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Abstract
Bats as flying mammals are potent vectors and natural reservoir hosts for many infectious viruses, bacteria, and fungi, also
detected in their excreta such as guano. Accelerated deforestation, urbanization, and anthropization hastily lead to overpopulation
of the bats in urban areas allowing easy interaction with other animals, expansion, and emergence of new zoonotic disease
outbreaks potentially harmful to humans. Therefore, getting new insights in the microbiome of bat guano from different places
represents an imperative for the future. Furthermore, the use of novel high-throughput sequencing technologies allows better
insight in guano microbiome and potentially indicated that some species could be typical guano-dwelling members. Bats are well
known as a natural reservoir of many zoonotic viruses such as Ebola, Nipah, Marburg, lyssaviruses, rabies, henipaviruses, and
many coronaviruses which caused a high number of outbreaks including ongoing COVID-19 pandemic. Additionally, many
bacterial and fungal pathogens were identified as common guano residents. Thus, the presence of multi-drug-resistant bacteria as
environmental reservoirs of extended spectrum β-lactamases and carbapenemase-producing strains has been confirmed. Bat
guano is the most suitable substrate for fungal reproduction and dissemination, including pathogenic yeasts and keratinophilic
and dimorphic human pathogenic fungi known as notorious causative agents of severe endemic mycoses like histoplasmosis and
fatal cryptococcosis, especially deadly in immunocompromised individuals. This review provides an overview of bat guano
microbiota diversity and the significance of autochthonous and pathogenic taxa for humans and the environment, highlighting
better understanding in preventing emerging diseases.

Key points
& Bat guano as reservoir and source for spreading of autochthonous and pathogenic microbiota
& Bat guano vs. novel zoonotic disease outbreaks
& Destruction of bat natural habitats urgently demands increased human awareness
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Introduction

Bats (Chiroptera) are a diverse group of mammals with more
than 1400 different species with abilities to inhabit various

ecological niches and environments (Winter et al. 2016;
Gorbunova et al. 2020). Although bats are geographically
widespread, the ecology of their microbial communities and
the role involved in bat health and behavior are scarce, espe-
cially on the microbiota residing in bat’s excreta accumulated
in the form of guano, which could be potentially involved in
pathogen transmission to humans (Dietrich et al. 2018;
Dietrich and Markotter 2019). Bats revealed versatile feeding
behavior; they have a flying capacity and inherent character-
istics which makes them as highly potent vectors and natural
reservoir hosts for many pathogens. Furthermore, it is quite
clear that humans and bats are cross-visitors of each other’s
habitats! The main assumption is that these flying mammals
visit human settlements more often than humans visit their
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natural habitats. Based on this hypothesis, the question arising
is “Could the frequent visitations of these animals in urban
areas affect human health?” Accelerated urbanization and the
destruction of natural habitats inevitably lead to increased risk
of zoonotic diseases. It is known that zoonotic pathogens,
especially new or still unexplored, can easily spread to
humans through any contact point with animals or their excre-
ta, as well as through markets selling the meat or by-products
of wild animals (WHO 2020). Also, deforestation and en-
croachment of natural habitats leads to reduced feeding bat
habitats forcing them to find alternative sites in peri-urban
landscapes and with simultaneous less awareness in building
communities’ resilience to future outbreaks can increase hu-
man exposure to zoonotic disease reservoirs allowing patho-
gens transfer to other species (United Nations Environment
Programme and International Livestock Research Institute
2020). Additionally, climate changes as a force of nature can
rapidly influence the geographic distribution and abundance
of bats species and increase the incidence of the vector-borne
and zoonotic diseases (Wells and Clark 2019). Inter-species
transmission of the pathogens is a consequence of the contact
between bats and other animals including humans, which po-
tentially could result in disease outbreaks. Primarily, bats are
contemplated as the reservoir of many viruses and diseases
outbreaks caused by SARS coronavirus (SARS-CoV)
(Tsang et al. 2003), Marburg virus (MARV) (Calisher et al.
2006), MERS coronavirus (MERS-CoV) (Kupferschmidt
2013), Nipah virus (NiV) (Luis et al. 2013), Ebola virus
(EBOV) (WHO Ebola Response Team 2014), Australian bat
lyssavirus (ABLV), Hendra (HeV) and Menangle (MenPV)
viruses, and current COVID-19 pandemic, for which is not yet
proved that bats transmit SARS-CoV-2 to humans (United
Nations Environment Programme and International
Livestock Research Institute 2020). Contrary to it, bat guano
has been recognized as a potential source of bacterial and
fungal pathogens. Furthermore, it is well known that, in many
regions of the world, bat guano is preciously used in agricul-
ture, frequently as patented and presented on the market, as
organic biofertilizer in order to positively affect overall soil
fertility (Grantina-Ievina and Ievinsh 2015; De Leon et al.
2018). However, in areas with a high use of guano as
biofertilizer, agricultural workers could be at increased risk
by contact with guano-harbored foodborne pathogens, which
also could easily contaminate food products or infect live-
stock. Due to easy spread of pathogens into the environment
with the interaction with other animals, intake of raw food, or
water contamination and possible infection of humans, knowl-
edge on the bats guano microbiota is highly important
(Wolkers-Rooijackers et al. 2019). The presence of pathogen-
ic enteric bacteria and other bacterial pathogens common in
human and animal diseases such as species of Pasteurella,
Salmonella, Shigella, Escherichia, Klebsiella, Proteus,
Yersinia , Hafnia , Serrat ia , Staphylococcus , and

Campylobacter genera among many others in different cave-
and building–dwelling bat guanos (Sridhar et al. 2006;
Mühldorfer 2013; Banskar et al. 2016; Wolkers-Rooijackers
et al. 2019; Dimkić et al. 2020; Gerbáčová et al. 2020) has
already been confirmed. Furthermore, some other bacterial
species from genera Bartonella, Borrelia, Leptospira,
Pseudomonas, Enterobacter, Acinetobacter, Bacillus,
Arthrobacter, and Micrococcus, related to bat guano, can in-
dicate novel species-specific bat-dwelling bacteria with med-
ical importance to humans (Lei and Olival 2014;
Veikkolainen et al. 2014; Banskar et al. 2016; Dimkić et al.
2020). Additionally, guano has also been recognized as a po-
tential source of various dimorphic fungal pathogens, includ-
ing endemic Histoplasma capsulatum, Coccidioides spp.,
Blastomyces dermatitidis, Cryptococcus neoformans, and op-
portunistic pathogens from genera Candida, Meyerozima,
Trychophyton, Trychosporon, Microsporum, Sporotrix,
Chrysosporium, Geomyces, Aspergillus, Penicillium, and
Fusarium (Sugita et al. 2005; Ulloa et al. 2006; Ogórek
et al. 2016; Cordero et al. 2016; Dimkić et al. 2020;
Rodrigues et al. 2020). It should be pointed out that bats
themselves are reservoirs for many infectious agents, includ-
ing viruses, bacteria, and fungi, which could also be detected
in guano (Fig. 1). Hence, the sampling of guano is a noninva-
sive and more convenient approach, in contrast to direct ex-
amination of bats, which can also be carried out even when
bats hibernate (Ogórek et al. 2016).

This paper provides a new systematic review of the litera-
ture within the context of various quantitative and qualitative
bat guano microbiota diversity researches, emphasizing the
presence and significance of autochthonous phylogenetically
different lineages and potential pathogenic taxa for humans
and the environment. This could be very important in terms
of biodiversity preservation and understanding how we can
provide a protection of humans from emerging infectious
diseases.

Bat (guano) virome

Bats are well known as a natural reservoir of many zoonotic
viruses, including lyssaviruses, causative agents of rabies,
henipaviruses, severe acute respiratory syndrome coronavirus,
and Ebola virus (Li et al. 2010a). Their ability to host different
viruses is enabled by their wide geographical distribution,
migratory and feeding habits, and in many cases, high popu-
lation density (Wibbelt et al. 2009). In several recent studies
based onmetagenomic analyses and other methods, more than
80 species of viruses were isolated or detected. Besides al-
ready mentioned, these species include adenoviruses, adeno-
associated viruses, herpesviruses, astroviruses, and
polyomaviruses (Chu et al. 2008; Misra et al. 2009; Li et al.
2010b). The study of the presence of viruses in guano samples
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from several insectivorous species of bats revealed a great
diversity of identified virus species (Li et al. 2010a). These
groups include animal viruses from the families Parvoviridae,
Circoviridae, Adenoviridae, Poxviridae, Picornaviridae,
Astroviridae, and Coronaviridae and bacteriophages from
the families Siphoviridae and Microviridae. The same study
also showed that bat guano virome contained plant and fungal
viruses from Luteoviridae, Secoviridae, Tymoviridae, and
Partitiviridae families, and the Sobemovirus genus. Within
detected families, some species are particularly interesting;
Cyclovirus, a new genus from the family Circoviridae con-
tains viruses with covalently closed circular single strand
DNA (ssDNA) genomes. These viruses were detected in ce-
rebrospinal fluid samples from patients with unexplained
paraplegia in Malawi (Smits et al. 2013). In the case of bat
cyclovirus GF-4 identified in the samples of guano, a phylo-
genetic analysis of the Rep protein sequence placed this virus
within the group of known cycloviruses as the distinctive spe-
cies. In another study, metagenomic analysis of insectivorous
bat guano in Hungary showed the presence of viruses from the
order of Picornavirales. In tested samples, the aphid lethal
paralysis virus (ALPV) and Big Sioux River virus (BSRV)
were detected in Hungary for the first time (Zana et al.
2018). Additionally, among others, rabies viruses also are

the part of the bats’ virome. Rabies is the zoonotic disease that
is, if not treated, fatal for all mammals including humans. The
causative agent of disease is the rabies virus (RABV), an RNA
virus that belongs to the genus Lyssavirus within the family
Rhabdoviridae. Bats are the main natural reservoirs of the
rabies viruses; until now, 64 species of bats were reported
positive for RABV worldwide, including insectivorous, fru-
givorous, and hematophagous species (Jiménez et al. 2017).
Bat species that can carry rabies virus can be found in South
and North America, as well as in Africa, in Western and
Southeastern Europe. There have been only several recorded
deaths of humans in Europe caused by the bite of rabies-
infected bats (Lina and Hutson 2006). In most cases, humans
can be infected if bitten by the domestic cats that are the main
predators of bats. Although the rabies is a generally eradicated
disease, in the United States, bats are responsible for 7 out of
10 rabies deaths, according to the U.S. Centers for Disease
Control and Prevention.

Bat’s coronaviruses

Bat’s virome and relationships between bats and viruses, in-
cluding more than 200 novel coronaviruses are very likely spe-
cific to the bat species (Calisher et al. 2006; Vijaykrishna et al.

Fig. 1 Bat guano microbiome—a silent life-threatening pathogenic bacteria and epidemic/pandemic of fungal and viral diseases
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2007). Since the new bat viruses, isolation has already proven
to be difficult, current SARS-CoV-2 pandemic, still unexplored
in transmission to humans, required extent detection in bats and
sequencing of their genomes. Coronaviruses are the group of
lipid-enveloped, single-strand RNA viruses (positive strand)
with the genome size from 27 to 32 kb, among the largest of
all RNA viruses’ genomes. Several recent studies indicated that
bat coronaviruses represent the source of human coronaviruses
such as SARS-CoV and MERS-CoV. Coronaviruses were iso-
lated from the samples of bat guano of common flying fox
(Pteropus medius) in Sri Lanka (Kudagammana et al. 2018).
These viruses showed more than 97% of nucleotide sequence
identity with coronaviruses detected in fruit bat Cynopterus
sphinx and insectivorous bats Scotophilus heathii and
Scotophilus kuhlii bats in Thailand. Although the lineage D of
betacoronaviruses detected in this study represent the group of
coronaviruses that was until now confined to bats, they might
evolve to new strains potentially pathogenic to humans, since in
some parts of South Asia, they are hunted and consumed as
food. Besides that, bat guano is also collected and sold as fer-
tilizer in some countries, including Thailand, Indonesia,
Mexico, Cuba, and Jamaica. In samples of bat guano fertilizer
in Thailand, a betacoronavirus from group C was isolated
(Wacharapluesadee et al. 2013). This practice can represent
the serious health risk to guano miners and, without the use of
preventive measures, expose them to zoonotic pathogens.
Coronaviruses were also detected in the bat guano samples
and rectal swabs in Myanmar (Valitutto et al. 2020). In this
study, three novel alphacoronaviruses, three novel
betacoronaviruses, and one previously identified
alphacoronavirus were detected for the first time in bats in
Myanmar. Novel lineages of alphacoronaviruses were also de-
tected in bat guano samples collected from caves on several
locations in Kazakhstan (Mendenhall et al. 2019).

Bat (guano) bacteriome

In the last decade, composition of bacterial communities from
bat guano has begun to intensively be characterized. In the
focus of investigations were guano sampled from fresh fecal
samples or guano piles in different places such as caves, build-
ings, and church towers. Also, surveys were based on bats’ gut
as the primary source of guano bacteria. Significant bacterial
diversity was detected in guano samples that varied in detect-
ed genera among analyzed bat species, sample types (fresh
feces or guano piles), and sampling points of investigated
caves or guano layers (Table 1).

In general, representatives from the phyla Proteobacteria
and Firmicutes were detected as dominant groups in the bat
guano or fresh feces samples collected from mist-netted bats.
Culture-based analysis indicated that common genera in gua-
no, regardless of the sample and sampling location, were

Staphylococcus, Lactococcus, Enterobacter, and Bacillus
(Banskar et al. 2016; Newman et al. 2018; Gerbáčová et al.
2020). These common genera are also detected as dominant in
the gut of Rhinolophus monoceros (Selvin et al. 2019), with
the exception of Lactococcus sp., which could be explained
by culturemethod bias. Identified common taxa in guano from
different bat species and sample types indicate that bat gut is
the basis of the dominant bacterial genera. Other bacterial
representatives are probably influenced by environmental fac-
tors. Besides valuable information provided by cultivation
methods, traditional use of culturable media has limitations
to comprehensively analyze whole microbial diversity
(Abdelfattah et al. 2018). Thus, using high-throughput se-
quencing (HTS) as a tool to investigate bacterial communities
of guano enabled detailed studies of these extreme microhab-
itats (Knight et al. 2018). In guano samples, originated from
bats with different diets and different geographic regions (the
USA, India, and China), by HTS genera Weissella,
Lactococcus, Enterococcus, Bacillus, and Arthrobacter as
common were detected (Banskar et al. 2016; Li et al. 2018;
Newman et al. 2018). That indicated these species as potential
typical members of guano.

From the aspect of clinical significance, bacteria originat-
ing from guano could be divided into four groups. Enteric
foodborne and other pathogens includes genera Escherichia,
Enterobacter, Yersinia, Hafnia, Serratia, Staphylococcus,
Streptococcus, Pseudomonas, Rahnella, Micrococcus,
Acinetobacter, and Arthrobacter. Among common zoonotic
pathogens, following generaBartonella, Borrelia, Leptospira,
Campylobacter, Clostridium, and Bacillus were recognized.
Group of unusual Gram-negative bacterial pathogens, in rela-
tion to atypical cell structure, includes genera Mycoplasma,
Ureaplasma, Rickettsia, Anaplasma, and Chlamydia.
Ex tended spec t rum be ta - lac tamase (ESBL) and
carbapenemase-producing Enterobacteriaceae (CPE) as a
group of multiple drug-resistant bacterial pathogens are de-
tected in several studies in guano which originated from dif-
ferent bat species. Many studies have, so far, identified path-
ogens as common guano residents (Veikkolainen et al. 2014;
Banskar et al. 2016; Wolkers-Rooijackers et al. 2019;
Gerbáčová et al. 2020). Therefore, guano piles are recognized
as potential reservoirs of spreading zoonoses. Recently, two
studies have characterized and compared the composition of
bacterial communities in different layers of guano piles
(Newman et al. 2018; Dimkić et al. 2020). Bacterial popula-
tion shift was detected throughout the guano pile as nutritional
composition and environmental factors have changed, from
aerobic to anaerobic. Different distributions of bacterial taxa
in layers were detected between studied caves, but common
genera were identified as Bacillus and Enterococcus.
Microbial diversity of bat guano is driven by different factors
such as diet type and reproductive stage of the host (Phillips
et al. 2012; Gaona et al. 2019). Also, caves as typical bat
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Table 1 Bacterial diversity in bat guano across the world

Reference Sample origin Identification method Distribution of most abundant taxa

Banskar et al. 2016 Bat feces samples of Rousettus
leschenaultii collected at the
Robber’s Cave, Maharashtra,
India

Cultivation method Enterobacter, Enterococcus, Escherichia,
Lactococcus, Staphylococcus, Serratia,
Weissella, Citrobacter, Acinetobacter

High-throughput 16S
rRNA sequencing

Proteobacteria, Tenericutes, Candidate division
TM7, Firmicutes, Actinobacteria

Selvin et al. 2019 Samples from Rhinolophus
monoceros gut, The Arwah Cave,
Meghalaya, India

Cultivation method Staphylococcus, Bacillus, Hafnia, Brevibacillus,
Pseudomonas, Serratia, Enterobacter

High-throughput 16S
rRNA sequencing

Citrobacter, Lactococcus, Staphylococcus,
Devosia, Acinetobacter, Arthrobacter,
Streptomyces

Newman et al. 2018 Bat guano sampled from different
guano layers, lava tube cave,
Sierra County, United States

Cultivation method Microbacterium, Enterococcus, Lactococcus,
Enterobacter, Bacillus, Pantoea,
Staphylococcus, Weissella, Streptomyces,
Deinococcus

High-throughput 16S
rRNA sequencing

Enterococcus, Bacillus, Plesiomonas,
Vespertiliibacter, Lactococcus, Paenibacillus,
Clostridium,Mycoplasma, Pantoea,Weissella,
Streptococcus

Gerbáčová et al. 2020 Feces samples, building–dwelling insectiv-
orous bat species
(Myotis myotis, Rhinolophus
hipposideros), twelve locations
in central Slovakia

Cultivation method Enterococcus, Lactococcus, Lactobacillus,
Pseudomonas, Paenibacillus, Bacillus,
Staphylococcus

16S rRNA DGGE analysis Rahnella,Micrococcus, Staphylococcus, Serratia

Dimkić et al. 2020 Bat guano sampled from different
layers in Ogorelička
Pećina Cave, Serbia

Cultivation method Bacillus, Enterococcus, Staphylococcus,
Viridibacillus, Lysinibacillus, Paenibacillus,
Pseudomonas, Escherichia, Serratia,
Citrobacter

Borda et al. 2014 Bat guano sampled from 7 caves
in Romania

Cultivation method Escherichia, Chryseomonas, Burkholderia

Vandžurová et al.
2013

Guano samples from mixed
Myotis myotis and M. blythii
colony, the church tower in
the Slovak Lupca village, Slovakia

Cultivation method Staphylococcus nepalensis

Tomova et al. 2013 Bat guano samples from the Gallery
with prehistoric drawings in
Magura Cave, Bulgaria

Cultivation method Serratia, Pseudomonas, Enterobacter,
Sphingobacterium

Wolkers-Rooijackers
et al. 2019

Bat guano samples of 10 insectivorous
bats of different species sampled from
limestone mines, province of Limburg,
Netherlands

16S rDNA cloning and
sequencing

Carnobacterium, Serratia, Pseudomonas,
Enterococcus, Yersinia

Afonso and
Goydadin 2018

Feces samples from 23 lesser horseshoe
bat maternity roosts located in buildings
(churches, barns), Franche-Comté
region, France

msp2 (major surface
protein gene) sequencing

Anaplasma phagocytophilum

Hornok et al. 2018 Bat feces samples from 19 bat species
collected at Hungary and Netherlands

PCR screening focused on
vector-borne bacteria (rick-
ettsia and hemotropic my-
coplasmas)

Rickettsia, Neorickettsia, Mycoplasma

Vengust et al. 2018 Feces samples of 12 different bat species,
captured during autumn migration across
central Europe at 8 different parts of
Slovenia

High-throughput 16S
rRNA sequencing

Pseudomonas, Staphylococcus,
Carnobacterium, Acinetobacter, an
unclassified Enterobacteriaceae

Veikkolainen et al.
2014

Feces samples from Myotis daubentonii,
Finland

High-throughput 16S
rRNA sequencing

Leuconostoc, Enterobacter, Lactococcus,
Chlamydia, Citrobacter, Aeromonas,
Klebsiella

Li et al. 2018 Fresh fecal pellets from bats with different
diets randomly collected in Guangdong,
Guangxi, and Yunnan, China

High-throughput 16S
rRNA sequencing

Enterobacter, Fructobacillus, Ureaplasma,
Klebsiella, Weissella, Plesiomonas,
Enterococcus, Lactobacillus, Bacillus

Streptococcus, Actinobacillus, Nesterenkonia
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habitats are specific, extreme environments with low level of
UV radiation, high gaseous ammonia levels, and could reach
temperatures up to 43 °C (Newman et al. 2018). Different
caves ensure the development of taxa specifically adapted
for conditions in this environment. On the other hand, varia-
tions in the microbial community are conditioned by the geo-
graphic location, geochemical characteristics, and other envi-
ronmental factors (Wiseschart and Pootanakit 2020).

Bacterial diversity of guano from building–dwelling bats
was rarely studied (Vandžurová et al. 2012, 2013; Gerbáčová
et al. 2020). Nevertheless, composition of their bacteriome is
especially interesting considering the vicinity of human resi-
dence. Gerbáčová et al. (2020) reported presence of several
possible human pathogens including Hafnia alvei,
Staphylococcus nepalensis, Serratia fonticola , and
S. liquefaciens in two building–dwelling bat species in
Slovakia. Earlier, Staphylococcus nepalensis was detected
by Vandžurová et al. (2013) from the summer colony bats
from the church tower, also in Slovakia. Staphylococcus
nepalensis is a potential human pathogen with presence of
antibiotic-resistant strains (Nováková et al. 2006). Constant
presence of S. nepalensis over a long period of time observed
on bat populations in Slovakia indicates a persistence of po-
tential pathogens in the bat population.

Bats as a natural reservoir of antibiotic multi-resistant
bacteria

The existence of antibiotic multi-resistant bacteria in terrestrial
mammals has been previously documented in multiple stud-
ies, providing an important insight into their potential role as
reservoirs of resistant bacteria. Antibiotic-resistant bacteria
have been detected in bat isolates across the globe, suggesting
the possibility of them being one of the environmental reser-
voirs of resistant bacteria (Adesiyun et al. 2009; Allocati et al.
2016;).

McDougall et al. (2019) described the presence of bacteria
resistant to several antibiotic families in gray-headed flying
fox (Pteropus poliocephalus) populations across Australia.

Isolated bacteria were found to carry genes responsible for
resistance to aminoglycosides, trimethoprim, and beta-
lactams. This study also provided evidence of resistome trans-
fer between humans and bats, as well as from environment to
bats. Studies in Nigeria also detected bacterial isolates from
bat fecal droppings with resistance to multiple antibiotics
(Oluduro 2012; Ajayi et al. 2020). Among Gram-positive iso-
lates, most were resistant to amoxicillin, streptomycin, and
erythromycin, while most of Gram-negative isolates were re-
sistant to penicillins and cephalosporins.

Recent studies have detected presence of extended spec-
trum β-lactamases (ESBLs) in Enterobacteriaceae isolates
from bat guano. Mbehang Nguema et al. (2020) reported for
the first time the presence of multi-resistant ESBL-producing
Enterobacteriaceae in fruit bats in Makokou. Their strains
showed higher resistance to tetracycline, ciprofloxacin, and
ofloxacin compared with the studies carried out in Nigeria
(Oluduro 2012; Ajayi et al. 2020). Main enterobacterial spe-
cies that showed resistance to ESBLs were Escherichia coli,
followed by Klebsiella pneumoniae and E. cloacae. Genetic
analysis of ESBL resistance genes by PCR and sequencing
identified only two genes responsible for observed resistance
phenotype: blaCTX-M-15 and blaSHV-11. Both genes are recog-
nized as plasmid-mediated resistance genes (Cantón et al.
2013; Liakopoulos et al. 2016). In addition, blaCTX-M-15

beta-lactam resistance gene is the most widely distributed
and the most prevalent ESBL gene in human strains world-
wide (Ewers et al. 2012; Janatova et al. 2014). ESBL-
producing E. coli isolates from bat guano, carrying the same
resistance genes, were also detected in Peru, Poland, and
Portugal (Benavides et al. 2018; Garcês et al. 2019;
Nowakiewicz et al. 2020). During 2019, carbapenemase-
producing Enterobacteriaceae (CPE) were detected in bat
guano (Gharout-Sait et al. 2019). CPE isolates were identified
as K. pneumoniae and were found to carry blaOXA-48 gene
(CS34) and blaKPC-3 gene (CS63). K. pneumoniae isolate car-
rying blaKPC-3 gene was found to belong to the ST512 clonal
group, subcluster of ST258 (Gharout-Sait et al. 2019). Strains
belonging to this sequence types are recognized as a major

Table 1 (continued)

Reference Sample origin Identification method Distribution of most abundant taxa

Dietrich and
Markotter 2019

Bat feces sampled in a maternity
colony of Rousettus aegyptiacus,
Matlapitsi Cave, Limpopo province,
South Africa

High-throughput 16S
rRNA sequencing

De Leon et al. 2018 Bat guano sampled from
Cabalyorisa Cave, Philippines

High-throughput 16S
rRNA sequencing

Unassigned Xanthomonadaceae,
Mycobacterium, Bacillus, Luteibacter,
Rhodococcus

De Mandal et al.
2015

Bat guano sampled from three
bat species in Pnahkyndeng cave,
Meghalaya, Northeast India

High-throughput 16S rRNA
sequencing

Chloroflexi, Crenarchaeota, Actinobacteria,
Bacteroidetes,Proteobacteria,Planctomycetes
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contributor to the spread of carbapenemases and have been
frequently associated with hospital outbreaks. In Gabon, phy-
logenetic analysis of bat guano isolates revealed that theywere
clustered with previously described human bacterial strains
from Turkey and Tunisia, but without information on their
relatedness to clonal groups (Mbehang Nguema et al. 2020).
All these and other studies suggest that antibiotic resistance in
bat microbiome may vary locally and could be influenced by
contact with wastes of antibiotic treatments of animals and
humans (Swift et al. 2019).

Bat (guano) mycobiota

Since many bat species are nocturnal animals that roost in
caves, much more often than in tree cavities, caves could be
considered natural habitats for Chiroptera (Kunz 1982).
Although fungi in caves could colonize a variety of substrata,
such as cave sediments, vermiculations on cave walls, car-
casses, and droppings of troglobites or troglophiles
(Nováková 2009), bat guano is according to Ogórek et al.
(2016) the most suitable substrate for fungal growth and pro-
liferation. Since caves are usually regarded as oligotrophic,
without primary production, bat guano piles are an important
source of organic matter (Ferreira 2019). Depending on
Chiroptera diet, three types of bat guanos are described. The
majority of troglophilous microbats (formerMicrochiroptera)
from the northern temperate regions are insectivorous; hence,
their guano is finely granulated and consists of small pieces of
insect cuticle. Chitin-degrading saprobes could be regarded as
the first colonizers of newly established guano piles in caves
roosted with insectivorous bats. On the other hand, megabats
(Pteropodoidea or Yinpterochiroptera) are predominantly fru-
givorous, and their geographical distribution encompasses
tropical regions of the Old world as well as Australia. Guano
of frugivorous bats contains small undigested seeds easily
colonized by saprobes. Hematophagous or vampire bats
(Desmodontinae) are native to Central and South America,
and their guano is with a pasty consistency and reddish color
or sometimes black with powdery consistency (Gnaspini
2012). All types of guano (from insectivorous, frugivorous,
and hematophagous bats) are suitable substrata for fungal col-
onization. Investigation conducted in a sandstone cave Meu
Rei located in the Catimbau National Park (Brazil) showed
that fungal richness does not differ greatly between insectiv-
orous, frugivorous, and hematophagous bats or between fresh
and non-fresh guano, while regarding fungal propagules abun-
dance guano types were in ascending order: frugivorous<
haematophagous< insectivorous (Cunha et al. 2020). Once
pioneer fungal community is established further heterotrophic
succession goes on, followed by changes in community struc-
ture and physicochemical properties of guano (Ferreira 2019).
Guano communities are very simple and consist of only a few

trophic levels (mostly of two with guanophages and their
predators); however, they can harbor a large number of fungal
propagules (Gnaspini 2012). Previous studies suggest that
fungal density in bat guano piles could be high. Ogórek
et al. (2016) reported very high fungal density in guano sam-
ples in Harmanecká cave in Slovakia (3498.3 CFU/g), while
even higher fungal density in guano samples from Ogorelička
Pećina Cave (Serbia) of 6384.61 CFU/g were presented by
Dimkić et al. (2020). Apart from high fungal density, the
mycobiota documented in guano samples can also be moder-
ate to high (Vaughan 2012). Previous studies suggest the pres-
ence of a broad spectrum of fungal species documented in
guano (Nováková 2009). Although the majority of guano-
dwelling species are saprobes, guano can also be a reservoir
of pathogenic fungi harmful to animals and humans.
Opportunistic pathogens, causative agents of severe or mild
mycoses, and toxigenic molds can be documented in bat
guano worldwide. Larcher et al. (2003) documented the high
fungal diversity in bat guano samples from caves in the region
of Pays de la Loire (Western France). Their findings included
pathogenic yeasts (Candida glabrata and Meyerozyma
guilliermondii) and eight species of pathogenic keratinophilic
fungi (Trichophyton terrestre, Scopulariopsis brevicaulis,
Aphanoascus fulvescens, Myceliophthora thermophila,
Chry so spo r i um loba tum , Ch . merda r i um , Ch .
pseudomerdarium, and Ch. pruinosum). Sugita et al. (2005)
reported the presence of nine species of genus Trichosporon,
causative agent of white piedra and opportunistic
trichosporonosis, from guano of bat-inhabited limestone and
volcanic caves in Japan. Other opportunistic pathogens
presented in this work were Candida lusitaniae and
Debaryomyces hansenii. Ulloa et al. (2006) reported the pres-
ence of pathogens Aphanoascus fulvescens, Candida
catenulata, C. ciferrii, M. guilliermondii, and Sporothrix sp.
in tested guano samples from different caves in State of
Guerrero in Mexico. The presence of Aspergillus fumigatus,
known causative agent of invasive pulmonary mycosis in im-
munosuppressed individuals, was documented in guano sam-
ples from Domica Cave and Čertova Cave in Slovakia
(Nováková 2009). Pathogenic yeast M. guilliermondii was
isolated from guano samples collected in Ogorelička Pećina
Cave in Serbia (Dimkić et al. 2020). According to Ogórek
et al. (2016) bat guano is a “hidden treasure” of fungi that
may be hazardous for mammal health, such as Candida,
Geomyces, Microsporum, Trichosporon, and Trichophyton
species.

The most important attention regarding guano-dwelling
fungi is paid to dimorphic human fungal pathogens, which
are the causative agents of severe diseases within specific
geographic areas of known endemicity. It is already known
that endemic mycoses manifested as focal and systemic dis-
eases in a limited geographical area and remain a major public
health problem in several countries. However, over the past
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few decades new epidemiological reports have indicated that
endemic fungi in certain areas are thought to be “non-endem-
ic” (Ashraf et al. 2020). Interestingly, these pathogens could
be the cause of various infections outside these areas. Endemic
mycoses diagnosed outside of their established geographic
ranges could be the main causes of morbidity and mortality
in immunocompromised individuals, especially AIDS pa-
tients and patients with other immunosuppressive medical
conditions (Wheat 1995; Ashraf et al. 2020). In this regard,
due to the significant fact that there are many asymptomatic
cases, the occurrence and development of these mycoses in
such patients can be an important benchmark for the detection
of these pathogens beyond endemic areas. The most promi-
nent guano-associated dimorphic fungus is Histoplasma
capsulatum, causative agent of systemic histoplasmosis also
known as cave disease (Rodrigues et al. 2020). In addition to
histoplasmosis, endemic mycoses are also caused by other
dimorphic fungi such as Coccidioides immitis, Co. posadasii,
Blastomyces dermatitidis, Paracoccidioides brasiliensis,
P. lutzii, and Talaromyces marneffei (formerly known as
Penicillium marneffei) (Sil and Andrianopoulos 2014). The
above-mentioned species are more or less related to the guano
and bat habitats, but perhaps the largest number of reports and
scientific papers in recent two decades is related to
Coccidioides species (Barker et al. 2007; Brown et al. 2013;
Engelthaler et al. 2016; Kollath et al. 2019; Van Dyke et al.
2019; Oltean et al. 2020) and B. dermatitidis (Saccente and
Woods 2010; Smith and Gauthier 2015; Slomka and Doub
2020).

Coccidioides immitis and Co. posadasii are causative
agents of potentially fatal coccidiomycosis, known as valley
fever, endemic for southwestern USA, northern Mexico,
Central America, and some regions of South America
(del Rocío Reyes-Montes et al. 2016). The first report re-
garding the presence of Co. immitis in bat guano samples,
originated from roosting places deep within deserted mine
tunnels in southern Arizona (Krutzsch and Watson 1978).
Later, Cordeiro et al. (2012) proved that several chiropter-
an spec ies f rom Braz i l (Carol l ia perspic i l la ta ,
Glossophaga soricina, and Desmodus rotundus) could be
infected with Co. posadasii and these authors also hypoth-
esized that the ability of bats daily to travel long distances
in their search for food and the social behavior could in-
troduce this fungus in previously non-disease-endemic
areas . The predominant route of infec t ion with
Coccidioides spp. is inhalation. The majority of cases are
asymptomatic, but in some patients, a complicated form of
pneumonia can also develop (Saubolle et al. 2007). In the
last decades, the incidence of Coccidioides infections is
increasing in endemic areas, with >90% in Arizona and
California between 2001 and 2006 (Hector et al. 2011).
The result of this increase has a significant impact on pub-
lic health around the world.

Blastomyces dermatitidis is known as endemic species in
the Mississippi and Ohio River Valleys, the Midwestern
states, and the area of New York and Canada (Klein et al.
1986a, 1987; Cano et al. 2003; Dworkin et al. 2005; Sil and
Andrianopoulos 2014). In the endemic region, this species is
not uniformly distributed. It is known that it inhabits an eco-
logical niche that is characterized by forested, sandy, and
moist soils with an acidic pH; decaying vegetation or organic
material; and rotting wood areas rich in organic debris, located
near water sources (e.g., rivers and lakes) (Smith and Gauthier
2015). Similar to H. capsulatum and Cryptococcus species,
this fungus may also persist in bird guano (Klein et al. 1986b;
McBride et al. 2017). The first report on isolation of
B. dermatitidis from liver of species Rhinopoma hardwickei
(the “lesser rat-tailed bat”) found within the basement of
Safdar-Jang Tomb, a historical monument in New Delhi,
was reported by Randhawa et al. (1985). Previous means that
Chiroptera could be the vectors of blastomycosis, a systemic
disease caused by this pathogen, which is also called
Gilchrist’s disease (Pappas and Dismukes 2002) or North
American blastomycosis. The clinical manifestations of this
mycosis are broad, ranging from asymptomatic infection to
acute respiratory distress syndrome and lethal outcome
(McBride et al. 2017).

In contrast to previously discussed fungi, there are only few
reports regarding the presence of Cryptococcus neoformans,
causative agent of potentially fatal cryptococcosis, in bats and
bat guano. Cryptococcus neoformans var. neoformans was
documented in an old abandoned house inhabited by bats in
Rio de Janeiro, Brazil (Lazera et al. 1993). Furthermore,
Montagna et al. (2003) reported the presence of Cr.
neoformans in the upper layers of the bat guano in three caves
in the Apulia region in Italy. Although cryptococcosis is
regarded as a deadlier disease than histoplasmosis, Cr.
neoformans does not spread as easily, and outbreaks have
never been documented. Nevertheless, caves and bat guano
generate sheltered conditions that prevent desiccation and pro-
tect Cr. neoformans from environmental stresses, i.e., UV
radiation and extreme temperatures and wind (Montagna
et al. 2003).

Histoplasma capsulatum

Histoplasma capsulatum is often regarded as “the main culprit
from the Kingdom Fungi” that could be concealed in bat gua-
no. There are two varieties which were initially distinguished
on the basis of symptoms they cause. Histoplasma
capsulatum var. capsulatum is found globally (mainly
North, South, and Central America, Southeast Asia, and
Africa) and is associated with pulmonary and systemic (i.e.,
classical) histoplasmosis, whileH. capsulatum var. duboisii is
predominantly found in Western and Central Africa and
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causes skin and bone lesions (Cockshott and Lucas 1964; Sil
and Andrianopoulos 2014).

It is well known that spelunkers should be aware of the risk
bat-inhabited caves pose for developing histoplasmosis
caused by H. capsulatum, especially if they are immunocom-
promised in any way (Lyon et al. 2004). Pulmonary histoplas-
mosis is a common disease of residents of the Ohio and
Mississippi river valleys, where the fungus prevails and is
the cause of the most common endemic fungal infection in
the USA (Paul and Kuhlenschmidt 2018). However, new ep-
idemiological reports indicate that regions other than the
disease-endemic areas (midwestern and southeastern USA
and Central and South America) are also affected, which in-
dicates that H. capsulatum is wider spread than originally
acknowledged (Deepe Jr 2018). Furthermore, in response to
deforestation and urbanization, bats populations are adapting
and setting up in the anthropized rural and urbanized environ-
ments, closer to human dwellings, leading to shift in the pat-
tern of disease outbreaks to cover urban areas as well, with the
number of infected individuals exceeding that found in rural
areas (Jung and Threlfall 2018; Deepe Jr 2018). Though most
of these infections are clinically silent and resolve without any
consequence in immunocompeten t ind iv idua l s ,
H. capsulatum has been known to be behind such unusual
cases as puzzling sickness of the pastor that cleaned copious
amounts of bat guano from belfry of the church (Wynbrandt
and Crouser 2007), outbreak of an unknown severe febrile
illness of workers in the Dominican Republic tasked with
cleaning accumulated bat guano from access tunnels to a hy-
droelectric dam inhabited by large bat colonies (Armstrong
et al. 2018) or an outbreak affecting American tourists in a
hotel in Acapulco (Guerrero,Mexico) where hotel’s ornamen-
tal potted plants, fertilized with guano compost, were deter-
mined as the infectious source (Taylor et al. 2005). In the
period from 1938 to 2013, a total of 105 outbreaks involving
2.850 cases were reported in 26 states and the territory of
Puerto Rico (Benedict and Mody 2016). Two outbreaks of
extreme proportions have occurred in Indianapolis in the
twentieth century, first associated with construction of a tennis
stadium in the downtown area and other construction of a new
natatorium on the IUPUI campus, with approximately
200,000 infected individuals in total (Deepe Jr 2018). Since
H. capsulatum is known to exist within environmental
pockets, i.e., “hotspots” (Armstrong et al. 2018), disruption
of these soil reservoirs and release of large quantities of
microconidia into the air can be possible cause of these out-
breaks. Monitoring and data on histoplasmosis occurrence in
Europe, as a non-endemic disease area, is very scarce. Disease
has been reported among different risk groups in Germany,
Italy, United Kingdom, France, Belgium, Sweden,
Switzerland, Austria, Bulgaria, and Turkey (Ashbee et al.
2008) with only one case report of rare pulmonary histoplas-
mosis complicated with bronchocentric granulomatosis in

Greece (Botsa et al. 2017). Histoplasma capsulatum infec-
tions are quite heterogeneous and may have significant con-
sequences for immunological response and disease progres-
sion. Co-infections are also another important aspect to con-
sider, since some of them could have a lethal outcome, such as
reported human co-infections with C. neoformans (Cordero
et al. 2016) and Blastomyces and Coccidioides spp.
(Jehangir et al. 2015). In light of current pandemic, it is im-
portant to emphasize that two cases of histoplasmosis co-
infection on immunocompromised AIDS patients with
COVID-19 have been reported recently (Messina et al.
2020; Basso et al. 2020).

Open questions for the future

The current pandemic demands thinking about human impact
on the natural system that increases the contact between
humans and animals. Disturbing natural bat habitats, often to
expand agricultural land, unleash pathogens that were sealed
in the wild. Bearing in mind that bats and bat guano are the
natural reservoir of pathogenic microorganisms, causative
agents of serious diseases with epidemic and pandemic poten-
tial, it is quite clear that mankind is almost always responsible
for the spillover of new diseases. Expanding the knowledge of
guano microbiome is nowadays of utmost importance consid-
ering the presence of antibiotic multi-resistant bacteria, as well
as pathogenic fungi with potential of outbreaks and “silent”
viruses queuing for epidemics or eventually pandemics.
Advances in microbiome-enabling technologies will help in
better understanding of the community composition, function,
and activity of both cultivable and non-cultivable microorgan-
isms in the bat (guano) microbiome globally and could give an
answer on the important question: “How can a microbiome be
disclosed to increase human awareness and decreased all po-
tential new disease outbreaks in the future?”
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