
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=usbr20

Statistics in Biopharmaceutical Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/usbr20

Quantifying Efficiency Gains of Innovative Designs
of Two-Arm Vaccine Trials for COVID-19 Using an
Epidemic Simulation Model

Rob Johnson, Chris Jackson, Anne Presanis, Sofia S. Villar & Daniela De
Angelis

To cite this article: Rob Johnson, Chris Jackson, Anne Presanis, Sofia S. Villar & Daniela De
Angelis (2021): Quantifying Efficiency Gains of Innovative Designs of Two-Arm Vaccine Trials for
COVID-19 Using an Epidemic Simulation Model, Statistics in Biopharmaceutical Research, DOI:
10.1080/19466315.2021.1939774

To link to this article:  https://doi.org/10.1080/19466315.2021.1939774

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 30 Jul 2021. Submit your article to this journal 

Article views: 514 View related articles 

View Crossmark data Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=usbr20
https://www.tandfonline.com/loi/usbr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19466315.2021.1939774
https://doi.org/10.1080/19466315.2021.1939774
https://www.tandfonline.com/doi/suppl/10.1080/19466315.2021.1939774
https://www.tandfonline.com/doi/suppl/10.1080/19466315.2021.1939774
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=usbr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2021.1939774
https://www.tandfonline.com/doi/mlt/10.1080/19466315.2021.1939774
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2021.1939774&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1080/19466315.2021.1939774&domain=pdf&date_stamp=2021-07-30
https://www.tandfonline.com/doi/citedby/10.1080/19466315.2021.1939774#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/19466315.2021.1939774#tabModule


STATISTICS IN BIOPHARMACEUTICAL RESEARCH
2021, VOL. 00, NO. 0, 1–9
https://doi.org/10.1080/19466315.2021.1939774

Quantifying Efficiency Gains of Innovative Designs of Two-Arm Vaccine Trials for
COVID-19 Using an Epidemic Simulation Model

Rob Johnsona, Chris Jacksonb, Anne Presanisb, Sofia S. Villarb, and Daniela De Angelisb

aImperial College London, Department of Infectious Disease Epidemiology, London, UK; bMRC Biostatistics Unit, University of Cambridge, Cambridge,
UK

ABSTRACT
Clinical trials of a vaccine during an epidemic face particular challenges, such as the pressure to identify an
effective vaccine quickly to control the epidemic, and the effect that time-space-varying infection incidence
has on the power of a trial. We illustrate how the operating characteristics of different trial design elements
may be evaluated using a network epidemic and trial simulation model, based on COVID-19 and individually
randomized two-arm trials with a binary outcome. We show that “ring” recruitment strategies, prioritizing
participants at an imminent risk of infection, can result in substantial improvement in terms of power in the
model we present. In addition, we introduce a novel method to make more efficient use of the data from
the earliest cases of infection observed in the trial, whose infection may have been too early to be vaccine-
preventable. Finally, we compare several methods of response-adaptive randomization (RAR), discussing
their advantages and disadvantages in the context of our model and identifying particular adaptation
strategies that preserve power and estimation properties, while slightly reducing the number of infections,
given an effective vaccine.
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1. Introduction

Vaccine trials are still in progress for SARS-CoV-2 and many
vaccines are in development. So far, the trial designs pro-
posed have been two-arm, individually randomized placebo-
controlled trials, with the exception of the WHO R&D Blueprint
(2020), which allows for new arms to be added. Vaccine trials
in general have multiple, often competing, objectives which
include establishing evidence on the efficacy of the vaccine, and
conferring a health benefit to the trial participants as well as to
the wider population (Bellan et al. 2017). Important decisions
involved in designing any vaccine trial include the choice of trial
population, whether randomization takes place at an individual
or cluster level, the comparator, and the primary endpoint def-
inition. When a vaccine trial is conducted in the midst of an
epidemic, these decisions must address the specific challenges
of: identifying an effective vaccine as quickly as possible to
control the epidemic (Kahn et al. 2018); and the effect that
variable infection incidence over space and time has on the
power of a trial (Camacho et al. 2015). Efficiency gains that
can address these challenges are a crucial topic of discussion,
where “efficiency” includes: increasing power for a set number
of participants or infections; reducing the required number of
participants or infections for a given power; or reducing the time
until conclusion for a given power. Kahn et al. (2018), Nason
(2016) and Kahn et al. (2021) discussed such efficiency gains in
the context of the three diverse trials designed for the 2014–
2016 epidemic of Ebola virus disease (EVD) (Ebola ça Suffit
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Ring Vaccination Trial Consortium 2015; Kennedy et al. 2016;
Widdowson et al. 2016).

In this article, we focus on three elements of trial design for
testing vaccines in an epidemic that might improve power and
efficiency: recruiting participants at the highest risk of infection;
making more efficient use of the data on participants who are
infected earliest in the trial; and RAR.

Recruitment of participants at highest risk of infection has
been suggested (Kahn et al. 2018; Nason 2016; Kahn et al.
2021) to be more efficient than random recruitment. If high-risk
individuals can be confidently identified, then recruiting from
them can increase the number of cases that are observable in a
fixed window of time. Power is not only directly increased by
increasing the total number of events observed, but also indi-
rectly by reducing the risks of the incidence rate considerably
changing during the trial. “Ring” recruitment, where contacts
of known cases are recruited, was implemented in a vaccine trial
for EVD (Henao-Restrepo et al. 2017). In the ongoing COVID-
19 pandemic, many nations developed contact tracing systems
to contain the spread of disease (European Centre for Disease
Prevention and Control 2020), and contact tracing has been
explored as a means for rolling out a tested vaccine (MacIntyre,
Costantino, and Trent 2020), but, to the best of our knowledge,
contact tracing systems have not been formally used to define a
recruitment strategy for vaccine trials. Such a strategy to recruit
patients for an ongoing treatment trial has been adopted to some
success (Cake et al. 2021).
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An important disadvantage of recruiting people at risk of
imminent infection is that by the time patients are random-
ized, infection may already have occurred and thus cannot be
prevented by the trial vaccine. Furthermore, even if infection
has not occurred at randomization, it might still occur before
the vaccine induces a protective effect. Including such indi-
viduals in a conventional analysis of the trial data would lead
to underestimation of the vaccine efficacy (VE). Alternatively,
participants observed to be infected before a particular time
would commonly be excluded (as in e.g., Henao-Restrepo et al.
2017). However, since the time from (unobserved) infection to
symptoms is variable, later cut-off times may exclude people
who should have been included, thus reducing power, while
earlier cut-off times will lead to underestimation of efficacy.
Therefore, a more efficient way of using this information is
desirable when ring recruitment is used.

Some adaptive designs may improve efficiency, confer health
benefits to trial participants, or in some cases achieve both (Pall-
mann et al. 2018; Burnett et al. 2020), including in the context of
COVID-19 treatment trials (Stallard et al. 2020) and of vaccine
trials (Kahn et al. 2021). RAR, in which the proportion of people
randomized to a particular trial arm is modified based on accu-
mulated data observed at an interim analysis, has been suggested
(Kahn et al. 2021; Scott 2020) to have the potential to balance the
competing objectives of health benefits to the trial participants,
power and time until a conclusion is reached. Brueckner et al.
(2018) compared different RAR designs for trials of treatments
during an epidemic. However, the performance of RAR has not
been specifically quantified in the context of vaccine trials and
its use in this context still remains debated (Proschan and Evans
2020; Villar, Robertson, and Rosenberger 2020).

We present an epidemic simulation study to assess the impact
on operating characteristics of the three proposed design ele-
ments in a specific plausible COVID-19-like situation. This
study also serves as a methodological example of how epidemic
simulation can be used to evaluate trial designs in any emerging
epidemic, subject to the development of models for the specific
pathogen, epidemic and social context.

First, we assess ring-type designs that recruit contacts of
infected people in the context of individual randomization. Sec-
ond, we develop and evaluate a novel method to avoid excluding
all data from early infections, using weights that are estimates
of the probability that a person was infected after vaccine-
induced antibody response. Finally, we compare various RAR
procedures, under ring recruitment and downweighting early
cases. We evaluate several operating characteristics of four dif-
ferent frequentist and Bayesian methods for updating allocation
probabilities.

In Section 2, we describe the network epidemic transmission
model, the common characteristics of the trials we simulate,
and the details of the design choices that we compare. In Sec-
tion 3, we present the estimated operating characteristics of
each design. In Section 4, we conclude with a discussion of our
findings, their limitations, and the potential for further work.
Full details of the simulation model and trial mechanics are
described in the online supplement (OS) Section A, further
details of the analysis method in OS Section B, supplementary
results in OS Section C, and code is available at github.com/
robj411/ADAGIO/COVID19.

2. Simulation Study

2.1. Network Epidemic Model

We use a network model to simulate an epidemic occurring in
a population in which the vaccine trial operates. There are two
components to the model, following Hitchings et al. (2018): the
network that describes relationships between individuals, and
the transmission model that describes the dynamics of disease
via these relationships. Both the disease transmission network
and the network for tracing contacts of identified cases are sub-
networks of the relationship network.

2.1.1. Relationship Network
Our network is an undirected graph with vertices, or nodes,
representing the NI individuals in the population of interest,
and edges representing connections, or relationships, between
individuals. These include relationships between people who
know each other, defining the contact networks of the individu-
als (“known contacts”), and random relationships, between peo-
ple who encounter each other only transiently (“transient con-
tacts”). Transient contacts might include, for example, encoun-
ters between people who are traveling or in supermarkets, and
are not defined to be part of contact networks.

We consider three types of relationships: within household;
in workplaces; and transient. Together, the household and
the workplace edges are the known edges that make up the
known contacts. We assign a “relationship weight” of 0.1 to
transient connections, compared to relationship weight 1 for
non-transient relationships, to reflect the smaller probability
of contact sufficient to enable transmission between transient
connections than between acquaintances.

Each individual has a set of attributes such as household and
age (< 19, 19–65, > 65). Every individual in a household is
connected to every other individual in the household. The age
and household size distribution is taken from the United King-
dom 2011 Census (Office for National Statistics 2011). People
aged 19–65, and one fifth of people aged 65+, are connected
to 15 other people, on average, via a workplace. The number
of people in the workplace is reflective of the likely number
of people with whom an infrastructure is shared, rather than
the number of colleagues. Individuals within a workplace are
completely connected to one another.

Finally, random edges are added, to allow around ten tran-
sient connections per person, that is, potential transmission
encounters that would not be recalled or anticipated through
contact tracing. The result is an average of 20 connections per
person, of which ten have a weight of 1 and 10 have a weight of
0.1. An example is shown in Figure 1. Full details of the network
are given in OS Section A.

2.1.2. Disease and Trial State Transitions
Individuals’ disease states and possible transitions are described
by a compartmental SEIR model (Figure 2), with a structure
similar to Camacho et al. (2015) and Danon et al. (2020).
The possible states are S Susceptible, E Exposed (infected but
not infectious), IA Infectious and asymptomatic, IP Infectious
and pre-symptomatic, IS Infectious and symptomatic and R

github.com/robj411/ADAGIO/COVID19
github.com/robj411/ADAGIO/COVID19


STATISTICS IN BIOPHARMACEUTICAL RESEARCH 3

Figure 1. Example relationship network showing 80 people. “Known” edges
between housemates and colleagues are shown. Individuals are colored by age
group and clustered into households.

Figure 2. Disease-state transition model for members of the population who are
not enrolled (U) and those enrolled and vaccinated (V) and those enrolled to the
control group (C). Arrows show possible transitions between states, labeled by the
rates.

Removed. Trial enrollment states are represented by the sub-
script x, where x = U is not enrolled, x = V is enrolled and
vaccinated, x = C is enrolled and in the control arm.

Every individual i starts susceptible and unenrolled, in state
SU , except the index case who starts in EU . The infection
hazard kx(i) for an individual i in susceptible state Sx is a
function of the per-contact transmission rate (see OS Section
A), their contact network, their vaccination status xi and the
VE 0 ≤ η ≤ 1, defined as the percent reduction in attack
rate for vaccinated people compared to unvaccinated people,
assuming the vaccinated population have reached the maximum
state of protection they are capable to reach (Weinberg and
Szilagyi 2010; Shim and Galvani 2012). We equate this state with
vaccine-induced antibody response (Hudgens, Gilbert, and Self
2004). An infected individual in the exposed state Ex becomes
infectious but asymptomatic with probability 1 − δ, moving to
state IA at rate (1 − δ)σ . The remaining proportion δ becomes
infectious and pre-symptomatic, moving to state IP at rate δσ .
The transition rate σ corresponds to an incubation period ξ ∼

2 + �(shape = 13.3, rate = 4.16) (Li et al. 2020) and we set
δ = 0.8 (Buitrago-Garcia et al. 2020).

The asymptomatic individuals remain asymptomatic and
therefore stay in IA for their whole infectious period, ψ ∼ 1 +
�(shape = 1.43, rate = 0.549) (Li et al. 2020), corresponding
to a rate γA, before moving to the removed state R. The pre-
symptomatic individuals in IP move to IS, after a deterministic
time of 1 day (Kucharski et al. 2020). Symptomatic individuals
remain in IS for the remainder of their infectious period, ψ −
1 ∼ �(shape = 1.43, rate = 0.549), corresponding to rate γS,
before moving to the removed state R. For simplicity, we assume
that symptomatic persons do not leave their homes, so that an
infectious person in IA or IP can infect their home contacts,
their work contacts and their random contacts, but an infectious
person in IS can only infect their home contacts. Transitions to
state R imply removal from the infectious population: this can be
due to death, hospitalization (and hence isolation), or recovery.

See OS Section A for full details of the transmission model.
We simulate 500 households, corresponding to populations

of around 1000 individuals. Our simulated trials operate on a
time unit of one day, and have total duration of the order of 100
days. We assume that one contact network (corresponding to
one index case) is initiated every day. Initiation is the moment
where all nodes in the network are in state SU except one
individual who is on their first day in state EU . Enrollment
can only begin when this individual reaches state IS. Each trial
participant who is enrolled has as their reference day the day on
which they were enrolled. We simulate a VE of either no effect
η = 0 or a positive effect η = 0.7.

2.2. Trial Design

The elements of trial design we explore are specific to an infec-
tious disease with the dynamics and means of spread of EVD
or COVID-19 (i.e., through close person-to-person contact)
with the primary endpoint defined as a reverse transcriptase
polymerase chain reaction (RT-PCR)-confirmed diagnosis of
current symptomatic infection. In addition, our trial is for a
single-dose vaccine whose time to development of antibodies is
fast, that is, a (hypothetical) disease-specific antibody test would
go from negative to positive within 15 days, for all participants
with high confidence (Marzi et al. 2015; Poland, Ovsyannikova,
and Kennedy 2020). We use antibody response as a proxy for
a vaccine-induced protective immune response in our simula-
tions.

We develop a trial design step by step. First, we design a “base
case.” Then, we choose one element of the design to change (e.g.,
the recruitment strategy from random to “ring”) and compare
the new design to the original. We then take forward the better-
performing design and make a comparison on another element
of the design. In the starting “base case” for our simulations,
participants are recruited at random; the allocation probabilities
are fixed and equal (fixed randomization, FR); the final follow-
up time is 25 days after randomization, similar to the follow-up
time of 21 days used for EVD (Hitchings, Grais, and Lipsitch
2017; Ebola ça Suffit Ring Vaccination Trial Consortium 2015);
the trial terminates once 24 confirmed cases have been observed
(determined to achieve 80% power for a VE of 0.7), and is
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analyzed assuming everyone receives the intervention they were
randomized to.

In the base case, similar to Henao-Restrepo et al. (2017), who
excluded those exhibiting symptoms within 10 days in their trial
for an EVD vaccine, and WHO R&D Blueprint (2020), who
propose 14 days for COVID-19, we exclude cases that display
symptoms within nine days of randomization. Our rationale
for 9 days aligns with our assumed time to vaccine-induced
antibody response and the estimated incubation period for
SARS-CoV-2 (Li et al. 2020). Notice that the Blueprint uses
a time-to-event outcome, whereas we use a binary outcome
(PCR-confirmed diagnosis of COVID-19), which enables us to
use well-known methods of RAR, and for which we have a
maximum follow-up time of 25 days.

The primary endpoint in our simulations corresponds to a
disease endpoint, where any person who becomes symptomatic
is PCR tested and diagnosed. We assume that through surveil-
lance and self-reporting, symptomatic participants correspond
to confirmed cases, that is, all symptomatic people report their
symptoms and onset date accurately, all tests have perfect accu-
racy, and each symptomatic person’s positive result is available
by the time of the end of their follow-up period of 25 days. In
reality, some people test positive for SARS-CoV-2 but show no
symptoms. In our simulations, these people are infectious but
not symptomatic. In terms of the network epidemic model, they
continue to behave as if they are not infectious, so they retain
contacts whom they can infect over their infectious period. In
terms of the trial, they are not diseased and so are counted in
the group of trial successes. An “infection endpoint” (Hudgens,
Gilbert, and Self 2004), where only an “uninfected” outcome
is a success of the vaccine, would require routinely testing all
participants.

We use an event-driven approach (Schoenfeld 1983) for trial
size determination. The trial is terminated following the accu-
mulation of a prespecified number of confirmed cases, rather
than a prespecified number of enrolled participants (which cor-
responds to a fixed sample size). In the comparisons we make,
all designs employ randomization at the individual level and
compare to a placebo control, as suggested by Kahn et al. (2021).

2.3. Recruitment

We compare random recruitment to the ring-recruitment strat-
egy employed in Henao-Restrepo et al. (2017). Participants are
eligible for enrollment when someone in their contact network
is confirmed as a “case.” We use “ring” with reference to the
method for recruitment, and we use individual-level random-
ization, whereas other implementations of the strategy have
used cluster randomization (Henao-Restrepo et al. 2015). In
cluster randomization an individual is eligible only if the contact
network of its index case is eligible, based on the trial’s inclusion
criteria. Therefore, individual randomization can enroll more
participants per index case as eligibility is individual. We define
the ring as consisting of contacts and contacts of contacts. These
contacts are found through contact tracing, as described by the
European Centre for Disease Prevention and Control (2020). In
OS Section C.1, we show how the success of the ring recruitment
method depends on the ability of contact tracing to identify
those at imminent risk of infection.

2.4. Weighted Exclusion

Explicit mention of time to vaccine-induced antibody response
is not often made in the definition of VE, although exclusion
rules often make reference to this time: participants who are
confirmed as cases within a certain number of days of random-
ization are excluded from the analysis (“binary exclusion”), as
they are assumed to have been infected either before random-
ization or before the vaccine has a chance to take effect (Dean
et al. 2019; Henao-Restrepo et al. 2017).

However, by excluding observations, we lose some informa-
tion. Our ideal endpoint is whether or not a participant became
infected after randomization and vaccine-induced immune
response, where participants who became infected before are
excluded from the trial. We typically do not know the day
on which a vaccinated person develops infection- or vaccine-
induced antibodies. However, we can observe whether or not
a person is symptomatic, at which point infection can be con-
firmed through laboratory testing. Therefore, for the analysis
at the end of the trial, we propose supplementing the primary
endpoint—the observed infection status at day 25—with a retro-
spective exclusion criterion: we use our knowledge of the disease
(e.g., the incubation period) and the day a person becomes
symptomatic to weight their inclusion in the analysis.

We define our primary endpoint for the final analysis as PCR-
confirmed, symptomatic infection and, in addition, the day of
symptom onset relative to the day of randomization, which
informs a retrospective exclusion criterion. This exclusion of
participants is expressed as an “inclusion weight” between 0 and
1, computed at each round of analysis, and applied retrospec-
tively, as if we had excluded a participant from the beginning
(“continuous inclusion”). When confirmed cases are weighted,
the number of cases becomes the effective number of cases, and
the sample size the effective sample size.

The probability that a person whose symptoms began
after vaccination was infected after vaccine-induced antibody
response depends on the effect of the vaccine. If the vaccine
is effective, then this probability is smaller than it would be if
the vaccine had no effect. Therefore, as an additional develop-
ment, we estimate the VE and the inclusion weights together
iteratively, so that both would be updated if (as in a response-
adaptive design) we were to recalculate them as results accumu-
late. See OS Figure 1 for an illustration of how the weights are
obtained, and for the mathematical derivation. We assess this
weighting method in terms of power and Type I error compared
to binary exclusion.

2.5. RAR

Let πv be the probability of being allocated to arm v, where v is
0 for control and 1 for experimental. Thus far we have consid-
ered fixed-randomization (FR) designs, in which the allocation
probabilities are fixed and equal (π0 = π1 = 0.5) throughout
the trial. In RAR, allocation probabilities are updated at pre-
specified moments in the trial using accumulated data according
to a prespecified rule.

We set the frequency of adaptation to be every 25 days: all
data accrued up to the adaptation day (up to the maximum
follow-up time of 25 days post randomization) are used to
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generate the probabilities. Therefore, the allocation probabilities
are updated after groups of participants of random size, rather
than individuals, and the first group acts as a “burn-in phase”
where there is an equal probability of receiving each arm. We
present frequentist and Bayesian methods to generate π1. The
methods all require first estimating p0 and p1: the probability
of being uninfected up to the maximum follow-up time for
the control and experimental arms, respectively. We denote the
estimates p̂0 and p̂1.

The probabilities are estimated as the number of successes
over the total number of observations; p̂v = 1 − fv/Nv, where fv
is the effective number of confirmed cases for arm v, and Nv its
effective sample size (Hu and Rosenberger 2006).

2.5.1. Frequentist Response-Adaptive
In Rosenberger et al.’s (2001) method , favorable outcomes are

optimized subject to a power constraint, so that ρRos =
√

p̂1
p̂0

is the optimal randomization ratio of experimental to control.
Then the allocation probability to the experimental arm is

π1 = ρRos
ρRos + 1

=
√

p̂1√
p̂1 + √

p̂0
.

We also consider the Neyman method, which is designed to
maximize power (Rosenberger et al. 2001), by setting

π1 =
√

p̂1(1 − p̂1)√
p̂0(1 − p̂0) + √

p̂1(1 − p̂1)
.

For example, if the infection rate for the control arm is 80%
(p̂0 = 0.2) and that in the experimental arm is 20% (p̂1 = 0.8),
then the Rosenberger et al. method would allocate participants
in a 2:1 ratio favoring the experimental arm (ρRos = √

4 = 2,
and π1 = 2/3). The Neyman rule has π1 = 0.5 (and ρNey = 1).
For these methods, in the case that p̂0(1 − p̂0) = 0 or p̂1(1 −
p̂1) = 0, we set π0 = π1 = 0.5.

2.5.2. Bayesian Response-Adaptive (Thompson Sampling)
The Bayesian methods define the allocation probability in terms
of the posterior distributions of pi given a uniform prior and the
observed data, Beta(1 + Nv − fv, 1 + fv). Then πi is estimated by
sampling as (Thall and Wathen 2007)

π1 = Pr(p1 > p0)
φ

Pr(p1 > p0)φ + Pr(p1 < p0)φ
, (1)

where we define a tuning parameter φ, which tempers the speed
with which the allocation probability can reach extreme values
(0 or 1). For Thompson sampling (TS), we set φ = 1, so π1
is just Pr(p1 > p0), and for TS with tuning (TST), φ = j/e,
with j the day of the current update, and e the trial’s expected
total duration. One might instead choose to adapt according to
number of cases seen, so that e = 24 effective cases. φ therefore
takes the value 0 at the beginning of the trial and goes to 1 as the
trial progresses.

The Thompson sampling algorithm has a possibility of gen-
erating extreme allocation probabilities. While tuning limits
this, we find that the TST method still tends to 1 over few
adaptations. We therefore set limits to the allocation probability:

we use a value of 0.8 if Equation (1) returns an allocation
probability above 0.8, and we use a value of 0.2 if Equation (1)
returns an allocation probability below 0.2 for both implementa-
tions of Bayesian RAR. We additionally terminate the trial early
and conclude efficacy if Equation (1) returns a value of 0.99
(Brueckner et al. 2018).

2.5.3. Time Trends
The epidemic unfolding in real time can give rise to temporal
trends in incidence of the disease among participants, also
referred to as “patient drift” (Proschan and Evans 2020; Villar,
Robertson, and Rosenberger 2020). Patient drift affects all arms
in the same way, and might be induced by a natural increase
or decrease in incidence, or a step change due to government
policy on social contact, or a change in the recruitment process.
As both the adaptive trial design and the epidemic change
over time, we must account for time dependencies of disease
exposure when inferring the effect of the experimental vaccine.

Here, we use randomization-based inference as described
by Simon and Simon (2011): we resample the data in order to
generate a new null distribution for the test statistic to which to
compare the one we compute. We present the resulting power
and Type I error rates alongside the uncorrected values from
standard testing.

2.6. Evaluation

We simulate NT trials, where each “trial” involves independent
networks—as many as are required to achieve a particular total
effective number of cases. The null hypothesis is no effect of the
vaccine, H0 : η = 0 and the alternative hypothesis is a positive
VE, H1 : η = η1 for a certain η1 > 0.

We report operating characteristics including the number of
people enrolled and the number of confirmed cases, the power,
the estimated VE, and the Type I error rate, alongside the details
of the design. The duration of the trial is reported in days, and
an average of NP participants are enrolled per day, according to
the properties of our simulated network and enrollment rate.

The VE, 0 ≤ η ≤ 1 is estimated as

η̂ = 1 − f1
N1

/
f0
N0

,

where fv, v = 0, 1 is the effective number of cases in arm
v and Nv the effective number of participants in arm v. The
VE is estimated using all simulations under the positive effect,
whether or not the trial realization concluded efficacy.

Power is the probability of correctly rejecting the null
hypothesis H0, and is estimated as the proportion of simulations
under the alternative H1 for which the H0 is rejected. Type I
error rate is the probability of incorrectly rejecting H0 when it is
true, and is estimated as the proportion of simulations under
the null for which the null hypothesis was rejected (see OS
Section B for details). Other results presented (e.g., the numbers
of people enrolled and confirmed as cases) are computed under
the alternative unless stated otherwise.

Additionally, we report a novel metric to evaluate the differ-
ent vaccine trial designs: the “prevented exported infections.”
It is defined as the reduction in expected number of infection
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Table 1. Comparison of designs where participants are recruited following the ring strategy vs. recruited at random.

Recruitment Number of Number of Vaccinated Power Type I VE Prevented exported
participants confirmed cases error estimate infections1

Random 11275 (2345) 34 5637 0.74 0.04 0.63 (0.18) 2.53
Ring 1929 (583) 45 965 0.73 0.04 0.58 (0.19) 6.29

NOTE: The trial follows the FR design with a follow-up time of 25 days. The trial ends when an effective number of 24 cases have been observed. Standard deviations for
10,000 simulations in brackets.

Table 2. Comparison of designs where the binary endpoint has a binary weight or a continuous weight.

Weighting Number of Number of Vaccinated Power Type I VE Number of Prevented exported
participants confirmed cases error estimate participants (null) infections1

Binary 2083 (609) 49 1041 0.75 0.04 0.58 (0.18) 1302 (430) 6.25
Continuous 2136 (624) 50 1068 0.82 0.05 0.64 (0.19) 1277 (426) 6.35

NOTES: Participants are recruited following the ring strategy. The trial follows the FR design with a follow-up time of 25 days. The trial ends when an effective number of
24 cases have been observed for the continuous weight and 26 for the binary weight, in order to achieve comparable trial sizes in terms of the number of participants.
Standard deviations for 10,000 simulations in brackets.

Table 3. Comparison of response-adaptive designs.

Adaptation Number of Duration Number of Vaccinated Power Power Type I Type I error VE Prevented exported
participants (days) confirmed cases (corrected) error (corrected) estimate infections1

Ney 1947 (551) 85 (17) 54 816 0.83 0.76 0.06 0.04 0.67 (0.2) 4.62
Ros 2147 (630) 92 (20) 57 1083 0.82 0.79 0.05 0.04 0.64 (0.18) 5.38
TST 2032 (638) 88 (20) 51 1261 0.77 0.76 0.04 0.04 0.64 (0.19) 6.62
TS 1799 (740) 81 (23) 45 1148 0.80 0.74 0.04 0.05 0.67 (0.21) 5.99
FR 2137 (622) 91 (19) 57 1068 0.82 0.05 0.64 (0.19) 5.50

NOTES: The outcome has a continuous weighting. Participants are recruited following the ring strategy. The final follow-up time is 25 days. The trial ends when 24 effective
cases have been observed. Standard deviations for 10,000 simulations in brackets. Correction for time trend uses the resampling method of Simon and Simon (2011).
Bold type indicates the recommended method.

events of people not in the index case’s contact network, for 100
contact networks, comparing a trial realization with no vaccine
effect with one with a positive effect of η1, in the case that
the vaccine prevents infection as well as disease. While we do
not expect this metric to be predictive of actual numbers of
infections occurring, the relative numbers between methods are
indicative of the trials’ possible or probable effects on the wider
epidemic.

3. Results

The results in this section are from simulations of NT = 10,000
trials, where the alternative hypothesis positive effect is set to
η1 = 0.7. We assume one contact network is enrolled per day.
Given the network sizes and enrollment rate we assume, an
average of NP = 32 people are enrolled per day.

3.1. Recruitment

Where recruitment is random, rather than through contact
tracing, we have to recruit many more participants (Table 1), and
many more people in the general population need to become
infected,1 in order for the requisite number of infections to be
observed among those recruited. In addition, fewer exported

1“Exported infections”is the expected number of infections of people outside
the index case’s contact network, for 100 contact networks. “Prevented
exported infections” is the difference between exported infections assum-
ing a VE of 0.7 and a VE of 0 in the case that the vaccine prevents infection
as well as disease.

infection events are prevented. We carry forwards the ring-
recruitment design as the “base case” for further comparisons.

3.2. Weighted Exclusion

In Table 2, we show results that suggest that by downweighting
(“Continuous”) inclusion, rather than applying a binary rule,
there is an increase in power of 0.07, and the VE estimate is
closer to the true value of 0.7. The gain in power is in large
part due to accounting for the VE when determining which
early cases are likely to have been infected before randomiza-
tion. Other operating characteristics are similar between the
methods.

3.3. RAR

The comparison between the FR trial design developed up to
now and the suite of response-adaptive designs is shown in
Table 3. We fixed the number of effective cases observed in the
trial population to a total weight of 24 so that powers were com-
parable, which sets the health cost to the trial participants for the
Neyman, Rosenberger et al. and FR methods. We can then trade
off the power against time to conclude. The Neyman method,
which by design maximizes power, in fact has much lower power
once we correct for patient drift using a randomization based
approach. The Rosenberger et al. method is most similar to the
fixed and equal randomization design, matching it in terms of
number of participants, participant allocation, Type I error and
power, and number of participants vaccinated.

The Thompson sampling methods benefit from stopping
early when efficacy can be concluded; the TS design is expected
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to be shortest among all designs (see OS Table 3 for operating
characteristics when the trials do not terminate early). Thus,
the health cost to the trial participants for these methods is not
prespecified and the number of cases among participants must
also be taken into account when evaluating the methods. The
Thompson sampling methods (TST and TS) allocate more par-
ticipants to an effective vaccine than control when it exists. As
a result, there are fewer infections exported from the network,
and the power is lower (both with and without correction). See
OS Figure 2 for operating characteristics under different trends,
and OS Figure 3 for trajectories of allocation probabilities.

Table 3 illustrates how adaptive designs can be compared and
how one might choose a design given the current circumstances:
that, at a cost of some power, a design can be chosen that will
vaccinate more people, if the vaccine is effective. This might be
preferable in circumstances where infection rates are high. On
the other hand, where infection rates are declining, a trial that
maximizes power might be preferable, since it would be more
challenging to observe cases quickly. Such a design likely would
not prioritize vaccination, prioritizing instead information gain
in order to increase the chance of identifying an efficacious vac-
cine. In OS Section C.5 we compare the same designs assuming
instead that the trial must conclude within a certain number
of days. Alternatively, designs could be compared in terms of
the number of cases, the number of vaccinations, and duration,
where all designs achieve the same power.

4. Discussion

Using simulation from a network epidemic model for COVID-
19 with an embedded vaccine trial, we have illustrated the
potential efficiency gains from three innovative two-arm trial
design and analysis elements. These elements are designed to
address the requirement in an epidemic to observe as many
events as quickly as possible, both for control of the epidemic
and information gain in the context of a highly variable and
potentially low incidence. The utility of each of these elements
will depend on the disease and context and should be assessed
through simulation.

The first element, ring recruitment, which prioritizes indi-
viduals at imminent risk of infection, has been shown to sub-
stantially improve power and efficiency. Our proposed weighted
analysis method makes more efficient use of the available data:
reducing bias compared to fully including the data from people
infected a short time after randomization, who the vaccine may
not have had a chance to protect, while gaining power compared
to completely excluding these data. While RAR may not offer a
notably superior balance in terms of competing goals in the two-
arm trials considered in this study, we nevertheless found that,
given a moderately effective and safe vaccine, the adaptation
method of Rosenberger et al. (2001) was comparable to a fixed
randomized design, preserving Type I error and power while
vaccinating slightly more people in the trial. Each of these three
design elements could independently increase power, efficiency
or patient benefit of a vaccine trial in particular contexts. Fur-
thermore, the combination of all three simultaneously has the
potential to improve a vaccine trial in an epidemic context both
from the information gain and the health benefit perspective.
We believe this conclusion is valuable given the limited scope for

efficiency and participant benefit improvements that two-arm
trials usually have.

Response-adaptive designs require an outcome that is
observable soon after randomization, which can be achieved
with a ring-recruitment strategy. Ring recruitment requires an
efficient contact-tracing infrastructure to enable recruitment of
participants at imminent risk of infection. Such contact tracing
might be embedded in a national surveillance system aimed at
containment, or might be part of the trial protocol. The ring
design depends on the ability to anticipate among whom new
infections will occur: specifically, if new cases occur among
known contacts of cases, which might be ascertained through
comparison of contacts traced and case registries. A COVID-19
treatment trial in the United Kingdom has successfully used the
UK’s National Health Service contact tracing data to enhance
their recruitment (Cake et al. 2021).

The success of the ring design depends also on the time taken
to trace contacts relative to disease dynamics. Our simulations
assumed that, on average, it takes ten days to identify and enroll
a whole contact network, including the time for the index case to
be confirmed (OS Table 1). The sooner participants are enrolled
after their index case becomes infectious, the more chance there
is for an efficacious vaccine to confer protection, as vaccination
occurs earlier relative to the time that the participant is at risk.
This timing will depend also on when infectiousness begins
(which, for COVID-19, is before symptom presentation) and the
disease’s incubation period. Fast enrollment relative to disease
progression enhances information gain per participant as well
as the potential health benefit to those in the experimental arm.
If contacts cannot be traced fast enough, then ring recruitment
would not be an appropriate method. Some debate about the
limitations of the ring design of Henao-Restrepo et al. (2017)
has been expressed, including the fact that it was a cluster
randomized trial, and so “subject to the same biases as other
cluster randomised trials” (Rid and Miller 2016). Here, instead,
we have used individual randomization.

Most of the RAR designs we considered incurred a penalty
in power. The penalty increased when we controlled for bias
due to patient drift with rerandomization (Simon and Simon
2011). The more the allocation deviates from equality, the
greater the design’s intended benefit but the larger penalty in
terms of power. Bounding the allocation probabilities between
0.2 and 0.8 guards against very severe penalties, and would
make the design more acceptable to stakeholders. We recom-
mend that the tradeoffs between strictly preserving Type I error
and the resulting power loss when using randomization based
tests are considered carefully at design stage through extensive
simulations. Alternative corrections, for example stratification
(Chandereng and Chappell 2019), might prove less costly. The
two-arm trials we considered give some insights into what a
multi-arm response-adaptive design could offer. In a two-arm
trial, power given a fixed number of participants can only be
increased at the expense of participant benefit (Williamson et al.
2017; Villar, Bowden, and Wason 2015). In a multi-arm trial,
worse-performing experimental arms can be deprioritized in
favor of other arms (Tymofyeyev, Rosenberger, and Hu 2007).
In our simulations, Type I error is not much inflated for the
Thompson sampling methods since, under the null (i.e., no
vaccine effect), 24 effective cases are typically observed soon
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after the end of the equal-randomization burn-in phase (OS
Figure 3), so that the allocations are not very imbalanced. For
a Thompson sampling design that adapts earlier relative to its
end time, we would expect to see an inflated Type I error, as in
OS Figure 2.

We expect that the two-layer ring designs presented here
would not suit a trial for a two-dose vaccine for COVID-19,
since people at an imminent risk of infection are recruited, and
so the majority of infections would occur before they could
be prevented by a second dose. Thus, any estimates of efficacy
would only describe the efficacy of the first dose. Adaptive
designs may also be less appealing for a two-dose vaccine,
since the disease outcome after two doses would take longer to
observe.

In our simulations, we consistently underestimate the vac-
cine effect, and this is more pronounced for the ring recruitment
designs. Our method of downweighting rather than exclud-
ing the earliest cases (which may not have been vaccine-
preventable) is designed to improve power compared to exclud-
ing these cases, and controls bias compared to including them
all. Any remaining bias could be controlled further by decreas-
ing the weight assigned to early cases, at the cost of reducing
power.

We have illustrated how simulation might be used to compare
different designs and analysis options, in an approach similar to
Hitchings et al. (2018). In practice, the network epidemic model
must be specific to the particular setting, taking into account
contact structures and governmental policies, as both network
and epidemic dynamics will impact the trial designs’ operating
characteristics. Through simulation, the design rules, such as
the follow-up time and the requisite effective number of cases
to achieve the desired power, can be established. Additionally,
sensitivity to the structural and parametric assumptions under-
lying the network, epidemic, and trial models can be evaluated.
To fully capture that the trial occurs within a real-life epidemic,
the individual simulated contact networks could be embedded
in a single, connected network on which the epidemic spreads,
rather than simulated as independent units. Embedding the
trial simulation more comprehensively in an epidemic model,
where the trial participants from different contact networks
interact with each other and where the trial can impact on the
epidemic, would permit a formal quantification of the benefits
and limitations of different design choices in different epidemic
settings, as in Bellan et al. (2017). Such an analysis would enable
a realistic assessment of the impact of more complex time trends
at different stages of an epidemic, and of the potential impact on
the epidemic of designs that vaccinate more people.

Supplementary Materials

The supplementary material contains full details of the simulation model
and trial mechanics, further details of the analysis method, and some
supplementary results.
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