].

Regarding image quality, a factor called quantum mot-
tle causes spatial incident photon fluctuations and, conse-
quently, radiographic image degradation. As quantummottle
increases at lower levels of exposure, reductions in the doses
to patients would be restricted by the degree of quantum
mottle even in a perfect detector. Noise also affects the
visibility and detectability of subtlemicrocalcifications (MCs)
and masses in reconstructed DBT images. Therefore, a new
algorithm that improves image quality via suitable processing
would further reduce patient doses and improve detection.

To overcome the above-described limitations, several
noise suppression techniques for DBT reconstruction have
been proposed [16–19]. Recently, an iterative algorithm based
on total variation- (TV-) based compressive sensing was
developed for volume image reconstruction from tomo-
graphic scans [20–24]. TV is defined as the sum of the first-
order derivative magnitudes for all pixels in the image, and
TV image has been used as a penalty term in iterative image

reconstruction algorithms [24]. TV-minimization is an image
domain optimization method associated with compressed
sensing theory [22, 24]. Adaptive steepest descent projection
onto convex sets (ASD-POCS), a TV-minimization iterative
reconstruction (IR) algorithm for image reconstruction, pro-
vides a partial solution to the problem of constrained TV-
minimization [22]. In TV-minimization IR, the addition of a
penalty to the data-fidelity-objective function smooths noise
in the image while preserving the internal edges [20–25].
Therefore, TV-minimization IR can preserve contrast while
reducing both projection data and radiation doses.

In this study, we evaluated the abilities of four recon-
struction algorithms to reduce radiation dose from normal
and half projections (i.e., thinned-out normal): a novel TV-
minimization IR algorithm (ASD-POCS) and three conven-
tional reconstruction algorithms (FBP, statistical IR-MLEM,
and SIRT algorithm algebraic IR-simultaneous algebraic
reconstruction technique; SART) [23]). Specifically, we com-
pared the level of contrast preservation when reconstructing
a reduced number of projections of both breast phantoms and
clinical cases.

2. Materials and Methods

2.1. Digital Breast Tomosynthesis. This study used a DBT
system (Selenia Dimensions; Hologic Inc., Bedford, MA,
USA) comprising an X-ray tube with a 0.3-mm focal
spot (tube target: W, filtration: 0.7-mm aluminum equiva-
lent) and a digital flat-panel amorphous selenium detector.
A total acquisition time of 3.7 s and acquisition angle
of 15∘ were set for DBT procedures. Normal projection
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Figure 4: At right, the full width at half-maximum (FWHM) and contrast-to-noise ratio (CNR) characteristics caused by differences in
parameters [TV hyperparameter (𝛼), iteration number for TV-steepest descent (𝑛𝑔)] in the ASD-POCS algorithm (error bar represents the
standard error). At left, the root-mean-square error (RMSE) and universal image quality index (QI) characteristics caused by differences in
the numbers of iterations in each reconstruction algorithm.

images were sampled during a single tomographic pass (15
projections), while half projection images (seven projec-
tions) were generated by thinning out normal projection
data.

2.2. Phantom Specifications. TheBR3DPhantom (Model 020;
Computerized Imaging Reference Systems, Inc., Norfolk,
VA, USA), which comprises multiple heterogeneous slabs, is
intended to mimic the composition of glandular and adipose
tissues and parenchymal patterns in the human breast. The
slabs are composed of epoxy resins with X-ray attenuation
properties corresponding to 50% glandular or 50% adipose

breast tissue. The target slab was surrounded by nontarget
slabs (top, 30 mm and bottom, 10 mm).

2.3. Radiation Dose Measurement. The following settings
were implemented during each radiation dose setup: a ref-
erence radiation dose [automatic exposure control (AEC) =
exposure condition at 40-mm thickness and predetermined
tube voltage and current] at 28 kVp and 50 mA (15 pro-
jections). The average glandular dose (AGD) was calculated
using the method proposed by Dance et al. [26] and a
Piranha dosimeter (RTI Electronics AB,Mölndal, Sweden) to
measure radiation exposure. Measured radiation doses were



BioMed Research International 5

Projections: 15 Projections: 7
FBP ramp

FBP SL

MLEM

SART

ASD-POCS

FBP ramp

FBP SL

MLEM

SART

ASD-POCS

y

x

Figure 5: Comparisons between different projection number (normal: 15, half: seven) images obtained using each tomosynthesis recon-
struction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images: microcalcifications,
spheroidal masses. For corresponding images, the IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and
level, whereas the FBP images have a larger windowwidths because the backgrounds are less flattened and the gray levels in larger areas would
be out of scale in narrower windows.

used to convert the established exposure condition into the
AGD; the latter value was 1.51 mGy.

2.4. Reconstruction Algorithm. In this study, we used MAT-
LAB (Mathworks; Natick, MA, USA) to perform the FBP,
SART, MLEM, and ASD-POCS image reconstruction calcu-
lations [27]. The reconstruction data comprised real projec-
tion data acquired on a DBT system.

Two-dimensional (2D) image filtering, which multiplies
the Fourier transform by a Ramp or SL filter kernel, was used
to restore the impulse shape of the reconstructed image. A
conventional Ramp or SL filter kernel and the FBP algorithm,
which generally produces precise 3D reconstruction images
[7], were used to yield FBP images in this study. In contrast
to the single-step back projection and FBP algorithms, IR

algorithms perform a recursive reconstruction [9]. Specifi-
cally, IR iteratively updates the unknown linear attenuation
coefficients by minimizing errors between the measured and
calculated projection data.

Previous studies have investigated algebraic reconstruc-
tion technique (ART) methodologies [8]. An ART rapidly
converges by updating the linear attenuation coefficients
from a single projection value at each time point. However,
the least-squares solution can yield considerable noise if the
inverse problem is very poorly posed (e.g., limited angle
reconstruction). Several improvements to ART have been
proposed to address this issue. For instance, modifications
of ART may be compatible with other methods, such as
SIRT [8], depending on the projection data volume and the
method used to update the given estimation. Notably, SART
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Figure 6: Comparisons of the full width at half-maximum (FWHM) and rate of change between normal (15) and half (seven) projections
in the in-focus plane images obtained via tomosynthesis under different projection numbers and generated using different reconstruction
algorithms. The error bar represents the standard error.

represents a compromise between ART and SIRT that yields
acceptable algorithm stability and convergence in the same
process. MLEM methods comprising two steps per iteration
(e.g., a forward step for DT acquisition process modeling and
backward step for reconstructed object updating) have also
been proposed. These methods are applied iteratively, such
that the reconstructed volume projections computed from
an image formation model will resemble the experimental
projections.

Another ART is the ASD-POCS algorithm step that
improves data consistency, in which basic projection enforces
positivity. ASD-POCS minimizes the TV norm separately in
each iteration; in otherwords, the image is first reconstructed,
followed by a reduction in the TV norm at each iteration.
To nudge the image toward a minimum-TV solution, POCS
steps are alternated with the TV-steepest descent [22]. If the
TV-minimization step alone was run during the rest of the
algorithms, the result would be a flat image. Alternatively,
the ROF model ensures that the image is not significantly

altered. The importance of these optimal parameters with
respect to image quality has been demonstrated in previous
studies [22, 24]. Here, we used optimal parameters for the
ASD-POCS algorithms to preserve the edges. Figures 1 and 2
depict the ASD-POCS algorithm in the form of a pseudocode
and overview, respectively.

2.5. Phantom Evaluation. We calculated the full width at
half-maximum (FWHM) and contrast-to-noise ratio (CNR)
to evaluate the effects of contrast preservation on each
phantom image featured in the in-focus plane. The spatial
resolution derived from the FWHM in the in-focus plane
(0.29 and 0.40mm 𝜑; CaCO3) was evaluated as a quantitative
measure of the reconstructed image quality, after which the
FWHM of the selected intensity profiles intersecting the
three MCs on reconstructed DBT slices were measured. To
obtain the intensity profile, three neighboring vertical lines
intersecting the MCs (perpendicular to the X-ray sweep
direction) were arranged.
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The contrast derived from the CNR in the in-focus plane
[3.9 and 4.7 mm 𝜑; spheroidal masses (epoxy resin)] was
also evaluated as a quantitative measure of the reconstructed
image quality. In tomosynthesis, the CNR is frequently used
to estimate low-contrast detectability and was defined in this
study as follows:

𝐶𝑁𝑅 =
𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 − 𝜇𝐵𝐺

𝜎𝐵𝐺
(1)

where 𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 is the mean object pixel value, 𝜇𝐵𝐺 is the
mean background area pixel value, and 𝜎𝐵𝐺 is the standard
deviation of the backgroundpixel values.The latter parameter
includes the photon statistics and electronic noise from the
results, as well as structural noise that could obscure the
object. The sizes of all regions of interest (ROIs) used to
measure theCNRwere adjusted to an internal signal as shown
in Figure 3 (3.9 mm; 21 × 21 pixels, 4.7 mm; 33 × 25 pixels).

2.6. Optimization Parameters. A range of optional parame-
ters have been identified forASD-POCS [TVhyperparameter
(𝛼), iteration number for TV-steepest descent (𝑛𝑔)]; of these,
some are crucial for determining the algorithmic behavior.

In this study, we used the FWHM and CNR to verify the
optimization of these parameters. To maintain a quality
balance between FWHM and CNR performance, a TV
hyperparameter (𝛼) of 0.002 and iteration number for TV-
steepest descent (𝑛𝑔) of 25 were selected (Figure 4). We
compared the root-mean-square error (RMSE) and universal
image quality index (QI) [reconstructed volume image (15
projections) from the previous iteration between the current
iteration] to optimize the iteration numbers (i) [28]. The QI
is mathematically defined by modeling the image distortion
relative to the reference image as a combination of three
factors: loss of correlation, luminance distortion, and contrast
distortion. Because the QI does not explicitly use a human
visual system model, it performs significantly better than
the widely used distortion metric mean squared error for
various types of image distortion. A feasibility is to keep
the convergence of SART and ASD-POCS reconstruction
for 5 iterations and MLEM reconstruction for 2 iterations
(Figure 4).

The amplification of noise is a characteristic of non-
regularized algorithms, such as MLEM. As high-frequency
noise in the data is amplified by each iteration of the MLEM
algorithm, few iterations may be optimum for the detection
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Figure 8: Comparisons among clinical case images (in-focus plane) obtained via actual filtered back projection reconstructions from a digital
breast tomosynthesis scanner (Selenia Dimensions, 15 projections). The scanner FBP images for the corresponding image are displayed with
the same window width and window level (top: case 1, middle: case 2, and bottom: case 3).

of low-contrast objects, such as small masses [3]. In the
SART algorithm, the linear attenuation coefficient of each
voxel is simultaneously updated using all rays in a single
projection (regularized algorithm). The number of imaged
volume updates in a single iteration is equal to the number
of projections [23]. Considering these factors, we believe that
the difference between RMSE and QI is associated with the
difference between SART and MLEM algorithms.

2.7. Case Evaluation. In this study, AEC exposure was used to
compare different DBT reconstruction methods in a clinical
case evaluation. The cases were evaluated using structural
similarity (SSIM) [29], where local patterns of luminance-
and contrast-normalized pixel intensity were compared to
determine the SSIM index of contrast preservation. This
image quality metric is based on the assumed suitability
of the human visual system for extracting structure-based
information.

The SSIM index between pixel values 𝑥 and 𝑦 was
calculated as follows:

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) = [𝑙 (𝑥, 𝑦)]𝛼 ⋅ [𝑐 (𝑥, 𝑦)]𝛽 ⋅ [𝑠 (𝑥, 𝑦)]𝛾 (2)

where 𝑙 is the luminance, 𝑐 is the contrast, and 𝑠 is the
structure. Subsequently,

𝛼 = 𝛽 = 𝛾 = 1.0. (3)

The mean SSIM (MSSIM) was then used to evaluate the
overall image quality:

𝑀𝑆𝑆𝐼𝑀 (𝑋, 𝑌) = 1
𝑀

𝑀

∑
𝑗=1

𝑆𝑆𝐼𝑀(𝑥𝑖, 𝑦𝑗) (4)

where 𝑋 and 𝑌 are the reference [reconstructed image
(in-focus plane) from 15 projections] and objective [recon-
structed image (in-focus plane) from seven projections]
images, respectively; 𝑥𝑖 and 𝑦𝑗 are the image contents at the
𝑗th pixel; and 𝑀 is the number of pixels in the image.



BioMed Research International 9

Projections: 15 Projections: 7

FBP ramp

FBP SL

MLEM

SART

ASD-POCS

FBP ramp

FBP SL

MLEM

SART

ASD-POCS

y

x

Figure 9: Case 1. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

Details of each case are listed below.

Case 1. In a 56-year-old woman with diagnosed ductal
carcinoma in situ, the following imaging parameters were
used: voltage, 30 kV; tube current, 61; thickness, 46mm;AGD,
1.75 (15 projections).

Case 2. In a 62-year-old woman with a diagnosis of scirrhous,
the following parameters were used: voltage, 29 kV; tube
current, 47; thickness, 39 mm; AGD, 1.32 (15 projections).

Case 3. In an 81-year-old woman with a diagnosis of solid
tubular carcinoma, the following parameters were set: volt-
age, 29 kV; tube current, 48; thickness, 41 mm; AGD 1.29 (15
projections).

3. Results

Figure 5 presents images of the BR3D Phantom obtained
using each reconstruction algorithm.Comparedwith the FBP
algorithm, the IR algorithms tended to yield slightly higher

noise levels as the projection number decreased, although
image quality deterioration was not observed. The FBP algo-
rithm exhibited goodMC detection ability but also generated
remarkable false images from the peripheries of the MCs.

We also compared the FWHM of each reconstructed
image obtained using different projection numbers for the
in-focus plane (Figure 6). Here, the FBP algorithm yielded
the best spatial resolution, whereas this parameter tended
to deteriorate while using the ASD-POCS algorithm to
reconstruct a reduced number of projections. Furthermore,
the number of projections but not the MC size affected the
FWHM rate of change.

We further compared the CNR of each reconstructed
image obtained using different projection numbers for the
in-focus plane (Figure 7). Notably, the ASD-POCS algorithm
yielded high-contrast images, regardless of the simulated
mass lesion size and projection number. With the FBP algo-
rithm, the contrast degradation increased at reduced projec-
tion numbers when generating images of 3.9-mm spheroidal
masses. With the MLEM and ASD-POCS algorithms,
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Figure 10: Case 2. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

contrast deterioration associated with a decreased projection
number had only a small effect. For 4.7-mm spheroidal
masses, the CNR tended to increase as the projection number
decreased when using the FBP(SL), SART, and ASD-POCS
algorithms and tended to decrease when using the FBP
(ramp) and MLEM algorithms.

Reconstructed images of three clinical cases, which were
obtained using actual FBP reconstructed images (in-focus
plane) from the scanner (Selenia Dimensions), are presented
as reference data in Figure 8. Reconstructed clinical case
images obtained using each reconstruction algorithm are
presented in Figures 9–11, while Figure 12 compares the SSIM
images obtained with each reconstruction algorithm using
either 15 or seven projections for the in-focus plane. Figure 13
compares the MSSIM of each reconstructed clinical case
image obtained in the in-focus plane. Images reconstructed
using the ASD-POCS and MLEM algorithms and a reduced
number of projections were highly structurally similar, sug-
gesting that the former could potentially be used in dose
reduction initiatives while preserving contrast.

4. Discussion

Our empirical results obtained using various reconstruction
algorithms demonstrate that the ASD-POCS algorithm can
preserve image contrast even when using reduced projection
data. Accordingly, the ASD-POCS algorithm could poten-
tially be used to reduce radiation doses to patients.

The outermost repeat-until loop instruction of the ASD-
POCS algorithm contains two main components: an adjust-
ment toward data consistency via the POCS step loop and
the steepest descent toward lower-TV images. The algorithm
is effective when each POCS step involves multiple small
descent substeps, particularly during the early iterations [20].
TV-minimization assumes that the true image is piecewise
and relatively uniform, whereas noise and artifacts appear
as fluctuations, or peaks and valleys; accordingly, noise and
artifact-corrupted images would have relatively larger TV
values because TV is defined as the sum of first-order
derivative magnitudes [22]. In contrast, compared with the
SART algorithm MSSIM results similar to the ASD-POCS
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Figure 11: Case 3. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

algorithm have shown preserved contrast, but a large change
rate from the FWHM and low-contrast detection compared
with the ASD-POCS algorithm. We suggest that these results
are attributable to the inability of the SART algorithm to
correct increases in noise. Moreover, incorrect assumptions
in the reconstruction models lead to the active introduction
of artifacts, whereas TV suppresses the high-frequency com-
ponents of artifacts introduced by data consistency.

In general, image artifacts are caused by a loss of the
largest normal contributions from artifact-free voxels. As
these voxels normally produce original contributions, their
values decrease slightly after the largest normal contribution
has been omitted. Accordingly, a single abnormal contribu-
tion within a voxel is resolved while all other contributions
are retained, including the largest normal contribution; vox-
els containing such abnormalities therefore tend to exhibit
higher values than their neighboring artifact-free voxels,
leading to the appearance of objects in which artifact-free
voxels are more noticeable against the background. This

phenomenon is a drawback of the FBP algorithm, and
consequent artifacts are conspicuous when compared with
artifact-free images.

DT image quality depends on several factors, including
size, shape, density, atomic number, and the size and shape
of the object cross-section. Highly attenuating objects yield
streak artifacts (dark-band artifacts) on DBT acquisitions,
which adversely affect image quality. Additionally, beam
hardening and scattering have significant effects, particularly
on highly attenuating objects from MCs. Accordingly, noise-
induced streak artifacts primarily affect image quality. In
such cases, the IR reconstruction algorithm, which is thought
to adequately address quantum noise [30], appears to be a
promising approach to the reduction of artifacts stemming
fromMCs with relatively high atomic numbers.

SART does not imply an even distribution of noise
across an image. Rather, SART uses an algebraic matrix
to selectively identify and subtract noise from an image
according to a mathematical model. However, each iteration
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Figure 12: Comparisons of structural similarity among images obtained from each case and using each tomosynthesis reconstruction
algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Images are in grayscale; white and black indicate
high and low structural similarity, respectively. The window width and level in each display are varied to allow a visual comparison of the
contrast and background gray level. Corresponding IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and
level.

of the reconstruction algorithm amplifies high-frequency
noise within the data. Therefore, the MLEM algorithm may
be optimal for detecting low-contrast objects [3].

We further found that images generated using the ASD-
POCS algorithm with a reduced projection number exhib-
ited deteriorated spatial resolution. TV-based approaches
uniformly penalize the image gradient, regardless of the
image structure. Therefore, oversmoothing of the recon-
structed image remains a major concern, despite the advan-
tages of using a TV norm as the regularization term

[31]. Frequent oversmoothing of the edges of the recon-
structed image causes the loss of low-contrast information
[32].

Most studies have evaluated breast imaging at different
radiation doses [33]. We believe that investigations of the
relationship between normal and half projections and con-
trast preservation are useful for determining the feasibility
of radiation dose reduction and hope that our study results
serve as a guideline for image reconstruction under reduced
projection data conditions. However, our study had several
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Figure 13: Comparisons of mean structural similarity among in-
focus plane images obtained via tomosynthesis data from clinical
cases under normal (15) and half projections (seven) and using each
tomosynthesis reconstruction algorithm.

limitations. First, we did not test actual mammary gland
tissues. However, we believe that the BR3D Phantom is an
accurate representation of actual mammary gland tissues.
Second, we did not perform an observational study. In
future, we plan to conduct such a study to investigate
the correlations among physical evaluation parameters (e.g.,
spatial resolution and contrast).Third, the phantom thickness
was fixed at 4 cm. In future evaluations, other phantom
thicknesses will be needed to confirm the utility of the
algorithm. Despite these limitations, we believe that our
results can serve as reference data and thus assist physicians
with contrast preservation while reducing radiation expo-
sure.

5. Conclusion

This study evaluated the ASD-POCS algorithm as a novel
technique for contrast preservation in DBT images obtained
under a reduced projection number. Our findings suggest
that the ASD-POCS algorithm could be used to reconstruct
dose-reduced images. As this approach exploits a priori
knowledge about contrast preservation and noise reduction,
we presume that the ASD-POCS algorithm will enhance the
clinical application ofDBT inmedical imaging, wherein these
parameters are a major focus of interest.
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