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ABSTRACT
Background.We aimed to construct a novel epithelial-mesenchymal transition (EMT)-
related gene pairs (ERGPs) signature to predict overall survival (OS) in skin cutaneous
melanoma (CM) patients.
Methods. Expression data of the relevant genes, corresponding clinicopathological
parameters, and follow-up data were obtained from The Cancer Genome Atlas
database. Univariate Cox regression analysis was utilized to identify ERGPs significantly
associated with OS, and LASSO analysis was used to identify the genes used for
the construction of the ERGPs signature. The optimal cutoff value determined by
the receiver operating characteristic curve was used to classify patients into high-
risk and low-risk groups. Survival curves were generated using the Kaplan–Meier
method, and differences between the two groups were estimated using the log-rank
test. The independent external datasets GSE65904 and GSE19234 were used to verify
the performance of the ERGPs signature using the area under the curve (AUC) values.
In addition, we also integrated clinicopathological parameters and risk scores to develop
a nomogram that can individually predict the prognosis of patients with CM.
Results. A total of 104 ERGPs related to OS were obtained, of which 21 ERGPs were
selected for the construction of the signature. All CM patients were stratified into high-
and low-risk groups based on an optimal risk score cutoff value of 0.281. According to
the Kaplan–Meier analysis, the mortality rate in the low-risk group was lower than that
in the high-risk group in the TCGA cohort (P < 0.001), GSE65904 cohort (P = 0.006),
and GSE19234 cohort (P = 0.002). Multivariate Cox regression analysis indicated that
our ERGP signature was an independent risk factor for OS in CM patients in the
three cohorts (for TCGA: HR, 2.560; 95% CI [1.907–3.436]; P < 0.001; for GSE65904:
HR = 2.235, 95% CI [1.492–3.347], P < 0.001; for GSE19234: HR = 2.458, 95% CI
[1.065–5.669], P = 0.035). The AUC value for predicting the 5-year survival rate of
patients with CM of our developed model was higher than that of two previously
established prognostic signatures. Both the calibration curve and the C-index (0.752,
95% CI [0.678–0.826]) indicated that the developed nomogram was highly accurate.
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Most importantly, the decision curve analysis results showed that the nomogram had a
higher net benefit than that of the American Joint Committee on Cancer stage system.
Conclusion. Our study established an ERGPs signature that could be potentially used
in a clinical setting as a genetic biomarker for risk stratification of CM patients. In
addition, the ERGPs signature could also predict which CM patients will benefit from
PD-1 and PD-L1 inhibitors.

Subjects Bioinformatics, Dermatology, Oncology, Medical Genetics
Keywords Skin cutaneous melanoma, EMT-related gene pairs, Prognosis, Nomogram

INTRODUCTION
Skin cutaneous melanoma (CM) is a very aggressive malignancy, and its incidence has
increased rapidly compared to other cancers in the past few decades (Chernyshov et al.,
2019). Unfortunately, the 5-year overall survival (OS) rate of CM patients who have
already developed lymph node metastasis is approximately 15% (Bayless & Schneider,
2015). Despite that, patients with early-stage melanoma have a favorable prognosis, as
advanced melanoma is the deadliest malignant tumor after leukemia (Rubin & Lawrence,
2009). To date, the tumor-node-metastasis (TNM) stage is still a widely used tool to predict
the clinical outcome of patients with CM. However, due to the high heterogeneity of CM,
patients in the same TNM stage and receiving the same treatment modality often have
different clinical outcomes (Coricovac et al., 2018). Therefore, the TNM staging system
cannot effectively aid clinicians to accurately predict individual prognostic outcomes. It is
particularly important to develop novel and effective gene signatures to more accurately
stratify patients to further improve the prognosis of patients with CM.

Epithelial-mesenchymal transition (EMT) is a complex, multi-step biological process.
Through the EMT process, epithelial cells lose their characteristic features and aquire
mesenchymal cell phenotypes, including invasiveness and migration (Ye & Weinberg,
2015). EMT has been widely recognized as an important process in tumor invasion,
metastasis and in causing drug resistance (Nieto, 2011; Yang & Weinberg, 2008). Numerous
studies have shown that EMT is related to the invasion and progression of various cancers
(Montemayor-Garcia et al., 2013; Yang, Yuan & Li, 2013; Zhao et al., 2013). Although the
biological role of EMT in tumor progression has been studied in-depth, the prognostic
value of EMT-related gene sets and the potential functions of these prognostic genes in the
progression of EMT remain to be explored. To the best of our knowledge, few studies have
constructed signatures based on EMT-related genes to predict the prognosis of patients
with CM.

The gradual reduction in the cost of high-throughput sequencing and the rapid
development of bioinformatics tools in recent years have greatly contributed to our in-depth
understanding of cancer. Nowadays, gene signatures, such as long non-coding RNAs and
mRNAs, are becoming increasingly important in the prognosis of CM (Chen et al., 2017;
Liu et al., 2020). However, various reasons such as differences in sequencing platforms
and inherent biological heterogeneity have hindered the incorporation of these prognostic
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signatures in a clinical setting (Leek et al., 2010). A new recently established algorithm
based on the relative ranking of gene expression levels, effectively solved the problem of
expression profile data normalization and scaling, and yielded stable results (Heinäniemi
et al., 2013; Li et al., 2017). However, to our knowledge, no study has developed an ERGP
signature to predict the prognosis of patients with CM. Thus, the purpose of this study
was to use the recently developed algorithm to construct a novel signature based on the
EMT-related gene sets to accurately predict the prognosis of CM patients.

MATERIALS AND METHODS
Data collection and processing
Gene expression profile data, and corresponding clinical data of 472 CM patients were
retrieved from The Cancer Genome Atlas (TCGA) database for further analysis. GSE65904
(N = 210) and GSE19234 (N = 44) were obtained from GEO and used as independent
verification datasets. A total of 1,316 EMT-related genes were downloaded from the
molecular signature database v7.1 and the EMT gene database. When multiple probes were
mapped to the same target gene, the average expression values of the probes were used to
represent the final expression values of individual genes for the next analysis.

Identification of ERGPs related to the prognosis of CM patients
To reduce the false discovery rate, we identified EMT-related genes with high variability
before screening for prognostic-related ERGPs. EMT-related genes that met the screening
criteria were then used to construct ERGPs. For example, when the expression value of the
first EMT-related gene was greater than that of the second, the output score of this ERGP
was ‘‘1’’ in a pair-wise comparison; otherwise, the output was ‘‘0.’’ Next, ERGPs with a
score of 0 or 1 that accounted for less than 20 percent of the TCGA and GEO datasets were
excluded. Univariate Cox proportional hazards regression analysis was used to determine
ERGPs related to prognosis (P < 0.000005).

Construction and evaluation of ERGP signature
To obtain the most optimized prognostic model, we adopted the least absolute shrinkage
and selection operator (LASSO) method to further screen and obtain the ERGPs utilized
to construct the model. Subsequently, the output scores of the prognostic ERGPs for
each sample and the regression coefficients obtained by LASSO regression analysis were
weighted, and a risk score formula was constructed. In TCGA dataset, a 5-year OS time-
dependent ROC curve was utilized to determine the optimal cut-off value to distinguish
between different risk groups. Survival curves were drawn using the Kaplan–Meier (K-M)
method, and the log-rank test was used to evaluate the OS differences between the low- and
high-risk groups. Time-dependent ROC curves and the area under the ROC curve (AUC)
at 1-, 3- and 5-years were calculated to assess the sensitivity and specificity of the ERGP
signature using the R package ‘‘timeROC.’’ Finally, we used univariate and multivariate
Cox regression analyses to evaluate the prognostic value of ERGP signatures.
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Validation of the ERGPs signature
To verify the prognostic performance of the ERGPs signature, a separate external dataset,
GSE65904 and GSE19234, was used for subsequent validation. The risk scores of all patients
in the GEO cohort were calculated based on the risk scoring formula constructed in TCGA
cohort, and all patients were divided into two groups using the same optimal cutoff values
as those in TCGA cohort. The survival curves of the two groups of patients were drawn
using the K-M method, and the log-rank test was used to determine the significance of the
difference between the two groups. Finally, in the GSE65904 and GSE19234 cohorts, we
integrated three clinical parameters and risk scores to verify the independent prognostic
value of the ERGP signature.

Assessment of the relationship between signature and
clinicopathological parameters
We used theWilcoxon rank sum test to analyze the correlation between clinicopathological
parameters and risk scores in TCGA dataset. Statistical significance was set at p< 0.05.
In addition, all patients were divided into different subgroups depending on their age,
gender, stage, Breslow depth, and Clark level according to clinicopathological parameters
to further evaluate the prognostic value of the ERGPs signature.

Performance comparison of the ERGPs signature and existing
prognostic models in survival prediction
To demonstrate the superior performance of the model developed in this study, we
compared the ERGPs signature with two recently published gene signatures, a model
consisting of five immune-related genes (Hu et al., 2020b) and a signature consisting of
five IFNγ response-related genes (Hu et al., 2020a). The AUC was used to measure the
predictive performance of each model.

Functional enrichment analysis
To further explore the potential biological functions of EMT-related genes used to construct
the ERGP signature, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed.Metascape, an online tool with fast updation
speed and comprehensive functions, was used for functional analysis.

Assessment of tumor-infiltrating immune cells and immune
checkpoints
Immune infiltration analysis was performed using the TIMER database, which permits
to analyze the infiltration levels of six cells in 32 tumor types. The Spearman correlation
coefficient test was used to evaluate the relationship between the infiltration levels of
the six tumor immune infiltrating cells and the model’s risk score. As the effectiveness
of immunotherapy and the expression levels of immune checkpoint genes were closely
associated, we compared the differences in the expression levels of immune checkpoint
genes between the high- and low-risk groups to screen for CM patients who would benefit
from immunotherapy.
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Development and performance evaluation of nomogram
We integrated all the pathological parameters with independent prognostic significance
in the multivariate Cox regression analysis results of TCGA dataset, and established a
nomogram to predict the probability of OS in CM patients at 1, 3, and 5 years. A calibration
curve was used to evaluate the performance of the nomogram. In addition, we utilized
decision curve analysis (DCA) to evaluate the prediction accuracy of the nomogram.

Statistical analysis
Except for the functional enrichment analysis, all statistical analyses were performed
using the R software. The Spearman correlation test was used to calculate the correlation
between the variables. A chi-square test was used to test for differences in the distribution
of alive and dead between the high- and low-risk groups, and corrected p-values were used
to determine whether there was statistical significance. Statistical significance was set at
p< 0.05, unless otherwise stated.

RESULTS
Establishment and evaluation of the ERGPs signature
A total of 373 EMT-related genes in the three datasets met the filter criteria of having
a median absolute deviation >0.5; and 12,769 ERGPs were obtained for the subsequent
construction of a new gene pair signature. In the discovery cohort (TCGA dataset), 104
ERGPs were significantly associated with prognosis in CM patients according to univariate
Cox regression analysis. Among these, 21 ERGPs were further selected using Lasso-Cox
regression analysis to establish a prognostic risk signature (Figs. 1A–1B). The selected 21
ERGPs comprised 33 EMT-related genes (Table 1). Time-dependent ROC curve analysis
indicated that the optimal truncation value of the risk score was 0.281 (Fig. 1C). Based
on this cutoff value, all CM patients were divided into two groups with different survival
outcomes. The OS, disease-specific survival, and progression-free survival of CM patients
in the high-risk group were shorter (P < 0.001, Fig. 2A, Figs. S1A–S1D). In addition,
increasing risk scores were associated with a higher mortality (Figs. 2B–2C). In TCGA
cohort, the AUC values of the model were 0.743, 0.750, and 0.793 for predicting 1-year,
3-year, and 5-year survival rates, respectively (Fig. 2D). Mortality was significantly higher
in the high-risk group (P < 0.001, Fig. 2E). In addition, univariate and multivariate Cox
regression analyses showed that risk scores independently predicted outcomes in patients
with CM (HR, 2.560; 95% CI [1.907–3.436]; P < 0.001, Figs. 3A, 3B).

Verification of the ERGPs signature in GEO database
We used the risk score formula constructed in TCGA cohort to calculate the risk score
of each patient in the GSE65904 and GSE19234 datasets, and divided all patients into
low- and high-risk groups using the previously indicated cutoff value. As expected, K-M
analysis indicated that patients in the high-risk group had worse OS than those in the
low-risk group (GSE65904: P = 0.006, Fig. 4A; GSE19234: P = 0.002, Fig. 5A). The risks
score and survival status distribution in the GSE65904 and GSE19234 datasets are shown in
Figs. 4B, 4C, 5B and 5C, respectively. Next, we calculated AUC values to assess the predictive

Shi et al. (2022), PeerJ, DOI 10.7717/peerj.12646 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.12646#supp-1
http://dx.doi.org/10.7717/peerj.12646#supp-1
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
http://dx.doi.org/10.7717/peerj.12646


Log( )

Pa
rti

al
 L

ik
el

ih
oo

d 
D

ev
ia

nc
e

87 81

Log Lambda

C
oe

ff
ic

ie
nt

s

87

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te Cutoff:0.281

A B C

TCGA-SKCM 
Method=K-M
Year = 5

Figure 1 Screening of EMT-related gene pairs (ERGPs) used to construct prognostic signatures and
determination of the best cut-off value of risk score. (A) Parameter filter by LASSO regress algorithm
used five-fold cross-validation by through minimum criteria; (B) optimal feature selection based on
LASSO coefficient profile plot of 21 ERGPs; (C) the optimal cut-off value of the ERGPs risk-score
obtained by the time-dependent ROC curve analysis.
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Table 1 Prognostic signature consists of 21 EMT-related gene pairs.

Signature Gene A Gene B Coefficient

pair1 AFAP1L2 MMP11 −0.114
pair2 BCL6 NOTCH3 −0.111
pair3 BIRC5 WIPF1 0.364
pair4 CAP2 LYN 0.111
pair5 CAP2 PTPN6 0.108
pair6 CCL5 THY1 −0.091
pair7 CDH1 CXCL9 0.034
pair8 CXCL13 SOX9 −0.076
pair9 CXCL9 LUM −0.153
pair10 ECM1 ISG15 0.294
pair11 FBP1 NOTCH3 −0.046
pair12 GAB2 WIPF1 0.025
pair13 JUN KIT −0.273
pair14 KIT PDGFD 0.248
pair15 KLF5 PSTPIP1 0.087
pair16 NMI PDGFRB −0.41
pair17 NOTCH3 SNTB1 0.043
pair18 PDGFRB SOD2 0.069
pair19 PDGFRB ST6GAL1 0.137
pair20 RUNX3 WIPF1 0.0323
pair21 TNFSF10 VCAN −0.039

performance of the model in the GSE65904 cohort. The AUC values were 0.623, 0.659,
and 0.664 for 1-year, 3-year, and 5-year survival, respectively (Fig. 4D). The mortality in
the high-risk group (54% of the total) was higher than that in the low-risk group, but the
difference between the two groups was not statistically significant (P = 0.379; Fig. 4E). In
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Full-size DOI: 10.7717/peerj.12646/fig-2

the GSE19234 dataset, the AUC of 1-year survival was 0.813, the AUC of 3-year survival
was 0.720, and the AUC of 5-year survival was 0.710 (Fig. 5B). Similar to the results of
the GSE65904 cohort, the mortality in the high-risk group was higher than that in the
low-risk group, but the difference was not statistically significant (P = 0.08; Fig. 5E). The
independent prognostic analysis indicated that the risk scorewas an independent prognostic
parameter in both datasets, regardless of the other clinicopathological characteristics of
CM patients (for GSE65904: HR, 2.235; 95% CI [1.492–3.347]; P < 0.001, Figs. 3C, 3D; for
GSE19234: HR = 2.458, 95% CI [1.065–5.669], P = 0.035, Figs. 3E, 3F). The above results
fully validate the prognostic value of the developed model.

Shi et al. (2022), PeerJ, DOI 10.7717/peerj.12646 7/21

https://peerj.com
https://doi.org/10.7717/peerj.12646/fig-2
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
http://dx.doi.org/10.7717/peerj.12646


Age

Gender

Stage
Breslow
depth
Clark_level

riskScore

pvalue

<0.001

0.865

<0.001

<0.001

<0.001

<0.001

Hazard ratio

0.50 1.0 2.0 4.0
Hazard ratio

Age

Gender

Stage
Breslow
depth
Clark_level

riskScore

pvalue

0.045

0.514

0.017

0.029

0.353

<0.001

Hazard ratio

1.0 2.0
Hazard ratio

Age

Gender

Stage

riskScore

pvalue

0.567

0.143

0.019

0.002

Hazard ratio

0.71 1.0 1.41 2.0 2.83
Hazard ratio

Age

Gender

Stage

riskScore

pvalue

0.807

0.340

0.001

<0.001

Hazard ratio

1.0
Hazard ratio

Age

Gender

Stage

riskScore

pvalue

0.579

0.526

0.008

0.010

Hazard ratio

0.5 1.0 2.0 4.0 8.0
Hazard ratio

Age

Gender

Stage

riskScore

pvalue

0.906

0.583

0.052

0.035

Hazard ratio

0.5 2.0 4.0 8.0
Hazard ratio

A B

C D

E F

Figure 3 Forest plots of univariate andmultivariate Cox regression analyses in different cohorts. (A,
B) In the TCGA cohort. (C, D) in the GSE65904 cohort. (E, F) in the GSE19234 cohort.

Full-size DOI: 10.7717/peerj.12646/fig-3

Association between the signature risk score and clinicopathological
parameters
To investigate the potential clinical value of the risk scores determined by the ERGPs
signature, a Wilcoxon rank sum test was performed to assess whether they correlated with
clinicopathological parameters. In TCGA cohort, the risk scores were positively correlated
with age, Breslow depth, and Clark level, as the risks scores were significantly higher in the
groups with age >60, Breslow depth >1.5 mm, and Clark level III-IV (Figs. 6A, 6D, 6E).
However, there was no significant association between the risk score and sex or tumor
stage (Figs. 6B, 6C).

Comparison of the performance of the ERGPs signature with the
other two models
The AUC value of our ERGP signature for predicting 5-year OS was 0.793 (Fig. 7). The
AUC values of the IFNγ response-related model and the immune-related gene model
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Figure 4 External validation of the prognostic model in the GSE65904 cohort. (A) Kaplan–Meier
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established by Hu et al. in predicting 5-year OS were 0.702 and 0.698, respectively (Fig. 7).
This highlighted the superior performance of our newly established ERGPs signature.

Functional enrichment analysis
We then performed functional and pathway enrichment analyses of 33 unique EMT-
related genes that were used to construct the ERGPs signature. GO enrichment analysis
indicated that these genes were involved in many important biological processes, including
positive regulation of cell activation, blood vessel development, and positive regulation
of phosphatidylinositol 3-kinase signaling (Fig. 8A). KEGG analysis showed that these
genes were mainly enriched in pathways related to cytokine-cytokine receptor interaction,
cancer, and FOXO signaling (Fig. 8B). This indicated that these genes are involved in
cancer regulation, suggesting they may aid in the prediction of the prognosis of patients
with CM.
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Analysis of tumor-infiltrating immune cells
To determine whether the ERGPs signature can effectively reflect the tumor immune
microenvironment status, we evaluated the correlation between the risk score and the
immune cell infiltration levels. As shown in Fig. 9, there was a negative correlation between
the risk score and the abundance of all six immune infiltrating cells, including B cells (r =
−0.279), CD4 T cells (r=−0.317), CD8 T cells (r=−0.526), dendritic cells (r=−0.518),
macrophages (r = −0.233), and neutrophils (r = −0.610).

Analysis of expression levels of immune checkpoint molecules
To increase the clinical utility of the prognostic model, we further investigated the
association between the risk score and expression levels of the genes encoding the checkpoint
proteins programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) in the
three datasets. The low-risk groups in the three cohorts presented higher expression of PD1
and PD-L1 than that in the high-risk group (Figs. 10A–10C). In addition, the expression
levels of PD-1 and PD-L1 were negatively correlated with the risk score(for TCGA: PD-1 R
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=−0.56, PD- L1 R=−0.61, Fig. 10D; for GSE65904: PD-1 R=−0.56, PD-L1 R=−0.29,
Fig. 10E; for GSE19234: PD-1 R = −0.37, PD-L1 R = −0.67, Fig. 10D). Altogether, these
results indicate that CM patients in the low-risk group may benefit more than those in the
high-risk group from immunotherapy.

Construction and evaluation of the nomogram
To enable individualized prediction of the prognosis of CM patients, we integrated all
clinicopathological parameters with independent prognostic significance from TCGA
dataset as well as risk scores into the novel nomogram (Fig. 11A). The calibration curves of
the 1-year, 3-year, and 5-yearOS rates showed good consistency between the predicted value
and the actual observed value of the nomogram (Fig. 11B). The C-index of the nomogram
prediction performance was 0.752 (95% CI [0.678–0.826]) (Fig. 11B). Furthermore, DCA
agreed with the results of our study that this novel nomogram had a better net benefit than
that of traditional American Joint Committee on Cancer (AJCC) stage (Fig. 11C).
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DISCUSSION
CM is a malignant tumor with poor prognosis, characterized by strong aggressiveness
and poor response to radiotherapy and chemotherapy (Miller & Mihm Jr, 2006; Terando,
Sabel & Sondak, 2003). Therefore, the construction of a robust and accurate prognostic
signature is particularly important for improving the prognosis of patients with CM.
Despite previously published signatures based on mRNA and lncRNA that can predict the
prognostic outcome of CM patients (Chen et al., 2017; Han et al., 2020), these signatures
have not been incorporated to a clinical setting due to the inherent heterogeneity of
tumors and the difficulty of data standardization caused by cross-platform sequencing.
In this study, we successfully developed a signature consisting of 21 ERGPs and verified
its performance in two independent GEO datasets. The signature could effectively divide
CM patients into two groups with different OS, with the higher risk group having a lower
survival rate. Further analysis of the clinicopathological parameters and risk scores in
TCGA dataset showed that the risk score was an independent prognostic factor, which
was verified in the GSE65904 and GSE19234 cohorts. In addition, the prognostic models
of ERGPs in the TCGA, GSE65904, and GSE19234 datasets had higher AUC values than
those of two previously established prognostic models. In addition, there were significant
differences in the expression of immune checkpoint genes (PD-1 and PD-L1) between the
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high-and low-risk groups, which indicated that they could be related to the prognosis of
patients and new therapeutic targets. Finally, the nomogram constructed by combining the
risk scores and clinicopathological parameters could accurately predict the survival rate of
CM patients, and had a better performance than that of the AJCC stage model.

As the role of EMT-related genes in tumor development is widely known, and gene
pair signatures are a novel and reliable algorithm that can overcome multiple drawbacks;
we used ERGPs to construct a prognostic signature. Despite the large amount of publicly
available data permits to construct accurate gene signatures, use of this data is required
to overcome the significant technical challenges posed by data diversity. Because of the
biological heterogeneity between different datasets and the technical noise caused by
cross-platform sequencing, algorithms that use gene expression profiles require the use
of normalized data, which is a challenging task (Leek et al., 2010). However, the novel
algorithm used in this study does not require preprocessed data, and it has yielded
reliable results in a variety of previous studies (Du & Gao, 2020; Hong et al., 2020; Huo,
Wu & Zang, 2020; Kang, Jia & Liu, 2020). Many of the 33 unique EMT-related genes that
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construct the ERGP signature have been studied in several tumors, including melanoma.
For example, it is known that CAP2 plays an important role in the invasion of malignant
melanoma, and that its high expression is associated with a poor prognosis in patients with
malignant melanoma (Masugi et al., 2015). Previous studies have shown that RUNX3 can
independently predict the prognosis of patients with melanoma, and that patients with
positive RUNX3 expression have a better 5-year survival rate (Zhang et al., 2011). GAB2
was expressed at higher levels in metastatic melanoma than in primary melanoma, and
it could enhance the invasiveness of melanoma cells by inhibiting the PI3K-Akt pathway
(Horst et al., 2009). ECM1 regulates breast cancer cell invasion by inducing the expression
of genes associated with the progression of EMT (Lee et al., 2015). Other studies have
shown overexpression of ISG15 at either the mRNA or the protein level, which was related
to the poor prognosis of breast cancer patients (Kariri et al., 2020). Despite the fact that a
remarkable proportion of the genes included in our signature had been previously related
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to cancer, a relationship is still unknown for some other of the genes, suggesting this should
be further explored in the future.

It is well known that there is a strong link between tumor-infiltrating immune cells and
patient prognosis (Mahmoud et al., 2012; Pagès et al., 2005; Pagès et al., 2010). Therefore,
we used the Spearman correlation coefficient to evaluate the association between the risk
score and the abundance of six types of tumor-infiltrating immune cells. As the risk score
increased, the levels of tumor-infiltrating immune cells decreased. This suggests that the
established ERGP signature could reflect the immune microenvironment status of CM
patients to a certain extent. Previous studies have investigated the relationship between
B cells, dendritic cells, and neutrophils and the prognosis of CM patients, and reported
that patients with reduced infiltration levels of these immune cells had a poorer prognosis,
which was consistent with our findings (Gross et al., 2017; Iglesia et al., 2016; Selitsky et al.,
2019). The results of this study may help to elucidate the reason underlying the poorer
prognosis of CM patients in the high-risk group.

In recent years, immune checkpoint inhibitors targeting PD1 and PD-L1 have been
successfully used as a treatment strategy for many malignant tumors (Herbst et al., 2016;
Topalian et al., 2012). Unfortunately, only a small percentage of patients benefit from
it (Darvin et al., 2018), highlighting the need to identify biomarkers that can predict
which patients will benefit from this therapy in advance. Our results suggest a significant
association between the ERGP signature and the expression levels of PD-1 and PD-L1. In
addition, PD-L1 can be used a biomarker for predicting the response to immunotherapy
using immune checkpoint inhibitors (Havel, Chowell & Chan, 2019). Since the expression
levels of PD-1 and PD-L1 are negatively correlated with risk scores, CM patients in the
low-risk group may benefit more from immunotherapy than those in the high-risk group.
Therefore, we believe that our ERGP signature can be used to guide clinicians’ choice on
the most suitable treatment strategy.

Nomograms are intuitive tools that can predict the survival probability of an individual
patient and have been widely used in previous studies (Balachandran et al., 2015; Harrell
Jr, Lee & Mark, 1996). To our knowledge, this is the first nomogram constructed based on
the signature of ERGPs combined with age, stage, and Breslow depth. Both the C index
and calibration chart showed that our nomogram had excellent performance. Remarkably,
the DCA showed that the net benefit of the nomogram based on the ERGP signature
was higher than that of the currently used AJCC staging system. Altogether, these results
indicate that our nomogram can be a reliable tool for developing individualized treatment
plans for patients, thus improving their prognosis.

Our study has several strengths. First, the novel algorithm we used does not require
preprocessing of the cross-platformdatawhen constructing a prognosticmodel. Second, the
optimal cutoff value for the risk score can be applied to any of the external datasets. Third,
our prognostic model performed better than the two previously established predictive
models. Finally, the nomogram predicted the survival probability of a single patient more
accurately than the traditional AJCC staging system. However, some limitations must be
considered. This is a retrospective study based on a publicly available database, and these
results need to be verified in a prospective cohort in future studies. In addition, our study
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did not validate 33 EMT-related genes in vitro or in vivo, which remains a task for future
studies.

CONCLUSION
In summary, our study used a novel algorithm to develop a reliable signature of ERGPs that
accurately distinguishes CM patients into a high-risk group with a poor prognosis and a
low-risk group with a better prognosis. The ERGP signature was also able to independently
and accurately predict the prognosis of CM patients in two independent external datasets
(GSE65904 and GSE19234). In addition, our model predicted the greatest benefit for CM
patients in the low-risk group when treated with PD-1 and PD-L1 inhibitors. These results
suggest that our signature can help in the personalized treatment of patients with CM.
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