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Within the species of Salmonella enterica, there is significant diversity represented among
the numerous subspecies and serovars. Collectively, these account for microbes with
variable host ranges, from common plant and animal colonizers to extremely pathogenic
and human-specific serovars. Despite these differences, many Salmonella species find
commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic
disease. The exact outcome of infection depends on many factors such as the growth
state of Salmonella, the environmental conditions encountered at the time of infection, as
well as the infected host and immune response elicited. Here, we review the numerous
biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of
extracellular polymeric substances not only enhances long-term persistence outside the
host but also is an essential function in chronic human infections. Furthermore, careful
consideration is made for the events during initial infection that allow for gut transcytosis
which, in conjunction with host immune functions, often determine the progression of
disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or
secondary infections, thus the adaptive immune responses to both types of bacteria
are discussed with particular attention to the differences between Salmonella Typhi,
Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in
differential immune responses. Finally, while strides have been made in our
understanding of immunity to Salmonella in the lymphoid organs, fewer definitive
studies exist for intestinal and hepatobiliary immunity. By examining our current
knowledge and what remains to be determined, we provide insight into new directions
in the field of Salmonella immunity, particularly as it relates to chronic infection.
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INTRODUCTION

Most bacteria can grow as either individual planktonic cells or as
communities within a biofilm (Flemming and Wuertz, 2019).
Biofilms are surface-attached aggregates of cells surrounded by a
self-produced extracellular polymeric substances (EPSs)
(Costerton et al., 1999; Branda et al., 2005; Hall-Stoodley and
Stoodley, 2009; Flemming, 2016). The development of these
structures often occurs in response to perceived negative
environmental stimuli such as shifts in pH, temperature,
oxygen, and nutrient availability (O’Toole and Kolter, 1998;
O’Toole et al., 2000a; O’Toole et al., 2000b). Individual cells
adhere to a surface, biotic or abiotic, producing EPSs such as
proteins, exopolysaccharides, and nucleic acids. In this niche,
they grow and mature, at which point some cells detach and
return to planktonic growth to repeat the process (Khatoon et al.,
2018). While the bacteria reside within a biofilm they are
protected from a variety of challenges such as UV exposure
(Espeland and Wetzel, 2001), host defense mechanisms, and
antibiotics (Mah and O’Toole, 2001; Stewart and Costerton,
2001). As a result, biofilms play an essential role in the
environment, industry, and medicine.

In the natural environment, biofilms are important for
microbial survival. Biofilms provide a stable environment for
the bacteria by fostering symbiotic relationships with other
organisms, such as settlement of marine invertebrate larvae
(Nelson et al., 2020), degrading harmful chemicals in the soil
(Ahmad et al., 2017), and promoting plant growth (Liu et al.,
2013). However, biofilms are less desirable in industries such as
food, water, energy, and medicine, where they can cause harm by
developing on food and food processing equipment (Flemming,
2016; Galie et al., 2018), contaminating water pipelines
(Wingender and Flemming, 2011), corroding underwater metal
surfaces (de Carvalho, 2018), and persisting on medical devices
(Percival et al., 2015).

Here we focus on biofilms in the field of medicine. Biofilm
communities can enhance recalcitrance to host defense
mechanisms. As a result, biofilms are estimated to be involved
in approximately 80% of chronic infections, which increase
hospitalization rates, healthcare costs, and morbidity and
mortality (Davies, 2003). Examples of biofilm-associated
diseases include several respiratory diseases, chronic otitis
media, periodontitis, and chronic wound infections (Høiby
et al., 2010; Wessman et al., 2014; Bao et al., 2015; Wu et al.,
2015). In cystic fibrosis (CF), persistent lung infections are often
caused by Pseudomonas aeruginosa biofilms or aggregates. Due
to the ability of the biofilm to resist phagocytosis via
polysaccharide synthesis locus (Psl) (Mishra et al., 2012) and
other EPS components, chronic inflammation causes lung tissue
damage (Høiby et al., 2010). Additionally, CF patients co-
infected with Staphylococcus aureus have been shown to have a
greater decline in lung function than when infected with
P. aeruginosa alone (Limoli et al., 2016; Maliniak et al., 2016;
Limoli and Hoffman, 2019). Such interspecies interactions alter
the efficacy of antibiotics and lead to worse patient outcomes.

Biofilms also develop on abiotic medical devices such as
prosthetics, stents, catheters, implants, and dentures (Percival
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et al., 2015). Biofilms on indwelling medical devices are
estimated to cause 50% of persistent nosocomial infections
(Paredes et al., 2014). The most commonly identified biofilms
are formed by Staphylococcus epidermidis, S. aureus, and
P. aeruginosa (Hall-Stoodley et al., 2004; Khatoon et al., 2018).
Staphylococcus epidermidis is the model bacterial species for
dental implant-related biofilms, which are different than the
biofilms that form on teeth (Daubert and BF, 2019). The shape
of the dental implant makes complete elimination almost
impossible (Müsken et al., 2018). The bacteria that survive
treatment result in persistent biofilm infections, implant
failure, and promote the development of antibiotic resistance.

Multidrug resistant bacteria have become a serious medical
concern, accounting for over 2.8 million infections and 35,000
deaths annually in the United States (CDC, 2019). Bacteria
residing within a biofilm are also recalcitrant to antibiotics,
surviving levels 10–1,000 times greater than planktonic cells
(Høiiby et al., 2010; Mah, 2012). The close association of
bacteria in a biofilm can also promote antibiotic gene transfer
(Christensen et al., 1998; Hausner and Wuertz, 1999; Li et al.,
2018). Biofilm recalcitrance to antibiotics is due to complex
factors that are incompletely understood and often involve
multiple species, which limits the efficacy of antibiotic
clearance (Jiang et al., 2020). While improvements have been
made in preventing biofilm formation, such as the development
of medical devices made or coated with antibacterial materials
(Vasilev et al., 2018), surgical removal of the infected tissue or
medical device is often required for complete resolution (Høiiby
et al., 2010).

Infections due to biofilm-associated bacteria are a significant
clinical problem. Therefore, further studies are needed to identify
the key aspects of biofilm formation and persistence in order to
develop novel preventative and therapeutic strategies to enhance
the efficacy of treatment.
BIOFILMS AND CHRONIC INFECTIONS

Whether comprised of a single species or polymicrobial, biofilms
demonstrate the remarkable ability of bacteria to coordinate
functions and develop complex behaviors. While the discovery of
biofilms coincides with the discovery of microorganisms by
Antoni van Leeuwenhoek in 1683, this unique modality of
growth was originally overlooked in a medical context, gaining
prominence only in the past 50 years. However, the study of
infectious biofilms has overwhelmingly demonstrated their
important role in chronic infections, with, as mentioned
previously, estimates by the National Institutes of Health that
80% of all chronic infections are related to biofilms
(Davies, 2003).

Whether opportunistic or primary pathogens, many bacteria
are capable of causing acute or chronic infections, depending on
circumstance. While we do not wish to downplay the medical
importance of acute infections, we will mention them only briefly
in this review as our focus is chronic infections. Acute infections
coincide with rapid growth and dissemination in the host leading
to overt clinical signs days after onset of disease (Furukawa et al.,
February 2021 | Volume 10 | Article 624622
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2006; Thakur et al., 2019). Acute infections generally lead to one
of three consequences: successful clearance (either naturally by
the immune system or with medical intervention), death of the
host, or development into a latent infection. In this third
outcome, the acute phase of infection is followed by a dormant
phase with long-term infection that can span the life of the host
and is characterized by repeated spells of reactivation (Thakur
et al., 2019). This is a type of chronic infection. Reactivation is
associated with production of infectious agents that can be
transmitted to others although this activity may or may not
renew symptoms in the host (Thakur et al., 2019).

While latent infections only develop after an initial acute
phase, many pathogens do not cause acute disease and in these
cases may directly result in a chronic infection. These chronic
infections can arise opportunistically from a compromised
immune system, an altered microbiota, a breach in skin or
mucosal immune barriers, or from contamination at surgical
sites and on implanted medical devices (Furukawa et al., 2006;
Thakur et al., 2019). Both bacteria and host responses to their
environment can result in genetic or phenotypic alterations that
foster chronic infection. Several recent reviews have catalogued
various chronic infections by body site (Vestby et al., 2020),
organism and immune response (Thakur et al., 2019), or survival
strategy (facultative intracellular, small colony variants, persister
populations, environmentally induced antibiotic indifference,
and biofilm formation) (Grant and Hung, 2013).

A common theme of chronic infections is their ability to last
at least a few months, often years, and even up to the entire
lifetime of the host. While a long-term infection in the absence of
acute disease is the most rudimentary definition, other
characteristics are fundamental to chronic infections. Similar to
latent infections, chronic infections are generally asymptomatic
and usually do not pose immediate risk to host health (Grant and
Hung, 2013; Thakur et al., 2019). However, the possibility of
future reactivation of latent/chronic infections into clinically
significant disease, disease dissemination, or the onset of
malignancy all pose long-term risks (Grant and Hung, 2013).
There is often a direct link between chronic infections and
biofilm formation (Parsek and Singh, 2003; Hall-Stoodley
et al., 2004; Furukawa et al., 2006) as long-term survival
requires pathogen stealth and/or a protected niche for the
pathogen. Both properties are enhanced by biofilms and while
the niche could be provided by granulomas or intracellular
compartments, survival in these locations is associated with
slowed growth and reduced replicative capacity. However,
unlike latent infections, chronic infections often have a high
level of bacterial replication and concomitant burden of the
pathogen (albeit less than acute infection) (Furukawa et al., 2006;
Thakur et al., 2019). This activity is possible by forming a biofilm,
which alters the bacterial growth physiology to allow for
significant tolerance to elevated levels and prolonged
administration of antibiotics as well as tolerance to other host
responses such as the complement system, antimicrobial
peptides, antibodies, and phagocytic activity by neutrophils
and macrophages as further discussed below (Furukawa et al.,
2006; Grant and Hung, 2013; Pletzer et al., 2017; Thakur et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2019). Furthermore, biofilm formation permits shedding of
planktonic bacteria and/or biologically active molecules into
the host (Zegans et al., 2002; Furukawa et al., 2006) which
has pleiotropic effects on the host immune state and is
important for maintaining a favorable niche by altering the
activation of innate immune receptors, inhibiting apoptosis,
inducing an inappropriate immune response, or causing
immunosuppression (Thakur et al., 2019). Chronic infections
often maintain their niche by simultaneous activation of both the
innate and adaptive immune responses (Vestby et al., 2020), but
interestingly, neither of these responses eliminate the pathogen
but instead result in collateral damage to host cells and tissue
(Moser et al., 2017; Vestby et al., 2020). Accumulation of
macrophages and neutrophils at the site of infection is
characteristic of chronic infection (Laskin et al., 2011; Pletzer
et al., 2017). Prolonged reactive oxygen species and reactive
nitrogen species production by these cells represent a significant
source of inflammation (Grant and Hung, 2013; Mittal et al.,
2014; Pletzer et al., 2017). This activity ultimately benefits the
pathogen as chronic inflammation from an aberrant immune
response makes host nutrients available to the biofilm (Pletzer
et al., 2017; Thakur et al., 2019), obstructs would healing, and
facilitates cellular invasion for dissemination, access to other
protected sites, or acute infection (Vestby et al., 2020). Chronic
inflammation is also linked to many malignancies associated
with chronic infection, including gastric adenocarcinoma and
gastric lymphoma from Helicobacter pylori infections
(Wotherspoon et al., 1991; Nomura et al., 1994) or gallbladder
carcinoma from Salmonella Typhi infections (Caygill et al., 1994;
Grant and Hung, 2013; Vestby et al., 2020).

To highlight an example, P. aeruginosa, mentioned earlier, is
well-suited for opportunistic chronic infections. While
ubiquitous in soil and water and a common colonizer of
animals and humans, P. aeruginosa rarely infects healthy
individuals but can infect multiple body sites in the
immunocompromised (Wu and Li, 2015). While P. aeruginosa
may have the most notoriety for infecting CF patients, it is also
consequential in ventilator-associate pneumonia (Bergmans and
Bonten, 1999; Mulcahy et al., 2014), on orthopedic implants and
joint replacement surgical sties (Mulcahy et al., 2014), catheters
(Cole et al., 2014), and in severe soft tissue wounds (Lochab et al.,
2020). Characteristic of chronic biofilm infections, P. aeruginosa
infections are difficult to detect with clinical microbiology
techniques (Costerton et al., 2003; Mulcahy et al., 2014) and
are extremely recalcitrant to antibiotics and the host
environment (Mulcahy et al., 2014; Lochab et al., 2020). In
2015, hospitalized cancer, CF, or burn wound patients with P.
aeruginosa infection experienced a 50% mortality rate (Gómez
and Prince, 2007; Wu and Li, 2015) and the CDC reports that P.
aeruginosa is the fourth-most isolated pathogen in hospitals,
accounting for 10% of all nosocomial infections (Wu and Li,
2015). There is ample evidence to conclude P. aeruginosa relies
on a biofilm forming strategy for survival in the host and that P.
aeruginosa biofilms control the host response to establish a
favorable environment. In most instances of P. aeruginosa
disease, the sustained collateral damage from frustrated
February 2021 | Volume 10 | Article 624622
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neutrophil phagocytosis at the site of biofilm infection is the
primary cause of major disease sequellae (Jensen et al., 2010;
Mulcahy et al., 2014). Remarkably, studies of CF infants have
demonstrated P. aeruginosa biofilms remodel host immunity
from a balanced Th1/Th2 response to a Th2 response with
reduced levels of IFN-g (Moser et al., 2000; Mulcahy et al., 2014).

Salmonella Typhi is an especially interesting pathogen
because of its ability to cause disease in all three mechanisms
discussed. As the primary etiologic agent of typhoid fever
(Stanaway et al., 2019) (a systemic disease that can be deadly)
the organism must be considered an acute pathogen. However,
the only known reservoir of S. Typhi is human carriers who have
long-term infections primarily by biofilms on cholesterol
gallstones in the gallbladder. Interestingly, about 5% of acute
infection survivors will develop latent infections but as many as
25% of chronic carriers have gallstone biofilms without ever
expressing symptoms of acute disease (Parry et al., 2002;
Gonzalez-Escobedo et al., 2010; Gunn et al., 2014). These
different disease strategies (acute, latent, and chronic) highlight
the complex nature of host-pathogen interactions during
chronic infection.
SALMONELLA CHRONIC INFECTIONS

In addition to S. Typhi, many other serovars of Salmonella
enterica possess the ability to colonize and potentially cause
disease in humans and/or other animal hosts. Biofilm formation
in these serovars is highly conserved—especially in the serovars
that are able to colonize multiple hosts—suggesting that the
ability to form a biofilm serves as an evolutionarily advantage
during the cycle of infection and transmission (Römling et al.,
2003; MacKenzie et al., 2017; MacKenzie et al., 2019). As with
other biofilm-forming bacteria, biofilm-associated Salmonella
are encased within a matrix of EPSs consisting of proteins,
carbohydrates, and extracellular DNA (eDNA) (Maruzani
et al., 2019). The exact composition of the Salmonella biofilm
EPSs may vary depending on both serovar and environmental
conditions, but primarily consists of a network of proteinaceous
curli fimbriae fibers, cellulose, and eDNA (Zogaj et al., 2001;
Römling, 2005; Wang et al., 2014). Additional EPS components
may include cellular appendages such as flagella or various
adhesive fimbriae (Römling and Rohde, 1999; Boddicker et al.,
2002; Prouty et al., 2002; Prouty and Gunn, 2003; Ledeboer et al.,
2006; Dwyer et al., 2011); cell surface proteins such as the large
biofilm-associated surface protein BapA (Latasa et al., 2005); and
other exopolysaccharides such as colanic acid or the O-antigen
capsule (Ledeboer and Jones, 2005; Crawford et al., 2008). A self-
secreted “common good,” these EPSs collectively allow cells to
securely adhere to both surfaces and other cells within the
biofilm, help retain moisture in dry environments, and possibly
slow the diffusion of harmful molecules such as antimicrobial
peptides and antibiotics (Dieltjens et al., 2020).

The transition of planktonic Salmonella into a biofilm state
may be influenced by a variety of environmental triggers,
including temperature fluctuations, changes in nutrient
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
availability, and exposure to harsh or harmful substances (De
Oliveira et al., 2014; Paytubi et al., 2017; González et al., 2019b).
Accordingly, the regulatory network controlling the expression
of biofilm genes is highly complex. Numerous global regulators,
two-component response systems, and other regulatory proteins
and small RNAs contribute to regulate expression of key biofilm
genes, primarily through expression of csgD (Simm et al., 2014).
An orphan response regulator encoded within the curli
biosynthesis operon, CsgD is often regarded as the master
biofilm regulator in Salmonella (Gerstel and Römling, 2003).
CsgD induces the production of the two major EPS components,
curli fimbriae and cellulose, by directly binding the csgB
promoter within the csgBAC curli biosynthesis operon and by
inducing expression of the diguanylate cyclase AdrA, which
subsequently regulates cellulose biosynthesis through the
modulation of the secondary messenger (3’-5’)-cyclic-
diguanosine monophosphate (c-di-GMP) (Römling et al., 2000;
Zakikhany et al., 2010). Evidence suggests CsgD may also
regulate the expression of other EPS genes, including those
responsible for the production of BapA and the O-antigen
capsule (Latasa et al., 2005; Gibson et al., 2006).

Outside of the host, biofilm formation allows for Salmonella
to attach to a variety of biotic and abiotic surfaces, thereby
enabling the bacteria to persist in a viable but relatively dormant
state until ultimately ingested by a host. Because Salmonella are
enteric pathogens, non-typhoidal Salmonella biofilms are of
particular concern in the agricultural and food processing and
packaging industries where they contaminate both fresh and
processed food products (Yaron and Römling, 2014; Pande et al.,
2016; Galie et al., 2018; Lamas et al., 2018; Merino et al., 2019).
Contamination of food products with Salmonella typically
originates from colonized or infected livestock including
chickens, pigs, and cattle (Lamas et al., 2018). This
contamination may be direct, e.g., if the intestinal contents of
infected animal carcasses are released during processing, but is
more often indirect, occurring when uncompromised products
come into contact with previously contaminated processing
surfaces or machinery (Reij and Den Aantrekker, 2004;
Giaouris et al., 2012). Salmonella has been shown to adhere as
a biofilm to multiple abiotic materials used in industrial settings,
including stainless steel, polystyrene, and glass (Joseph et al.,
2000; Giaouris and Nychas, 2006; Chia et al., 2009; Kim andWei,
2009). While sanitation practices are implemented to disinfect
potential sources of cross-contamination, Salmonella within a
biofilm are much more recalcitrant to disinfectants and other
antimicrobials compared to their planktonic counterparts,
rendering such practices ineffective (Joseph et al., 2000;
Sheffield et al., 2009; Corcoran et al., 2014; Galie et al., 2018).
Additionally, after a product has been contaminated, Salmonella
can also form a biofilm directly on the surface of the food itself.
Raw meat and poultry, fresh fruits and vegetables, and even low-
moisture processed foods such as cereal products have been
shown to support Salmonella biofilm growth, supporting the
theory that biofilm formation is a critical method of persistence
outside of the host (Tamblyn et al., 1997; Podolak et al., 2010;
Yaron and Römling, 2014; Lamas et al., 2018).
February 2021 | Volume 10 | Article 624622
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SALMONELLA BIOFILMS WITHIN
THE INFECTED HOST

While the association of the Salmonella biofilm phenotype with
persistence outside of the host has long been established,
additional research was required to fully interrogate the role of
Salmonella biofilms in chronic infection within the host. While
many researchers originally doubted biofilm formation was
possible in vivo due to the lack of significant csgD expression
observed in the majority of isolates tested at temperatures ≥37°C
(Römling et al., 1998; Römling et al., 2003; White et al., 2008)
there is now ample evidence to show Salmonella produces EPSs
in vivo and that chronic infections are mediated by biofilms.
Regarding the effect of temperature on csgD expression, further
investigations revealed the true complexity of the regulatory
network governing csgD expression; some postulated that other
environmental signals encountered in vivo might be able to
override the effects of temperature on csgD expression (Simm
et al., 2014). While the intricacies of such a regulatory hierarchy
are still under investigation, numerous research groups have also
published evidence of Salmonella biofilm formation in various in
vivo systems. Perhaps most well-documented is the contribution
of biofilms to chronic gallbladder carriage of the human-specific
S. Typhi (Parry et al., 2002; Bhan et al., 2005; Gonzalez-Escobedo
et al., 2011; Gunn et al., 2014). As mentioned previously, while
infection with S. Typhi most commonly results in acute disease
(typhoid fever), chronic infections may also develop (Parry et al.,
2002; Bhan et al., 2005; Gunn et al., 2014). The majority of these
chronic infections are localized to the gallbladder and
progression to chronic disease is associated with the presence
of gallstones or other gallbladder abnormalities as this host
environment provides an appropriate surface for S. Typhi to
attach and establish robust biofilms (Schioler et al., 1983; Lai
et al., 1992). Initial attachment of S. Typhi to gallstone
cholesterol surfaces is mediated by FliC on flagellar
appendages (Crawford et al., 2010a). However, S. Typhi can
also anchor itself to the gallbladder epithelium, suggesting
additional biofilm-forming capabilities in vivo (Crawford et al.,
2010b; Gonzalez-Escobedo and Gunn, 2013; Marshall et al.,
2014). This mechanism of chronic infection has also been
recapitulated in mice by intraperitoneal infection of NRAMP+/
+ mice with S. Typhimurium (Crawford et al., 2010b).
Importantly, the chronic mouse model of infection involves
treatment of the mice for 8 weeks prior to infection with a
lithogenic diet to induce gallstone formation, thus providing an
optimal environment for Salmonella biofilm formation. In this
context, biofilms provide Salmonella with increased recalcitrance
to the harsh gallbladder environment (which includes detergent-
like bile salts) and other potential threats such as the host
immune system or antibiotic therapy, allowing for long-term
survival within the host and prolonged transmissibility via
intermittent fecal shedding (Jolivet-Gougeon and Bonnaure-
Mallet, 2014; González et al., 2018; Hahn and Gunn, 2020;
Tsai et al., 2020). Chronic gallstone biofilm carriers can shed S.
Typhi for at least a year or longer (Gonzalez-Escobedo et al.,
2011). This population represents the only known reservoir of S.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Typhi, with subsequent transmission to others either directly or
through contamination of food and water, which is a significant
public health challenge for addressing endemic typhoid fever.

The extent to which non-typhoidal Salmonella (NTS) serovars
utilize biofilm formation during the natural course of infection is
less apparent. In vitro, numerous NTS isolates exhibit biofilm-like
adherence to both human and chicken epithelial cells; however, the
effects of biofilm-mediated adherence on virulence were variable
(Solano et al., 2001; Ledeboer and Jones, 2005; Ledeboer et al., 2006;
Lamprokostopoulou et al., 2010). Whereas S. Typhimurium biofilm
formation on HT-29 cells was associated with a relative decrease in
virulence characterized by reduced invasion and production of pro-
inflammatory IL-8, the level of S. Enteritidis biofilm formation on
HEp-2 and Caco-2 cells was positively correlated with virulence as
measured by the extent of epithelial barrier disruption (Solano et al.,
2001; Lamprokostopoulou et al., 2010). While the transition to the
biofilm phenotype is likely to have pleiotropic effects on the
Salmonella virulence program, evidence from in vivo studies
suggests that, overall, biofilm formation is utilized to
simultaneously reduce virulence and increase persistence. Within
the cecum of newborn chickens, biofilm formation is a key asset for
both S. Typhimurium and S. Pullorum, allowing the bacteria to
successfully overcome colonization resistance and establish
persistent asymptomatic infection (Sheffield et al., 2009; El Hag
et al., 2017). Salmonella Typhimurium biofilms have also been
implicated in the formation of extracellular aggregates in vivo. In the
C. elegans gut, CsgD-dependent formation of aggregates was
associated with relative increases in both bacterial persistence and
host survival, a phenotypic shift that likely contributes to the high
transmissibility of similar aggregative populations within the cecum
and colon of mice (Lam and Monack, 2014; Desai and Kenney,
2019; Desai et al., 2019). While persistent and/or recurrent NTS
infections of the human intestine have been documented, reports of
cases are limited and do not provide any concrete evidence that
would implicate the involvement of biofilms (Musher and
Rubenstein, 1973; Kazemi et al., 1974; Buchwald and Blaser, 1984;
Marzel et al., 2016; Gal-Mor, 2019). However, antibodies to curli
have been detected in the serum of patients recovering from NTS
infection and recent work in mice orally infected with S.
Typhimurium demonstrated the production of curli amyloids in
the gastrointestinal tract, suggesting that expression of biofilm genes
does occur on some level during human infection (Tursi and Tukel,
2018; Miller et al., 2020).

In summary, the ability to form a biofilm is a conserved trait
found in numerous serovars of S. enterica. Biofilm formation
allows Salmonella to persistently colonize sites both inside and
outside of the animal host, ultimately enhancing both bacterial
survival and transmission (Figure 1).
SALMONELLA TYPHI EARLY
INFECTION AND INVASION OF THE
GASTROINTESTINAL TRACT

After ingestion, the first site of infection is typically the small
intestine where S. Typhi uses its SPI-1 type III secretion system
February 2021 | Volume 10 | Article 624622
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(T3SS-1) to enable penetration of the epithelial layer of the small
intestine, typically via microfold (M) cells of the Peyer’s patches
(Kohbata et al., 1986). Salmonella Typhi can be found within the
Peyer’s patches 3 to 6 h post infection (Carter and Collins, 1974).
This invasion of M cells leads to their destruction, further
disrupting the intestinal barrier and promoting increased entry
of Salmonella (Jones et al., 1994). Salmonella is also capable of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
disrupting the tight junctions found between epithelial cells
which further increases permeability (Boyle et al., 2006).
Following entry at Peyer’s patches, the primary innate immune
response is initiated in resident dendritic cells (DCs) and
macrophages. These cells recognize Salmonella via the pattern
recognition receptors called toll-like receptors (TLRs) and NOD-
like receptors (NLRs) that detect pathogen associated molecular
FIGURE 1 | Salmonella biofilms in the environment and humans. Non-typhoidal and typhoidal salmonellae are naturally acquired by humans through environmental
or food sources. Salmonella Typhimurium colonizes and can form biofilms on various types of produce, while S. Enteritidis is often found within and on eggs. When
within the intestines of various non-human animal species, salmonellae can cause either diarrheal disease or be a non-pathogenic inhabitant (e.g., in the chicken).
This can lead to contaminated meat upon animal processing or shedding resulting in contaminated animal feces. Once ingested by the host, Salmonella spp. are
capable of forming biofilms in the intestines and for S. Typhi, after systemically gaining access to the liver, can pass into the gallbladder and form biofilms on
cholesterol gallstones. These biofilms within humans facilitate chronic Salmonella infection as well as continual shedding of Salmonella from the host. Images created
with BioRender.com.
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patterns (PAMPs), such as lipopolysaccharide (LPS). These
PAMPs trigger an immune response through a multitude of
TLRs expressed on the surface of immune cells, notably TLR4,
TLR5, and TLR9 (Zeng et al., 2003; Lahiri et al., 2010; Rathinam
et al., 2019). LPS, particularly the lipid A portion, is recognized
by TLR4 on DCs or macrophages. Salmonella can adapt in vivo
to modify its LPS, which promotes immune evasion via
decreased colonization and pro-inflammatory cytokine
production as well as by eliciting a change in the type I
interferon response (Kong et al., 2012; Avraham et al., 2015).

Salmonella Typhi expresses a polysaccharide capsule with
incredible antigenic capability (Parry et al., 2002). The Vi antigen
is an important virulence factor of typhoid-inducing Salmonella
and is encoded on the Salmonella pathogenicity island (SPI) SPI-
7 (Seth-Smith, 2008). This capsular antigen resists complement
deposition and reduces phagocytic death by decreasing PAMP
expression (Sharma and Qadri, 2004; Atif et al., 2014; Wangdi
et al., 2014). Additionally, Vi antigen and other biofilm
exopolysaccharides are advantageous in that they can mask
LPS, allowing the pathogen to evade TLR4 recognition by both
DCs and macrophages (Wilson et al., 2008). An additional
virulence factor important for S. Typhi pathogenesis is typhoid
toxin, which has been shown to cause DNA damage that can
suppress the intestinal inflammatory response, which could
potentially increase the frequency of chronic asymptomatic
carriers. An additional sequela of chronic colonization of the
gallbladder is the development of gallbladder cancer, which
could also potentially be related to the typhoid toxin (Del Bel
Belluz et al., 2016).

Once recognized by innate immune cells, Salmonella is
readily phagocytosed by both DCs and macrophages, in which
they can reside within a specialized intracellular structure called a
Salmonella containing vacuole (SCV). DCs infected with
Salmonella traffic to the gut-draining mesenteric lymph nodes
(mLNs) where they present antigen to naïve T cells. Activation of
T cells in either the mLNs or Peyer’s patches requires
CD11c+CCR6+ DCs (Salazar-Gonzalez et al., 2006). The mLNs
are an important site of infection control, as it is known that mice
lacking mLNs demonstrate increased bacterial burdens in
systemic tissues following relapse of the primary infection due
to increased colonization of the liver and spleen (Voedisch et al.,
2009). Once phagocytosed, NLRs recognize bacterial
components in the cytosol and trigger an inflammasome
response (Ferrand and Ferrero, 2013). The response of the
innate immune system leads to downstream effects in the
adaptive immune response, which is essential for long term
infection control of persistent Salmonella infection.
ADAPTIVE IMMUNE RESPONSES
TO INTESTINAL SALMONELLA TYPHI
INFECTION

The cell-mediated adaptive immune response, as opposed to the
humoral response, is important for cytokine production by T
cells that have a significant role in infection control. Both CD4+
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and CD8+ T cells are important during Salmonella infection of
humans due to their production of IFN-g (Bao et al., 2000;
McSorley et al., 2000). Results from controlled human infection
studies have shown that regulatory CD4+ T cells (Tregs) are
important in suppressing effector T cells (Clay et al., 2020). The
activation of Tregs is likely important for balancing the pro-
inflammatory response with the suppressive immune response,
both of which are potentially damaging to the host if not
carefully regulated (Johanns et al., 2010; McArthur et al.,
2015). Salmonella Typhi genes, such as tviA, which encodes a
protein involved in Vi antigen synthesis, can interfere with
expansion of flagellin-specific CD4+ T cells at mucosal sites by
reducing the amount of the dominant Salmonella antigen FliC;
this change in gene expression helps S. Typhi to be able to
disseminate more rapidly compared to S. Typhimurium (Atif
et al., 2014). Several other studies highlight that Salmonella is
capable of ubiquitinating surface major histocompatibility
complex II (MHC-II), thereby inducing its degradation; the
resulting loss of surface MHCII expression allows the bacterial
invaders to evade the CD4+ T cell response (Cheminay et al.,
2004; Mitchell et al., 2004; Halici et al., 2008; Lapaque et al., 2009;
Jackson et al., 2013). A study in 2016 found that CD8+ T cells
were critical for infection control of S. Typhi in humans; the T
effector memory and T effector memory CD45RA+ cells were the
subsets most associated with protection from typhoid-like
disease, as those who were protected from typhoidal disease
showed higher S. Typhi-specific responses at baseline (Fresnay
et al., 2016).

The responses seen in both CD4+ and CD8+ T cells depend
largely on initial stimulation. CD4+ T cell responses are initiated
against soluble antigens, like flagellin, whereas CD8+ T cell
responses are derived from S. Typhi-infected antigen presenting
cells, predominantly DCs (McSorley et al., 2002; Jones-Carson et al.,
2007; Bobat et al., 2011). In the presence of S. Typhi, DCs mature
through suicide-cross presentation and are able to induce expansion
of Salmonella-specific CD8+ T cells (Salerno-Goncalves and Sztein,
2009). The relationship between B cells and control of S. Typhi
infection in humans is unclear. However, it is known that B cells are
required to generate antibodies and to prime T cells in the context of
Salmonella infections. Antibodies, specifically IgM, play a role in
typhoidal disease protection and require help from IFN-g producing
CD4+ T cells to maintain a memory response (Perez-Shibayama
et al., 2014). Furthermore, anti-Salmonella serum IgG and secreted
IgA (sIgA) are found in patients infected with S. Typhi and B cells
appear to be important during secondary infections as they may
serve as antigen presenting cells to prime the CD4+ T cell response
(Lopez-Medina et al., 2014).
ADAPTIVE IMMUNE RESPONSES
TO INTESTINAL SALMONELLA
TYPHIMURIUM INFECTION

While S. Typhi and S. Typhimurium share 90% of their genetic
sequence, this difference is enough to alter host immune responses
(Tang et al., 2013). Salmonella Typhimurium is one of the most
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common serovars of Salmonella to cause gastroenteritis infections in
humans and is also able to establish typhoid-like infection in mice,
providing an insightful infection model for the study of systemic
and/or chronic Salmonella pathogenesis and immune evasion
mechanisms (Santos et al., 2001). Salmonella Typhimurium
notably lacks the Vi capsule and typhoid toxin expressed by S.
Typhi, but does have alternative effector proteins enhance immune
evasion. Like S. Typhi, S. Typhimurium is an oral-fecal pathogen
and encounters the small intestine first, where it crosses the Peyer’s
patches via M cells. Resident macrophages and DCs play a role in
systemic spread of S. Typhimurium through their ability to
phagocytose bacteria. Survival and replication of S. Typhimurium
in SCVs relies on the SPI-2 encoded type III secretion system-2
(T3SS-2), which delivers more than 20 effectors through the SCV
membrane into the cytosol of the host cell. Once in the cytosol,
effectors can regulate the host environment so as to help the bacteria
escape lysosomal degradation (Drecktrah et al., 2006; Figueira and
Holden, 2012; Johnson et al., 2018). In mice, these evasion and
adaptation mechanisms allow S. Typhimurium to survive and
disseminate systemically and into the hepatobiliary system. Like S.
Typhi, S. Typhimurium causes apoptotic disruption of the epithelial
layer of the small intestine in humans, which is activated through
the caspase-8 mediated inflammasome (Hefele et al., 2018). The
production of IFN-g by Natural Killer (NK) cells, especially during
the initial stages of infection, helps control the systemic bacterial
burden (Kupz et al., 2013; Ingram et al., 2017). Following invasion
of the intestines, S. Typhimurium prevents DC antigen presentation
by avoiding lysosomal degradation and causing DC dysfunction
(Tobar et al., 2006; Bueno et al., 2008). Additionally, DCs require
TLR stimulation and expression of the chemokine receptor CXCR1
to induce bacterial sampling (Rescigno et al., 2001; Niess et al.,
2005). To control and clear S. Typhimurium infection in mice, Th1
and Th17 CD4+ T cells are important while CD8+ T cells may not
be necessary in the early stages of the primary response (Lee et al.,
2012a). Notably, early depletion of CD8+ T cells does not
significantly affect splenic bacterial burden (Johanns et al., 2010).
Several Salmonella proteins including flagellin and SseJ are
responsible for inducing the Th1 and Th17 CD4+ T cell responses
observed during infection, and B cell activation has been found to be
required to activate Th1 and Th17 responses (Barr et al., 2010; Lee
et al., 2012b). Following S. Typhimurium infection in mice, IgM,
IgG, and IgA antibodies are produced, and passive transfer of these
antibodies confers protection against infection, demonstrating that
B cells help protect against secondary infection (Nanton et al., 2012).
sIgA predominates in the gastrointestinal tract and aids in
obstructing bacterial penetration of the intestinal epithelium while
IgG opsonizes bacteria for increased uptake by macrophages
(Uppington et al., 2006; Nanton et al., 2012). sIgA is primarily
secreted from B cells found in the intestinal lamina propria and
prevents bacteria from adhering to the mucosal surface (Mantis and
Forbes, 2010).

Typically, S. Typhimurium and related NTS strains only
cause gastroenteritis in humans. However, there is increasing
prevalence of invasive non-typhoidal Salmonella (iNTS),
particularly in sub-Saharan Africa. One distinct Salmonella
strain in this region (ST313) appears genetically adapted to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
cause increased systemic disease in humans. This adaptation
results in hyper-dissemination of Salmonella via CD11b+CCR7+

migratory DCs (migDCs) through the lymphatics (Carden et al.,
2017). ST313 has evolved other mechanisms to promote invasive
disease such as overexpression of ribB to avoid detection by
Mucosal-associated Invariant T cells by reducing their activation
(Preciado-Llanes et al., 2020). SseI, a known immunogen that
induces a potent and sustained CD4+ T cell response, inhibits the
migration of infected DCs (Kurtz et al., 2014; Carden et al.,
2017). Notably, migDC-mediated dissemination is increasingly
being observed with other Salmonella strains such as SL1344,
demonstrating that iNTS is becoming more widespread (Carden
et al., 2017).

Following the initial infection and transcytosis of M cells, S.
Typhimurium uses its T3SSs to enter the lamina propria of the
small intestine as soon as 8 h post infection (Muller et al., 2012).
Approximately 20–40% of bacteria in the lamina propria are
found within CD11c+CX3CR1

high macrophages (Muller et al.,
2012). Other studies have shown that CD64+ macrophages or F4/
80+CD11b+ macrophages are important in the small intestine
lamina propria and contribute to T cell activation in intestinal
tissue (Carden et al., 2017; Yu et al., 2018). The lamina propria
harbors a multitude of immune cell types including B cells, T
cells, DCs, NK cells, and macrophages. Breach of this tissue by
Salmonella triggers a local immune response that contains the
infection in this site and prevents further dissemination.
However, further breach of this tissue or subversion of
immune function can lead to systemic dissemination of iNTS
to organs rich in macrophages such as the liver and spleen.
Because the liver is a target organ, systemic colonization
generally involves the hepatobiliary system, where bacteria can
further avoid the immune response and enter a persistent state.
SALMONELLA TYPHI MICROBIAL
PATHOGENESIS AND IMMUNE EVASION
WITHIN THE HEPATOBILIARY SYSTEM

Kupffer cells, the liver-resident macrophages, phagocytose
S. Typhi, and establish SCVs, which help evade immune
surveillance (Dougan et al., 2011). From the liver, S. Typhi can
go on to colonize the biliary tract via the ducts or vasculature that
connect the liver to the gallbladder. As mentioned previously,
studies have shown a strong correlation between the presence of
gallstones and the chance of progressing to a chronic carrier state
(Schioler et al., 1983).

Although recent studies have provided additional insight into
asymptomatic carriage, the mechanisms behind this process in
humans are still poorly understood. Information gained from S.
Typhimurium infection in murine models is vital; however,
re levance to human typhoidal infect ion cannot be
automatically assumed. For example, one recent study found
that exposure to bile causes an upregulation in S. Typhi genes
associated with motility, lipid A modulation, and the virulence
genes srfA and srfB. These same genes were significantly
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downregulated in response to bile in S. Typhimurium,
highlighting differential responses to physiological changes and
the potential mechanism for why these two serovars establish
different types of infection (Johnson et al., 2018).

An intriguing finding that requires more investigation is that
older females are at higher risk for S. Typhi carriage and the
subsequent development of gallbladder cancer (Rakic et al.,
2014). In a transcriptomic analysis of a chronic typhoid
murine model using all female mice, some of the most
downregulated genes at 7 and 21 days post infection were
hormonal metabolism genes, a finding at odds with earlier
studies showing an increase in steroid metabolism genes in the
liver after Salmonella infection (Antunes et al., 2011; González
et al., 2019a). Mice that were fed a lithogenic diet to induce
gallstone development also had higher levels of inflammation
and Salmonella-specific CD4+ T cells but were less capable of
controlling bacterial infection, possibly because of an
overreactive Treg response, which is known to be elevated in
females in many inflammatory diseases (González et al., 2019a).
A previous group has shown that estradiol can promote
production of IFN-g—an important Th1 cytokine for
Salmonella clearance—by the immunoregulatory T cell subtype
known as invariant natural killer cells (Gourdy et al., 2005).
Women are also more susceptible to developing gallstones, and
previous studies have shown that treatment with estradiols or
progesterone can alter mouse susceptibility to intraperitoneal S.
Typhimurium challenge (Kita et al., 1989; Stinton and Shaffer,
2012). The human sexual dimorphism seen in chronic S. Typhi
carriage needs to be explored in depth to better develop informed
therapeutics that would decrease the prevalence of asymptomatic
spreaders and, ideally, reduce downstream sequalae such as
potentially fatal gallbladder malignancies.
SALMONELLA TYPHIMURIUM
MICROBIAL PATHOGENESIS
AND IMMUNE EVASION OF THE
HEPATOBILIARY SYSTEM

As with S. Typhi in humans, once disseminated to the liver iNTS in
humans or S. Typhimurium in mice can take up residence in
Kupffer cells, which play a role in maintaining immune homeostasis
by triggering Tregs and attenuating activation of anti-bacterial
inflammatory Th1 CD4+ T cells (Rathman et al., 1996; Klugewitz
et al., 2002; Breous et al., 2009). Although Kupffer cells are known to
prevent bacteria from entering the hepatobiliary system during non-
disease states, the immunosuppressive environment of the liver may
provide a permissive niche for S. Typhimurium. A recent study
showed that during persistent infection in resistant mice, S.
Typhimurium was able to adapt through distinct mutations that
were liver- and spleen-specific (Sondberg and Jelsbak, 2016).
Further supporting the idea of adaptation, Johnson et al. found
that S. Typhimurium significantly downregulated many motility
genes when grown in the presence of bile, showing that S.
Typhimurium may establish chronic infection in the liver
following localization and adaptation to the otherwise
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
inhospitable environment of continuously flushing bacteriostatic
bile salts (Johnson et al., 2018).

From the liver, S. Typhimurium can also travel to the
gallbladder. During acute infection, S. Typhimurium can be
found in the gallbladder lumen or tissue within 48 h. Active
gallbladder epithelium invasion is followed by proliferative
replication in SCVs. An inflammatory response initiated by
neutrophils causes tissue damage and sloughing of host
epithelial cells, which helps released S. Typhimurium invade
additional cells (Menendez et al., 2009). As with S. Typhi,
colonization of the gallbladder by S. Typhimurium can result
in asymptomatic chronic carriage leading to the unwitting spread
of bacteria by seemingly convalescent patients through the fecal-
oral route (Sirinavin et al., 2004). Chronic carriage of iNTS is
particularly a problem in sub-Saharan Africa (Kingsley
et al., 2009).

As discussed above, a robust CD4+ Th1 response is essential
during the systemic infection phase with S. Typhimurium.
However, it has also been shown that other adaptive immunity
processes are important. Th17 cells produce IL-17 which is needed
to recruit neutrophils that aid in controlling infection (Raffatellu
et al., 2008). We recently showed that in a biofilm-mediated chronic
murine typhoid model, the immune response shifts to a less effective
Th2 response by 21 days post infection that was characterized by
increased yet ineffective antibody production and increased
expression of GATA3, a Th2 transcriptional regulator (González
et al., 2019a). Furthermore, the Salmonella-specific T cell
compartment differs greatly between the lymphoid tissues, such as
the mLNs, and the liver (Kurtz et al., 2020). In this case, liver T cells
appear to be far more immunosuppressive and permissive of disease
compared to lymphoid T cells. They also produced far more of the
immunoregulatory cytokine IL-10 compared to lymphoid CD4+ T
cells, which were more likely to produce IFN-g. In addition, lack of
thymic output prior to persistent S. Typhimurium infection results
in a loss of control over infection, despite the fact that Salmonella
specific CD4+ T cells are elevated (Goggins et al., 2020). It will be
important to explore whether the thymus contributes more T cells
to the lymphoid compartment or the hepatobiliary tissue. The
compounded virulence and immune evasion techniques of S.
Typhimurium and S. Typhi, along with inappropriate or
manipulated immune responses of the host, make them
formidable pathogens in both humans and mice.
DISCUSSION/SUMMARY

The immune response to Salmonella infection is complex and
multifaceted and relies on coordination between the early innate
response and the subsequent adaptive response. While adaptive
immunity to Salmonella has been extensively studied in the
lymphoid organs (e.g., mLNs and spleen) the response in the
intestine and hepatobiliary system, particularly the gallbladder, is
less clear (Figure 2). It is notable that there are differences in
infection and immune responses between the two major Salmonella
serovars that cause human disease. As summarized in this review,
these differences are attributable to differential subversion of the
immune response by the bacteria itself, influenced by its planktonic
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FIGURE 2 | Overview of host immune response to Salmonella infection. Salmonella, infecting via the oral-fecal route, first passes through the stomach and into the
lumen of the small intestine. There, Salmonella uses its SPI-1 type III secretion system to preferentially transcytose across M cells to gain access to the Peyer’s
Patches. Immune cells in the Peyer’s Patches, such as macrophages and dendritic cells, sense Salmonella via toll-like receptors and begin to trigger an immune
response. Macrophages and dendritic cells then migrate to the gut-draining mesenteric lymph nodes and the spleen (not shown) harboring Salmonella antigens as
well as whole bacteria in Salmonella-containing vacuoles. In the lymph nodes and spleen, dendritic cells and macrophages present antigen on MHC class II to
activate Salmonella-specific helper T cells which can then subsequently activate Salmonella-specific B cells. These adaptive immune cells then traffic back into the
intestine to fight infection by releasing the antimicrobial cytokine interferon gamma or neutralizing antibodies. Any Salmonella that escape the immune response of the
Peyer’s patches and mesenteric lymph nodes or spleen, can travel to, and invade, the liver and subsequently the gallbladder via the bile duct. In the liver, Kupffer
cells phagocytose Salmonella and activate Salmonella-specific T cells to produce the anti-inflammatory cytokine interleukin-10, likely preventing bacterial clearance.
The immune environment in the gallbladder is less clear, primarily because of the presence of Salmonella biofilms on gallstones, which can hinder/alter the immune
response. The liver and gallbladder are both sites where the host can experience chronic infection with Salmonella. Images created with BioRender.com.
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or biofilm lifestyle, as well as where and how the immune system
first encounters the bacteria. While progress has been made in our
understanding of how Salmonella interacts with the host gut and
hepatobiliary system, important questions remain regarding these
types of interactions:

1. Does biofilm formation affect the development, function, and
subversion of the immune response in the gut and gallbladder?
Our group has already shown that gallstones and chronic
Salmonella carriage in the gallbladder recruits both T and B
cells to the gallbladder itself (González et al., 2019a). Over
time, these immune cells develop a Th2 phenotype in the
gallbladder. It remains to be explored whether this Th2 shift
is permissive of infection in the gallbladder and thus
contributes to persistence. Future studies could examine
this question by depleting T or B cells and assessing the
respective contributions to gallbladder immunity over time.
Surprisingly little is known regarding intestinal immunity
during the chronic phases of infection and so these studies
could also be extended to the intestine.

2. How does the presence of gallstones and biofilms regulate
persistence and bacterial shedding early and late in infection?
It will also be important to determine whether gallbladder
immunity creates an environment that promotes increased
bacterial shedding in the feces. It is possible that the
immunological shift toward a Th2 phenotype not only
permits bacterial persistence, but somehow elicits a greater
shedding phenotype, potentially via production of anti-
inflammatory cytokines such as IL-10 or IL-4. We have
already shown that Salmonella specific T cells in the liver
produce IL-10 and are permissive of infection and so
extending this to the gallbladder and gut would be an
important extension of this work (Kurtz et al., 2020).

3. What immunological mechanisms allow the gut and
hepatobiliary system to become permissive to chronic
infection? While the Th2 shift is fairly generalized, it is not
known how Salmonella specific T cells specifically shift over
time. As previously discussed, some of these cells may adopt a
Treg phenotype, either in the liver, the gallbladder, or the
intestinal tissue itself. While this remains to be explored, it
would offer a logical explanation for why these tissues appear
to be more tolerant of infection compared to other tissues
such as the spleen.

4. Does the immune response in the hepatobiliary system and gut
differ between chronic typhoidal infection compared to iNTS
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
or acute infection? This review touches upon some of the
major differences between typhoidal and non-typhoidal
Salmonella infection; however, it is not well known
whether, or how, the immune responses differ between
these two types of infections, especially in the hepatobiliary
tract and the intestine. Does chronic typhoidal infection drive
a more regulatory immune response and acute infection
elicits a more robust antibacterial response? These are
important questions that must be addressed in order to
answer the final outstanding question below.

5. How can we eliminate chronic carriage? Understanding the
immune response in the major tissues that harbor bacteria,
especially the gut or hepatobiliary system, would greatly aid
in the fight to eliminate chronic carriage. The ultimate goal of
this understanding would be combatting bacterial carriage,
thus eliminating human to human spread of infection. It is
possible that using biofilm dispersal agents would allow the
immune system adequate access to bacteria ensuring their
elimination. Alternatively, a vaccination strategy that
preferentially targets the gut, as we have previously shown
to be possible using the appropriate adjuvant, might be
sufficient to eliminate bacteria (Frederick et al., 2018).

Further studies will better elucidate immunological
connections between the gut and hepatobiliary system,
particularly during chronic infection, and how this might
contribute to Salmonella pathogenesis, and how to eliminate it
from the human population.
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Alpuche-Aranda, C., and Gunn, J. S. (2010b). Gallstones play a significant
role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad.
Sci. U.S.A. 107 (9), 4353–4358. doi: 10.1073/pnas.1000862107

Daubert, D., and BF, W. (2019). Biofilm as a risk factor in implant treatment.
Periodontology 81), 29–40. doi: 10.1111/prd.12280

Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nat.
Rev. Drug Discovery 2 (2), 114–122. doi: 10.1038/nrd1008

de Carvalho, C. (2018). Marine biofilms: a successful microbial strategy with
economic implications. Front. Mar. Sci. 5), 126. doi: 10.3389/fmars.2018.00126

De Oliveira, D. C., Fernandes Junior, A., Kaneno, R., Silva, M. G., Araujo Junior, J.
P., Silva, N. C., et al. (2014). Ability of Salmonella spp. to produce biofilm is
dependent on temperature and surface material. Foodborne Pathog. Dis. 11 (6),
478–483. doi: 10.1089/fpd.2013.1710

Del Bel Belluz, L., Guidi, R., Pateras, I. S., Levi, L., Mihaljevic, B., Rouf, S. F., et al.
(2016). The Typhoid Toxin Promotes Host Survival and the Establishment of a
Persistent Asymptomatic Infection. PloS Pathog. 12 (4), e1005528.
doi: 10.1371/journal.ppat.1005528

Desai, S. K., and Kenney, L. J. (2019). Switching Lifestyles Is an in vivo Adaptive
Strategy of Bacterial Pathogens. Front. Cell Infect. Microbiol. 9:421:421.
doi: 10.3389/fcimb.2019.00421

Desai, S. K., Padmanabhan, A., Harshe, S., Zaidel-Bar, R., and Kenney, L. J. (2019).
Salmonella biofilms program innate immunity for persistence in
Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 116 (25), 12462–12467.
doi: 10.1073/pnas.1822018116

Dieltjens, L., Appermans, K., Lissens, M., Lories, B., Kim, W., Van der Eycken, E. V.,
et al. (2020). Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm
strategy. Nat. Commun. 11 (1), 107. doi: 10.1038/s41467-019-13660-x

Dougan, G., John, V., Palmer, S., and Mastroeni, P. (2011). Immunity to
salmonellosis. Immunol. Rev. 240 (1), 196–210. doi: 10.1111/j.1600-
065X.2010.00999.x

Drecktrah, D., Knodler, L. A., Ireland, R., and Steele-Mortimer, O. (2006). The
mechanism of Salmonella entry determines the vacuolar environment and
intracellular gene expression. Traffic 7 (1), 39–51. doi: 10.1111/j.1600-
0854.2005.00360.x

Dwyer, B. E., Newton, K. L., Kisiela, D., Sokurenko, E. V., and Clegg, S. (2011).
Single nucleotide polypmorphisms of fimH associated with adherence and
biofilm formation by serovars of Salmonella enterica.Microbiol. (Reading) 157,
3162–3171. doi: 10.1099/mic.0.051425-0

El Hag, M., Feng, Z., Su, Y., Wang, X., Yassin, A., Chen, S., et al. (2017).
Contribution of the csgA and bcsA genes to Salmonella enterica serovar
Pullorum biofilm formation and virulence. Avian Pathol. 46 (5), 541–547.
doi: 10.1080/03079457.2017.1324198

Espeland, E. M., and Wetzel, R. G. (2001). Complexation, stabilization, and UV
photolysis of extracellular and surface-bound glucosidase and alkaline
February 2021 | Volume 10 | Article 624622

https://doi.org/10.4161/21505594.2014.978721
https://doi.org/10.4161/21505594.2014.978721
https://doi.org/10.4049/jimmunol.1001431
https://doi.org/10.4049/jimmunol.1001431
https://doi.org/10.1007/978-3-662-13453-5_13
https://doi.org/10.1007/978-3-662-13453-5_13
https://doi.org/10.1016/s0140-6736(05)67181-4
https://doi.org/10.1002/eji.201041089
https://doi.org/10.1002/eji.201041089
https://doi.org/10.1046/j.1365-2958.2002.03121.x
https://doi.org/10.1046/j.1365-2958.2002.03121.x
https://doi.org/10.1111/j.1462-5822.2006.00762.xPMID-16869830
https://doi.org/10.1111/j.1462-5822.2006.00762.xPMID-16869830
https://doi.org/10.1016/j.tim.2004.11.006
https://doi.org/10.1002/hep.23043
https://doi.org/10.1093/clinids/6.3.345
https://doi.org/10.1111/j.1365-2567.2008.02805.x
https://doi.org/10.1016/j.chom.2017.01.009
https://doi.org/10.1084/jem.139.5.1189
https://doi.org/10.1016/S0140-6736(94)90816-8
https://doi.org/10.1128/iai.72.1.468-477.2004
https://doi.org/10.1128/iai.72.1.468-477.2004
https://doi.org/10.1016/j.fm.20
https://doi.org/10.1128/AEM.64.6.2247-2255.1998
https://doi.org/10.1128/AEM.64.6.2247-2255.1998
https://doi.org/10.1038/s41385-020-0299-1
https://doi.org/10.1128/IAI.01652-14
https://doi.org/10.1128/AEM.03109-13
https://doi.org/10.1126/science.284.5418.1318
https://doi.org/10.1126/science.284.5418.1318
https://doi.org/10.1172/JCI200320365
https://doi.org/10.1128/IAI.00786-08
https://doi.org/10.1128/IAI.00786-08
https://doi.org/10.1128/jb.01620-09
https://doi.org/10.1073/pnas.1000862107
https://doi.org/10.1111/prd.12280
https://doi.org/10.1038/nrd1008
https://doi.org/10.3389/fmars.2018.00126
https://doi.org/10.1089/fpd.2013.1710
https://doi.org/10.1371/journal.ppat.1005528
https://doi.org/10.3389/fcimb.2019.00421
https://doi.org/10.1073/pnas.1822018116
https://doi.org/10.1038/s41467-019-13660-x
https://doi.org/10.1111/j.1600-065X.2010.00999.x
https://doi.org/10.1111/j.1600-065X.2010.00999.x
https://doi.org/10.1111/j.1600-0854.2005.00360.x
https://doi.org/10.1111/j.1600-0854.2005.00360.x
https://doi.org/10.1099/mic.0.051425-0
https://doi.org/10.1080/03079457.2017.1324198
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Harrell et al. Salmonella Persistence During Chronic Infection
phosphatase: implications for biofilm microbiota. Microb. Ecol. 42), 572–585.
doi: 10.1007/s00248-001-1023-7

Ferrand, J., and Ferrero, R. L. (2013). Recognition of Extracellular Bacteria by
NLRs and Its Role in the Development of Adaptive Immunity. Front. Immunol.
4:344:344. doi: 10.3389/fimmu.2013.00344

Figueira, R., and Holden, D. W. (2012). Functions of the Salmonella pathogenicity
island 2 (SPI-2) type III secretion system effectors.Microbiol. (Reading) 158 (Pt
5), 1147–1161. doi: 10.1099/mic.0.058115-0

Flemming, H. C., andWuertz, S. (2019). Bacteria and archaea on Earth and their abundance
in biofilm. Nat. Rev. Microbiol. 17), 247–260. doi: 10.1038/s41579-019-0158-9

Flemming, H.-C. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev.
Microbiol. 14), 563. doi: 10.1038/nrmicro.2016.94

Frederick, D. R., Goggins, J. A., Sabbagh, L. M., Freytag, L. C., Clements, J. D., and
McLachlan, J. B. (2018). Adjuvant selection regulates gut migration and
phenotypic diversity of antigen-specific CD4+ T cells following parenteral
immunization. Mucosal. Immunol. 11 (2), 549–561. doi: 10.1038/mi.2017.70

Fresnay, S., McArthur, M. A., Magder, L., Darton, T. C., Jones, C., Waddington, C.
S., et al. (2016). Salmonella Typhi-specific multifunctional CD8+ T cells play a
dominant role in protection from typhoid fever in humans. J. Transl. Med. 14,
62. doi: 10.1186/s12967-016-0819-7

Furukawa, S., Kuchma, S., and O’toole, G. (2006). Keeping their options open:
acute versus persistent infections. J. Bacteriol. 188 (4), 1211–1217. doi: 10.1128/
JB.188.4.1211-1217.2006

Galie, S., Garcia-Gutierrez, C., Miguelez, E. M., Villar, C. J., and Lombo, F. (2018).
Biofilms in the Food Industry: Health Aspects and Control Methods. Front.
Microbiol. 9:898:898. doi: 10.3389/fmicb.2018.00898

Gal-Mor, O. (2019). Persistent infection and long-term carriage of typhoidal and
nontyphoidal Salmonellae. Clin. Microbiol. Rev. 32 (1), e00088–e00018.
doi: 10.1128/CMR

Gerstel, U., and Römling, U. (2003). The csgD promoter, a control unit for biofilm
formation in Salmonella typhimurium. Res. Microbiol. 154 (10), 659–667.
doi: 10.1016/j.resmic.2003.08.005

Giaouris, E. D., and Nychas, G. J. (2006). The adherence of Salmonella Enteritidis
PT4 to stainless steel: the importance of the air-liquid interface and nutrient
availability. Food Microbiol. 23 (8), 747–752. doi: 10.1016/j.fm.2006.02.006

Giaouris, E., Chorianopoulos, N., Skandamis, P., and Nychas, G.-J. (2012).
“Attachment and biofilm formation by Salmonella in food processing
environments,” in Salmonella: A dangerous foodborne pathogen. Ed. B. S. M.
Mahmoud (Rijeka, Croatia), 157–180. doi: 10.5772/28107

Gibson, D. L., White, A. P., Snyder, S. D., Martin, S., Heiss, C., Azadi, P., et al.
(2006). Salmonella produces an O-antigen capsule regulated by AgfD and
important for environmental persistence. J. Bacteriol. 188 (22), 7722–7730.
doi: 10.1128/JB.00809-06

Goggins, J. A., Kurtz, J. R., and McLachlan, J. B. (2020). Control of Persistent
Salmonella Infection Relies on Constant Thymic Output Despite Increased
Peripheral Antigen-Specific T Cell Immunity. Pathogens 9 (8), 605.
doi: 10.3390/pathogens9080605
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González, J. F., Alberts, H., Lee, J., Doolittle, L., and Gunn, J. S. (2018). Biofilm
Formation Protects Salmonella from the Antibiotic Ciprofloxacin In Vitro and
In Vivo in the Mouse Model of chronic Carriage. Sci. Rep. 8 (1), 222.
doi: 10.1038/s41598-017-18516-2

González, J. F., Kurtz, J., Bauer, D. L., Hitt, R., Fitch, J., Wetzel, A., et al. (2019a).
Establishment of Chronic Typhoid Infection in a Mouse Carriage Model
Involves a Type 2 Immune Shift and T and B Cell Recruitment to the
Gallbladder. mBio 10 (5), e02262–e02219. doi: 10.1128/mBio.02262-19
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