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Lower-limb kinematics and kinetics 
during continuously varying human 
locomotion
Emma Reznick  1,7, Kyle R. Embry2,3,4,7, Ross Neuman5, Edgar Bolívar-Nieto  1,6, 
Nicholas P. Fey5 & Robert D. Gregg  1,6 ✉

Human locomotion involves continuously variable activities including walking, running, and stair 
climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs 
transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying 
locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community 
ambulation. However, available datasets on human locomotion neglect transitions between activities 
and/or continuous variations in speed and inclination during these activities. This data paper reports 
a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants 
walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple 
speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), 
and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes 
sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon 
motion capture system and, for applicable tasks, a Bertec instrumented treadmill.

Background & Summary
To address limitations in amputee locomotion1, robotic prosthetic legs are being developed with specifications 
for design and control based on able-bodied human biomechanics data2–5. Although wearable robotic devices 
can have different goals (e.g., reducing energetic cost6,7), able-bodied data are often used as reference trajectories 
in the control system8–12 to restore normative biomechanics in impaired individuals, such as individuals with 
lower-limb amputation, whose biomechanics are likely to be significantly altered. Most studies of able-bodied 
human locomotion report lower-limb kinematics and kinetics during a limited set of steady-state tasks, e.g., walk-
ing13,14, running15, or stair ascent and descent16, with only a few discrete samples of speed and/or incline for each 
task14. State-of-art control systems for robotic prosthetic legs are similarly limited to a small set of steady-state 
locomotion tasks, using finite state machines to control instantaneous transitions between them (risking classi-
fication errors and jerky motion at transition points17). However, real-life human locomotion is far from steady 
state, involving intermittent bouts of walking, stopping, sitting, standing, and stair climbing18. In fact, 75 of all 
walking bouts are less than 40 steps in a row19. Non-steady conditions including transitions between locomotion 
modes and continuous variations of slopes and speeds are critical to modeling human locomotion and designing 
agile robotic prostheses.

Although the biomechanics of able-bodied walking13, running15, sit to stand20, and stair climbing16 have been 
well-documented as independent locomotion tasks, it is difficult to combine datasets due to differences in the 
measurements, methods, and participants. Brantley et al.21 recorded electroencephalography, lower-limb elec-
tromyography (EMG), and full body kinematics for ten participants walking on level-ground, ramps, and stairs. 
Embry et al.14 reported lower-body kinematics, kinetics, and EMG activity for ten able-bodied participants while 
walking at multiple speeds and slopes. Schreiber and Moissenet22 reported whole body kinematics, kinetics, and 
lower-body EMG information for level-ground walking at different speeds. Lencioni et al.23 reported whole body 
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kinematics, kinetics, and lower-body EMG information for level-ground walking and stair ascent/descent. Hu et al.24  
recorded lower-limb kinematics and EMG of ten able-bodied participants during free transitions between sitting, 
standing, level-ground walking, ramp walking, and stair climbing. Camargo et al.25 recorded kinematics, kinet-
ics, and EMG for 22 participants during variable-speed treadmill walking, variable-incline overground walking, 
variable-height stair climbing, and ramp and stair transitions. However, these studies are missing one or more of 
the following: joint kinetic measurements, global orientation measurements (e.g., pelvic tilt), enrollment of older 
participants, a primary activity of daily living (e.g., sit-to-stand), transitions between tasks, and/or continuous 
variations of walking speed and incline (including their combinations).

This data paper considers all these features in reporting the lower-limb measurements of ten able-bodied par-
ticipants during sit-stand, walk-run, and walk-stairs transitions (Fig. 1), walking at multiple inclines with differ-
ent speeds, walking/running at constant acceleration and deceleration rates, and running at multiple speeds. The 
reported kinematics include pelvic tilt and hip, knee, and ankle joint angles, and joint moments are provided for 
the treadmill tasks. The dataset also includes the global position of reflective markers (hereinafter referred to as 
“markers”) in 3D space and the force plate measurements when available. These measurements were used to build 
kinematic and kinetic models to calculate joint angles, velocities, and moments. We also include video recordings 
to illustrate the experiments for each of the locomotion tasks.

One purpose for the collected dataset is to provide input data for modeling human kinematics over different 
locomotion tasks. During a steady gait cycle, each joint angle can be assumed to be a periodic signal and thus 
can be modeled as a Fourier series depending on time or a global measurement8. The changes in knee and ankle 
kinematics due to different walking speeds and inclines can be modeled as a weighted sum of multiple continuous 
basis functions, e.g., Fourier series14. This allows the model to continuously interpolate walking kinematics over 
continuously varying speeds and inclines, giving robotic prosthetic legs more adaptability than switching between 
a limited set of discrete inclines or speeds. Continuous transitions between sitting, standing, walking, stair climb-
ing, and running can also be modeled for more natural control of non-steady activities. These kinematic mod-
els can be trained based on across-participant averages from the presented dataset to generate baseline control 
strategies for powered prostheses8–10 and exoskeletons11,12. Because these models continuously connect a range of 
tasks, they can be efficiently individualized by heavily weighting one participant-specific task (e.g., level-ground 
walking) amongst across-participant averages for all other tasks26.

Methods
This section lays out the procedure from obtaining participant consent to acquiring and processing the data for 
publication. Each section proceeds step-by-step through the procedure and details the tasks within each ambula-
tion mode. The variety of speeds and/or inclines within each mode entail the continuous variation of the dataset.

Participants. The study protocol was approved by the Institutional Review Boards at the University of Texas 
at Dallas and the University of Michigan. This dataset was acquired from ten healthy participants (5 female), aged 
20–60 years (30.4 ± 14.9), weighing 74.6 ± 9.7 kg, and with an average height of 1.73 ± 0.94. To be included, the 
participants were between 19 and 65 years old, self-reported the ability to walk over uneven ground with ease, 
and had no joint problems in the lower extremities or neuromuscular disorders or diseases that would impair 
their ability to walk.

Fig. 1 Locomotion modes and practical transitions (T1 through T3) considered in this study. ‘Walk’ and 
‘Run’ occur on a flat surface, whereas ‘Stairs’ occurs on a staircase. All modes except ‘Sit’ are continuously 
parameterized by speed and inclination, which are sampled in the dataset. Note a sit-stand transition 
corresponds to T1 with zero gait speed in ‘Walk’.
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Instrumentation and participant preparation. Data were acquired in the University of Texas 
Southwestern Medical Center motion capture laboratory in Dallas, TX, operated by University of Texas at Dallas. 
This laboratory is equipped with a motion capture system, instrumented treadmill, and a 4-step adjustable stair 
set in order to record the kinematics and kinetics of a wide range of tasks, detailed below. Synchronous data 
acquisition was managed by the Vicon motion capture system.

Participant preparation. After obtaining informed consent and briefing participants about all trials that would 
be performed, participants were equipped with motion capture markers. Participants were instructed to wear 
tight-fitting clothing, and cohesive wraps were used when necessary to ensure clothing stayed tight to the skin, 
particularly for two participants (AB06 and AB10). Markers were placed at every location necessary for the Vicon 
Plug-in Gait lower body model, as well as a custom set of additional markers used to improve the robustness 
of segment identification. These additional markers provided a source for filling either a rigid body or pattern, 
depending on the location of the marker, during events where a required marker for Plug-in Gait was not visible 
for several frames. Note that some of the additional markers were placed close together on 3D printed cluster 
plates held to the leg with cohesive tape, but these redundant markers are left out of the dataset due to possible 
motion artifacts. Please see Fig. 2 for the names of all markers and a description of which markers are used for 
the conventional gait model. The Plug-in Gait markers were almost always placed on skin or tight-fitting clothes 
(e.g., yoga pants), with the exception of the thigh markers for only two participants (AB06 and AB10) which were 
subsequently constrained to the rigid body during post-processing.

Treadmill. All flat-ground walking and running tests were conducted at variable speeds and inclines on a Bertec 
instrumented split-belt treadmill (Bertec Corporation, Columbus, OH). This treadmill has embedded force plates 
under each belt to acquire kinetics independently for each leg at 1000 Hz (and downsampled to 100 Hz for publi-
cation). The treadmill was remotely controlled by a custom MATLAB code to change the speed and acceleration 
over randomized tasks at one incline, details discussed later.

Motion capture. A 10-camera Vicon T40 motion capture system (Vicon, Oxford, UK) was used to record the 
3D positions of all markers attached to participants at 100 Hz. We utilized Vicon’s proprietary Dynamic Plug-in 
Gait Model to calculate joint angles from markers positions, where angular conventions are defined in the Nexus 
2 user guide27. In trials using the treadmill forceplates, Plug-in Gait was also used to approximate joint forces, 
moments, and powers. The Plug-in Gait software calculates inverse dynamics to derive joint kinetics from force 
plate kinetics and motion capture kinematics using the conventional gait model. Further information on the 
Plug-in Gait kinetic modeling is available in the Nexus 2 user guide27. An open-source implementation of the 
conventional gait model is introduced in Lebourd et al.28, which closely matches Plug-in Gait results. In our data-
set, each joint has a consistent sign convention for its angles and moments, where ankle dorsiflexion, knee flexion, 
and hip flexion are defined in the positive directions.

Stair details. A 4-Step Adjustable Stair Set (Staging Dimensions, Inc., New Castle, Delaware) with no handrails 
was attached to a platform with variable height legs. The height of the platform was adjusted to change the inclina-
tion of the stairs. This allows for stair heights that closely resemble the 2010 ADA accessibility standards of 4–7in. 

Fig. 2 Marker Set: Markers were placed on left and right limbs symmetrically, left side markers shown. Markers 
noted with a ‘*’ are used in the conventional gait model. For full description of marker locations, see Nexus 2 
user guide36.
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The inclines (20; 25; 30; 35) correspond with riser heights of 3.81; 4.72; 5.75; 6.38in. Due to lack of force plates in 
the stairs, kinetic data was not recorded for any stair walking.

Experimental procedure. This study captures the kinematics, force plate and joint kinetics of walking and 
running on a flat surface, kinematics and force plate kinetics of sit-to-stand, and kinematics of stair ascent and 
descent. The acquisition of each of these ambulation modes consists of a continuous range of tasks that a partic-
ipant may encounter in day-to-day life, including different inclinations and speeds and task transitions (Fig. 1). 
While the experiment was designed to randomize different tasks to minimize the effect of fatigue, the progression 
of ambulation modes (described later) remained constant for ease of acquisition.

We performed a statistical analysis before conducting this experiment to ensure reasonable confidence that 
we enrolled enough participants, recorded enough strides of each task, and that our sample mean kinematics 
would be reasonably close to the population mean. Our metric for success was that based on the 80% confidence 
interval of the standard deviation of previous experiments, the intra-participant mean trajectory should be within 
five degrees of the true intra-participant trajectory at all points in time, and similarly that the inter-participant 
mean is within five degrees of the population inter-participant mean14. The number of strides and participants 
necessary to meet this condition was found by the formula n = (Za/2σ/E)2, where n is the necessary number of 
samples, Za/2 = 1.645 is the α = 0.10 z-score for a two-tailed distribution, σ is the population standard deviation 
of the data, and E is the maximum difference between the population mean and n-sample mean, in our case 5 
degrees. The population standard deviation σ is unknown, so we replace this value with the upper and lower 80% 
confidence interval of the standard deviation, s, of a previous, similar experiment14 to produce a range of n val-
ues (see Table 1). We selected practical values of n within this range that are consistent with many other human 
motion capture studies.

Fig. 3 Inter-participant average walking kinematics and kinetics for all inclines at 1.0. Inclines reported in 
degrees. Foot contact corresponds to 0 of the gait cycle. Solid lines and shaded regions represent the average 
trajectory and its variation within one standard deviation, respectively. Positive or negative normalized power 
denotes generation (Gen.) or absorption (Abs.) of mechanical power, respectively. These plots correspond to 
Walk in Normalized.mat, as detailed in the README.
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Participant marker placement and calibration. After obtaining informed consent and preparing the participant’s 
marker set (Fig. 2), the participant was instructed to stand still for a static calibration of the marker set, and then 
walk for 10–15 seconds on the treadmill at 1.0 while we recorded their joint kinematics. Any unexpected irreg-
ularities in able-bodied gait were addressed at this point before proceeding. Please see the Technical Validation 
section for details.

Walking. A MATLAB program was used to remotely control the treadmill through a protocol that randomized 
the order of walking speed tasks as well as two acceleration tasks. Walking trials progressed through a range of 
nominal walking speeds (0.8; 1.0; 1.2) over the course of each capture. In an effort to increase similarity between 
participant joint angles, the nominal walking speeds were then normalized with respect to the participant’s leg 
length, using the formula =v v gl/norm orig 0, where g = 9.81 is the gravity constant and l0 is leg length29. Different 
acceleration and deceleration rates were also tested (±0.1 m/s2; 0.2 m/s2; 0.5 m/s2), where 0.1 m/s2 was used to 
transition between different walking speeds, and 0.2 m/s2 and 0.5 m/s2 were tested individually by accelerating 

Lower s Upper s Lower n Upper n Selected n

intra-participant 6.95 8.22 2.28 4.36 5

inter-participant 7.34 15.83 3.480 16.17 10

Table 1. Sample Size Calculations.

Fig. 4 Inter-participant average running kinematics and kinetics at all speeds. Foot contact corresponds to 0 
of the gait cycle. Solid lines and shaded regions represent the average trajectory and its variation within one 
standard deviation, respectively. Positive or negative normalized power denotes generation (Gen.) or absorption 
(Abs.) of mechanical power, respectively. These plots correspond to Run in Normalized.mat, as detailed in the 
README.
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from rest to 1.2 m/s, holding for 5 seconds, and decelerating back to rest. These procedures were conducted at 
multiple inclines covering and slightly exceeding the range of ADA-compliant ramps (±0°; 5° and 10°), the order 
of which was also randomized to minimize the effect of fatigue. These walking speeds and inclines match some of 
our previously released datasets, which may be useful for comparison30–32. Walking kinematics and kinetics over 
each incline are shown in Fig. 3. Each data capture was conducted at a fixed incline with the treadmill incline 
feature clamped to prevent surface movement while walking. A tone was played to alert the participant before any 
changes in speed.

Running. Running trials were collected on the treadmill in a randomized order of speeds over level ground 
(1.8 m/s; 2.0 m/s; 2.2 m/s; 2.4 m/s), with speeds normalized by leg length consistent with walking trials29. Data 
was collected for 30 seconds at each speed, resulting in the inter-participant average kinematics and kinetics in 
Fig. 4. Walk-run transitions were separately captured and remotely controlled by accelerating from rest to 2.2 at 
different rates (0.2 m/s2; 0.5 m/s2), holding that speed for 10 seconds, and decelerating at the same rate back to rest. 
It should be noted that AB04 and AB10 opted out of performing some running trials.

Sit-to-stand. Sit-to-stand transitions were collected by instructing the participant to sit on a backless stool 
placed on one of the belts of the treadmill while their feet rested on the other belt. Force plates beneath each belt 

Fig. 5 Inter-participant average sit-to-stand kinematics. Solid lines and shaded regions represent the average 
trajectory and its variation within one standard deviation, respectively. These plots correspond to SitStand in 
Normalized.mat, as detailed in the README.
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recorded the ground reaction forces through the stool and the participant’s feet throughout the transition, allow-
ing researchers to study the weight transition to and from the feet throughout the sit-to-stand and stand-to-sit 
transitions. Six trials were recorded of the participant rising from the chair, standing at rest for a moment, and 
then sitting. Participants were instructed not to use their hands to assist their transitions. The inter-participant 
average kinematics can be seen in Fig. 5.

Stairs. Stair trials were conducted over four inclinations of stairs (20°; 25°; 30° and 35°). The participant began 
6 ft from the base of the staircase, approached the stairs at a self-selected walking speed, ascended the stairs, and 
walked to the end of the platform. At this point, the capture was ended and the participant was instructed to turn 
around. This procedure recorded one walk-to-stair and stair-to-walk transition per capture. The participant then 
began the descent trial from rest at the end of the platform, descended to the bottom of the stairs, and continued 
to the demarcated starting line. At least five ascent and descent trials were conducted at each incline, with addi-
tional trials being added at the recorder’s discretion. The inter-participant average kinematics of steady-state and 
transitional strides are shown for stair ascent in Fig. 6 and stair descent in Fig. 7.

Motion capture post-processing. Post processing in Vicon Nexus consisted of rigid body fills, filtering, 
and a Plug-in Gait model that uses the conventional gait model and inverse dynamics to calculate joint moments. 
After labeling the markers to match the marker set in Fig. 2, a rigid body or pattern fill addressed small gaps for 
each leg segment (Lthigh, Lshank, Rthigh, Rshank). Gaps in the data were caused by visual occlusion of the markers. 
The marker trajectories were then filtered with a 4th-order Butterworth Low-Pass filter with a 6 Hz cutoff 33 and 

Fig. 6 Stair ascent steady-state and transition kinematics. Inter-participant average kinematics for steady-state 
stair ascent and the transitions walk-to-stair-ascent and stair-ascent-to-walk. Stride 3 is plotted for the steady-
state case because it is the most periodic stride. Stair inclines are reported in degrees. Solid lines and shaded 
regions represent the average trajectory and its variation within one standard deviation, respectively. These 
columns respectively correspond to the ascent cases of w2s, s3, and s2w under Stair in Normalized.mat, as 
detailed in the README.
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a Woltring filter with a smoothing parameter of 20. Finally, the Plug-in Gait model calculated joint kinematics 
and kinetics (when force plate data was available), and the data was checked for anomalous motion. If anomalies 
were found, the motion was corrected at the marker level and the model was run again without filters to prevent 
over-filtering.

Data processing. A custom MATLAB pipeline was implemented to scan through all kinematic trajectories 
for a given participant, parse trials into tasks, parse tasks into strides, time-normalize strides, and compile into a 
unified MATLAB structure. For walking trials, the treadmill controller was programmed to output a command 
log after each trial detailing the sequence and timing of the various commands, which provided the necessary 
information to separate a trial into its constituent tasks. A stride was defined as heel strike to subsequent heel 
strike for a given leg. For all tasks performed on the treadmill, heel strikes were detected using forceplate meas-
urements using software provided by Vicon34. For stair trials, heel strikes were manually labeled in Vicon Nexus. 
Heel strikes also determined the periods for stance and swing phases, which are given in the events struct of 
the dataset. Each stride was considered a repeated measure of the given task. For sit-to-stand trials, tasks were 
separated algorithmically by tracking the progression of sagittal plane knee angles, see Fig. 5. Each stride or 
sit-to-stand cycle was linearly interpolated to 150 data points to ensure the cycle was upsampled from the 100 Hz 
Vicon sampling rate, assuming no cycle lasted longer than 1.5 seconds. Since all participants in this dataset were 
able-bodied and assumed to present symmetric kinematics, all joint kinematic fields include data from both the 
right and left legs without specific side labelling.

Fig. 7 Stair descent steady-state and transition kinematics. Inter-participant average kinematics for steady-
state stair descent and the transitions walk-to-stair-descent and stair-descent-to-walk. Stride 3 is plotted for 
the steady-state case because it is the most periodic stride. Stair inclines are reported in degrees. Solid lines and 
shaded regions represent the average trajectory and its variation within one standard deviation, respectively. 
These columns respectively correspond to the descent cases of w2s, s3, and s2w under Stair in Normalized.
mat, as detailed in the README.
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Once the strides of a given task were compiled, unsatisfactory examples were removed based on several crite-
ria: strides containing true zeros (i.e., gaps existed in data); strides with outliers in the maximum value of the first 
derivative (i.e., large discontinuities); steady-state stair strides with large differences between starting and end 
points (i.e., non-periodicity); and strides whose mean values were outliers (offset errors). Outliers were defined as 
values more than 3 scaled median absolute deviations from the median. Additional removal of fragmented strides 
(containing a task change) ensured veracity of the data. This strict judgment rejected 8.3% of treadmill strides 
(Walk, Run, Walk-to-Run) and 7.2% of Stair strides across all participants, leaving a median of 2006 strides for 
each participant across all modes and tasks. No sit-to-stand trials were rejected.

Data Records
This 10-person able-bodied dataset can be accessed from the figshare data repository35 in the form of two 
MATLAB structures: Streaming.mat is the continuous data from each trial (Table 2) and Normalized.mat con-
tains the same data parsed and normalized by stride (Table 3). Further documentation for the dataset can be 
found in the corresponding README file.

Technical Validation
The manufacturer’s standard procedure for capture volume calibration was performed before each session of 
experiments, and was repeated as needed if a camera was disturbed for any reason. This procedure entailed cali-
brating the cameras within the capture volume, leveling the treadmill, and setting the volume origin. Similarly, the 
force plates in the Bertec treadmill were both hardware zeroed, and software zeroed through the Nexus motion 
capture system. This zeroing procedure was repeated each time the treadmill inclination changed, to account for 
the loading conditions at the new incline. Finally, a custom procedure was implemented to calibrate the placement 

Field within structure Units Sampling rate Contents

marker (m) 100 Hz

Position in the global coordinate frame of the markers defined in 
Fig. 2.

Array Format: (total frames × 4)

First Dimension: Frames in trial

Second Dimension: x/y/z/e location in global space, e is whether the 
marker exists

jointAngle (deg) 100 Hz

Pelvic tilt, hip, knee, and ankle angles as defined in the Vicon’s Plug-
in Gait model28.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z rotation in local space

jointForce (N/kg) 100 Hz

Force vectors acting on the hip, knee, and ankle joints, given in the 
more distal segment’s frame of reference.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint force

jointMoment (N.m/kg) 100 Hz

Pelvic tilt, hip, knee, and ankle moments normalized by the 
participant’s mass as defined in the Vicon’s Plug-in Gait model28.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint moments

jointPower (W/kg) 100 Hz

Estimated power at each joint normalized by the participant’s 
mass. It results from the multiplication of jointMoment and the 
estimated joint velocity.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z joint power

forceplates Force: (N) Moment: (N.m) 
COP: (m) 1000 Hz

Resulting forces and moments in a 3D-frame with origin at the 
center of pressure (COP). The force plates are embedded in the two 
belts of the instrumented treadmill.

Array Format: (total frames × 3)

First Dimension: Frames in trial

Second Dimension: x/y/z of variable in global space

events
LHS: (frame) RHS: (frame) 
StrideTime: (frame) 
VelProf: (m/s)

N/A

Heel Strikes used for normalization (L/R) and the duration of each 
stride (L/RStrideTime).

Array Format: (1 × HS or stride)

Velocity Profiles (Walk only: Cvel,Rvel,Lvel): Commanded treadmill 
velocity (m/s), L/R stride velocity (m/s)

Array Size: (1 × frame)

Table 2. Streaming.mat - data without parsing/normalizing.
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of motion capture markers attached to participants. First, all markers were placed against the bony landmarks 
described by the Plug-in Gait marker procedure. Then, participants were asked to walk on the treadmill at zero 
degree incline for at least ten strides and recorded by motion capture. This recording was manually checked for 
good symmetry between left and right side joints and that the range of motion of each joint was similar to what 
was expected for able-bodied participants. If it was determined that the recorded symmetry or range of motion 
was unnatural for the participant, one or more markers would be moved slightly, always less than one centimeter, 
and the procedure was repeated. This procedure was repeated until joint symmetry and range of motion were 
deemed within expected ranges by two researchers to prevent bias. Note that this procedure would need to be 
modified for patient populations with different expected range of motion or gait asymmetry.

Usage Notes
Our dataset includes a MATLAB script entitled exampleUseScript.m, which gives an example of how to 
quickly access different types of data within the MATLAB structure. In this example script, we have plotted the 
sagittal-plane thigh kinematics and force plate vertical load for AB04 walking for one minute at 1.0 at −10 slope. 
All 59 strides performed by this participant are superimposed in this plot. Please see exampleUseScript.m 
for full explanation on how to access this data.

code availability
The dataset and the code to post-process the data and control the Bertec treadmill can be found on figshare35. The 
data can be accessed though MATLAB and is documented with a README file describing the data hierarchy. 
The MATLAB code that remotely controls the Bertec treadmill running a designed protocol is available with the 
dataset. This code is documented with its own README file.
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