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Abstract

and cells.

adhesion, uptake and co-culture experiments.

communication through SEVs.

Background: Extracellular vesicles (EVs) are lipid-bound particles that are naturally released from cells and mediate
cell-cell communication. Integrin adhesion receptors are enriched in small EVs (SEVs) and SEV-carried integrins have
been shown to promote cancer cell migration and to mediate organ-specific metastasis; however, how integrins
mediate these effects is not entirely clear and could represent a combination of EV binding to extracellular matrix

Methods: To probe integrin role in EVs binding and uptake, we employed a disintegrin inhibitor (DisBa-01) of
integrin binding with specificity for av3 integrin. EVs were purified from MDA-MB-231 cells conditioned media by
serial centrifugation method. Isolated EVs were characterized by different techniques and further employed in

Results: We find that SEVs secreted from MDA-MB-231 breast cancer cells carry av33 integrin and bind directly to
fibronectin-coated plates, which is inhibited by DisBa-01. SEV coating on tissue culture plates also induces adhesion
of MDA-MB-231 cells, which is inhibited by DisBa-01 treatment. Analysis of EV uptake and interchange between
cells reveals that the amount of CD63-positive EVs delivered from malignant MDA-MB-231 breast cells to non-
malignant MCF10A breast epithelial cells is reduced by DisBa-01 treatment. Inhibition of av(33 integrin decreases
CD63 expression in cancer cells suggesting an effect on SEV content.

Conclusion: In summary, our findings demonstrate for the first time a key role of av33 integrin in cell-cell
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Background

During tumor progression, cancer cells and neighboring
host cells interact with each other and with extracellular
matrix (ECM) proteins including collagen, laminin,
vitronectin, and fibronectin [1]. Because ECM influences
cell polarity, migration, proliferation, differentiation and
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survival, its disorganization during cancer progression
facilitates cellular transformation, metastasis and may
contribute to drug resistance [2, 3].

Cells are capable of transferring information to other
cells and to the microenvironment via EVs [4, 5]. EVs
are membranous nanoparticles secreted from cells that
carry a variety of bioactive molecular cargoes such as
nucleic acids, proteins, and lipids [6-8]. EVs are cur-
rently classified into different subtypes according to their
size, biogenesis mechanisms, cargoes, and so on [9].
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They include larger EVs (LEVs) such as shed microvesi-
cles (100—1000 nm) from the cell membrane, [7] and
SEVs, which include exosomes (50-150nm) secreted
from endocytic pathways [10, 11].

Integrins are critical adhesion receptors for ECM pro-
teins that support cell adhesion and drive cell migration.
For example, alPl and a2f1 integrins are major colla-
gen receptors, whereas fibronectin binds preferentially to
a5p1 and avB3 integrins. Amongst the particular se-
quences recognized by integrins, the RGD (Arg-Gly-
Asp) motif is found in many ECM proteins including
vitronectin, fibronectin and laminin [12]. Although RGD
is usually recognized by both a5p1 and avf3 integrins,
these two integrins play divergent roles in cell adhesion
and migration. Fibronectin adhesion by a5p1 integrin re-
sults in highly dynamic thin cell protrusions in multiple
directions while adhesion to avfp3 integrin results in a
single large lamellipodium with more static adhesions at
the leading edge [13-15]. In addition to the RGD muotif,
integrin and ECM conformations are crucial to their
interaction, indicating a complex mechanism [16, 17].

During tumor development, expression levels of integ-
rins change in response to alterations on ECM [18]. avf33
integrin is highly expressed in aggressive cancers, which is
related to increase of tumor cell migration, adhesion and
invasion during tumor progression [13, 19-23]. Since in-
tegrin inhibition blocks cell migration, these receptors
were considered a valuable target on cancer research [15,
16, 24, 25]. Cilengitide, a cyclic RGD-containing peptide
that antagonizes avP3 and a5p1 integrins at nanomolar
ranges had promising preclinical results but it was inef-
fective in phase I clinical outcomes [16].

As an alternative to RGD peptides, disintegrins, a fam-
ily of cysteine-rich peptides, present anti-migratory and
anti-angiogenic effects in tumors with non-toxic proper-
ties [26, 27]. Originally found in snake venom, most of
the disintegrins contain the adhesive RGD motif and are
potent antagonists of av3 and a5B1 integrins. DisBa-01
is a recombinant His-tag fusion RGD-disintegrin from
Bothrops alternatus snake venom and a selective nano-
molar avPp3 integrin inhibitor. Firstly recognized by its
anti-platelet and anti-thrombotic effects [27, 28], this
protein also decreased migration speed and directionality
of oral carcinoma cells [15]. We have demonstrated that
DisBa-01 affinity for avB3 integrin (K4 4.63 x 10”7 M) is
one hundred times higher than its affinity for a5p1 in-
tegrin (K4 7.62 x 10™° M), which makes this protein an
excellent tool to study the roles of avp3 integrin in the
adhesion and migration processes [15, 16, 27].

Integrins carried on SEVs have been shown to support
tumor spread and metastasis development [18, 29-33]
while exosomes mediate cell adhesion to matrix compo-
nents [34, 35]. In addition, a5B1 integrin found on exo-
somes was shown to bind fibronectin and promote

Page 2 of 15

cancer cell adhesion and motility [36]. avp3 integrin
present on SEVs from PC3 and CWR22Pc prostate can-
cer cells induced migration of non-tumorigenic BHP-1
cells [30]. Moreover, in vivo studies showed the transfer
of avB3 integrin from SEVs to 3-negative recipient cells
resulting in acquired ligand binding activity of the recipi-
ent cells [37]. In metastasis, integrins carried by exo-
somes from lung tropic models have been associated
with organ site-specific metastasis, including a6p4 and
avp5, which are associated with metastasis in lung and
liver tissues, respectively [29, 38].

Despite the aforementioned data, the real contribution
of EV-carried integrins to cellular communication in
tumor development is still unclear. To better understand
how avf3 integrin receptors work in the context of EVs,
we investigated the effect of integrin blocking on SEV
adhesion and uptake by using the recombinant disinte-
grin DisBa-01. We show that DisBa-01 inhibits avp3 in-
tegrin on isolated SEVs, affecting their adhesion to
purified ECM proteins and their uptake in recipient
cells. Moreover, the treatment of DisBa-01 to MDA-
MB-231 cells expressing GFP-CD63 affects intracellular
GFP-CD63 expression suggesting an effect on SEV cargo
sorting. As far as we know, this is the first report of such
roles for EV-carried avp3 integrin and it further sup-
ports a key role for integrins in SEV recognition and up-
take by recipient cells.

Methods
Cell lines and culturing
MDA-MB-231 (malignant) and MCF 10A (non-malig-
nant) breast cell lines were purchased from ATCC and
maintained in DMEM (Dulbecco’s Modified Eagle
Medium) and DMEM-F12, respectively. DMEM was
supplemented with 10% fetal bovine serum (FBS) and
DMEM-F12 was supplemented with 5% horse serum
(HS). In experiments using SEVs, culture media were
supplemented with SEV depleted serum (SEV™). To pre-
pare FBS SEV™ and HS EV’, the sera were ultracentri-
fuged at 100,000 x g overnight and the supernatant was
collected. Cells were cultured at 37 °C in 5% of CO, at-
mosphere. Cell number was counted and cell viability
was verified in a TC20 automated cell counter (Bio-Rad,
Hercules, CA, USA) with 0.4% trypan blue (Thermo Sci-
entific, Waltham, MA, USA) prior to experiments.
pLenti-GFP-CD63 plasmid, previously described by
Hoshino et al. [39], was used to make MDA-MB-231
cells stably expressing GFP-CD63. Human MDA-MB-
231 cells (ATCC) and 293 FT packaging cells were
grown in DMEM + 10% FBS. 293 FT cells transfection,
viral harvest, and transduction of MDA-MB-231 cells
were performed as previously described [40]. Trans-
duced cells were selected with 4 pg/ml of puromycin for
7 days.
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Integrin inhibitor

Recombinant DisBa-01 was isolated from inclusion bodies
of E. coli BL21(DE3)-pET28a-DisBa-01 culture and puri-
fied to homogeneity as previously described [27]. Purified
disintegrin was labeled with Alexa Fluor 546 (Invitrogen)
according to the manufacturer’s instructions.

Isolation and purification of EVs from conditioned media
For EV isolation, 2.0 x10° MDA-MB-231 cells were
plated in T-150 flasks containing 15 ml of culture media
(total = 10 flasks) and cultured for 48 h until 80% of con-
fluence. The culture media was replaced with 15ml of
Opti-MEM and cells were further cultured for 48 h to
obtain conditioned media. Conditioned media was sub-
mitted to serial centrifugation to sediment live cells (300
x g for 10 min), dead cells (2000 x g for 25 min), and
large EVs (10,000 x g, Ti40 rotor for 30 min), respect-
ively. The supernatant was concentrated to 30 ml vol-
ume in a concentrator (Sartorius, VS6041Cat# and 100 k
MWCO), layered over 2 ml of 60% iodixanol in an ultra-
centrifuge tube (25 x89mm for SW 32 Ti rotor), and
further centrifuged at 100,000 x g for 4h. We collected
3 ml from the bottom of the tube and layered it in a new
centrifuge tube (40% iodixanol). lodixanol solutions
(20% wt/vol, 10% wt/vol, and 5% wt/vol) were layered
over from the bottom to the top. lodixanol solutions
were prepared by diluting OptiPrep (60% wt/vol aqueous
iodixanol; Axis-Shield PoC) with 0.25M sucrose / 10
mMTris, pH7.5. The gradient was centrifuged at 100,
000 x g for 18 h using a SW45 Ti rotor and 12 fractions
of 1 ml each were collected. Two ml of PBS was added
to 1 ml fractions and ultracentrifuged in a tabletop cen-
trifuge at 100,000 x g for 3h using a TLA 100.3 rotor.
Vesicles were resuspended in 50 ul of PBS for subse-
quent studies. Purified LEVs and SEVs were quantitated
by Particle Metrix ZetaView PMX 110 and the protein
amount was measured using microBCA Protein Assay
Kit (Thermo Fisher 23,235).

We also uploaded all relevant data of our experiments
to the EV-TRACK knowledgebase (EV-TRACK ID:
EV190006) [41].

Characterization of purified EVs

Transmission electron microscopy

For negative staining of purified SEVs, 5ul of EV sam-
ples was added to Formvar carbon film-coated grids
(FCF-200-Cu; Electron Microscopy Sciences; Hatfield,
PA) for 60s. Grids were immediately fixed with 4% para-
formaldehyde in water for 20 min, stained with 2% ur-
anyl acetate for 2 min, and allowed to air-dry. For each
step, the excess of solution was removed by wicking with
a filter paper. The grids were imaged using a TEM Tec-
nai F20 G2, 200Kv in 40,000 x magnification.
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Western blotting

Purified EVs were lysed with 1% SDS 50 mM Tris pH
7.6-lysis solution, mixed with SDS sample buffer, and
loaded onto 8% acrylamide gels (10 pul). Gels were trans-
ferred to nitrocellulose membranes (0.45um, Biorad)
and blocked with 5% bovine serum albumin (BSA) in
Tris-buffered saline with 0.05% Tween 20 (TBS-T) for
1-2h. Membranes were probed with antibodies for EV
markers, anti-CD63 (1:1000, Abcam, ab59479), anti-
Flotillin (1:1000, BD, 610821), and anti-Alix (1:1000
Sigma, SAB 4200476). As a negative control, anti-
Calnexin (1:1000, Cell Signaling, mAb 2679) was used.
Appropriate secondary antibodies were added and de-
tected by ECL (Thermo Scientific, 32,106 and 34,095).
The same procedure was applied to detect integrins and
ECM proteins such as fibronectin (Abcam, ab2413) and
collagen (Abcam, ab34710).

Adhesion of isolated SEVs to different ECM proteins
Ninety-six well plates were coated with collagen (10 pug
/ml) or fibronectin (2 ug /ml) overnight at 4 °C. For the
experiment, isolated SEVs were labeled with ExoGlow
(System Bioscience Uniscience) according to the manu-
facturer’s instructions. Prior to incubation, vesicles were
incubated with DisBa-01 in different concentrations
(250, 500 and 1000nM) in ice for 30 min and then
plated (1.0 x 108 vesicles/well) over the coating for 4 h.
After incubation, non-adherent SEVs were washed out
and photomicrographs were acquired using a Nikon
Plan Apo 60x/1.40 NA oil immersion lens in a Nikon
Eclipse TE2000E microscope. For fluorescence intensity
analysis, adhered green fluorescent vesicles were seg-
mented from the background by thresholding and mea-
sured for integrated intensity using Image] Fiji (Analyze
tab/Measure).

Cell adhesion on EV coating

Isolated small (EVs obtained from 100,000 x g ultracen-
trifugation for 18 h, Suppl. Figure 1) or large EVs were
resuspended in PBS and added to a 96 well plate over-
night (50 pg /ml). Prior to adhesion experiments, the
wells were blocked with 1% BSA for 1h. Fibronectin-
coated wells (10 pg/ml) were used as a positive control
of cell adhesion. DisBa-01 (100 nM) was incubated on
EV coating for 30 min. After washing unbound DisBa-01
using PBS, calcein-labeled MDA-MB-231 cells (5 x 10°)
were added and allowed to attach for 1h. To measure
adhesion, green fluorescence intensity was read in a
SpectraMax I3 (Molecular Devices) plate reader.

SEV uptake by healthy breast cells

Uptake of purified SEVs

One day before the experiment, MCF 10A cells were
plated in a 96 well plate in a density of 2.5 x 10° cells/
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well. Small EVs were labeled with ExoGlow kit (System
Biosciences) and subsequently treated with DisBa-01
(100 or 1000 nM). After treatment with the integrin in-
hibitor, 1.4 x 107 vesicles/well were added over the MCF
10A cells and allowed to internalize for 4 h. After incu-
bation, the supernatant was removed and cells were
washed. The uptake of ExoGlow-labeled SEVs was ana-
lyzed by epifluorescence microscopy in the automated
system ImageXpress Micro XLS (Molecular Devices)
using a Nikon S Plan Fluor ELWD 40X /0.60 NA magni-
fication lens.

Co-culture in a transwell system

MCF 10A cells (1 x10%) were plated on glass cover-
slips inside a 24-well plate. After MCF 10A cell adhe-
sion, transwell inserts with pore size of 0.4 um were
added to the wells. MDA-MB-231 cells expressing
GFP-CD63 (1 x10* treated and non- treated with
DisBa-01 at 1000nM for 30 min prior incubation)
were added to the transwell inserts and incubated for
6h. After incubation, MCF 10A cells were stained
with DAPI and the cytoplasm marker Cell Tracker
Red CMTPX according to the manufacturer instruc-
tions (Invitrogen, C34552). MCF10A cells were im-
aged in a Zeiss LSM 780 confocal microscope using a
63 X/1.3 NA objective lens.

To measure the vesicles in MCF 10A cells, the green
fluorescence was quantitated by integrated intensity ana-
lysis. Percentage of inhibition was calculated by compar-
ing the integrated intensity of green fluorescence in
MCEF 10A cells incubated with DisBa-01-treated MDA-
MB-231 cells expressing GFP-CD63 to that incubated
with DisBa-01-non-treated MDA-MB-231 cells express-
ing GFP-CD63.

Imaging for co-culture

Fluorescence microscopy

MCF 10A cells (1.5 x 10°) were cultured on glass cov-
erslips for 48h. After adhesion, cells were labeled
with Cell Tracker Red CMTPX according to the
manufacturer instructions (Invitrogen, C34552).
MDA-MB-231 cells (1.0 x 10°) labeled with Cell Trace
CESE (Life Technologies, C34554) according to the
manufacturer instructions or stably expressing GFP-
CD63 were treated with 100nM or 1000nM of
DisBa-01 for 30 min (untreated cells were used as a
control), plated over an MCF 10A monolayer and in-
cubated for 24 h. Cells were fixed with 4% parafor-
maldehyde and stained with DAPI. Z-stack images
were acquired in a Zeiss LSM 880 with Airyscan
confocal microscope, wusing a 63x/1.40 Plan-
APOCHROMAT oil lens and quantitated by inte-
grated intensity using Fiji (Analyze tab/Measure). For
extracellular SEV quantification, cell bodies were
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carefully selected and deleted from each image. GFP-
CD63 deposits surrounding cells were segmented
from the background by thresholding and measured
for area and integrated intensity using Fiji (Analyze
tab/Measure). For cell morphology measurements,
each cell (ten cells per experiment) was manually se-
lected and segmented from the background by thresh-
olding and measured for area using Fiji (Analyze tab/
Measure).

Scanning electron microscopy (SEM)

MCEF 10A cells (2.0 x10* were plated in a Lab-TeK®
chamber slide™ (LOBOV, Catalog Number: 177402) and
incubated at 37 °C overnight. On the next day, MDA-MB-
231 cells (DisBa-01-treated or non-treated) were plated at
the same density over the MCF 10A cells and allowed to
adhere for additional 24-h. Cells were then washed with
PBS, fixed with 4% glutaraldehyde (Sigma-Aldrich®) for 1
h at 37°C, and dehydrated by increasing ethanol concen-
tration (50, 60, 70, 80, 90 and 100%, 10 min for each steps)
before drying with hexamethyldisilazane (Sigma-Aldrich®).
Cell morphology was characterized by scanning electron
microscopy (Inspect F50 - FEI°). Cell morphology quanti-
tation was performed by measuring the area of cells, using
Fiji (Analyze tab/Measure).

DisBa-01 uptake assay

DisBa-01 was labeled using Alexa Fluor® 546 dye
(Invitrogen, Thermo Scientific) according to the man-
ufacturer’s instructions. MDA-MB-231 expressing
GFP-CD63 cells (1 x 10*) were plated in 8-well Nunc™
Lab-Tek™ Chamber Slide (Thermo Scientific) and in-
cubated overnight. On the next day, cells were incu-
bated with DisBa-01 (1000 nM) for 1h and 4h, fixed
with 4% paraformaldehyde, and stained with DAPI
Slides were mounted with mounting media Prolong™
(Thermo Fisher Scientific). Confocal images were ac-
quired in a Zeiss LSM 780 confocal microscope using
a 63 X/1.3 NA objective lens. Zen software was used
to acquire images and laser power was the same for
all conditions in order to compare the fluorescence
intensity between different conditions.

Data analysis and statistics

At least three independent experiments were per-
formed to acquire data for quantitation. All data sets
were tested for normality using Shapiro-Wilk normal-
ity test in GraphPad Prism software. Mean * standard
error of the mean (SEM) were calculated and inter-
group comparisons were made using One-way
ANOVA or ¢ Test (two-tailed paired or unpaired with
Welch’s correction) analysis. Values of p <0.05 were
considered statistically significant.
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Results

Isolation, purification and characterization of SEVs from
MDA-MB-231 cells

EVs were obtained from high-speed differential centrifu-
gation of MDA-MB-231 cells conditioned medium. Con-
sidering the effect of serum-free conditions on cell
health, the viability of EV-producing MDA-MB-231 cells
was tested prior SEVs isolation to assure good quality of
cells at the moment of medium collect. LEVs were col-
lected by centrifugation at 10,000 x g for 30 min. SEVs
present on supernatant were concentrated onto a cush-
ion of iodixanol and further purified by iodixanol density
gradient ultracentrifugation [42]. Purified EVs were
characterized by Western blotting, particle size analysis
and transmission electron microscopy (TEM) (Fig. 1).
Nanoparticle tracking analysis (NTA) showed vesicles in
the size range for typical SEVs with a peak at 110 nm
and LEVs with peaks at 195, 345, and 405 nm (Fig. 1a),
consistent with previous descriptions [11]. SEV size and
morphology were confirmed by TEM (Fig. 1b). Western
blot analysis identified SEVs in fractions 6 and 7 of the
gradient enriched with the SEV markers CD63, flotillin,
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and Alix, and LEVs positive for flotillin, while the nega-
tive control calnexin was detected only in the cell lysate
(Fig. 1c). These data, together with NTA and TEM ana-
lysis, indicate that the purified SEVs preparation has typ-
ical characteristics of SEVs [7, 43—45].

Purified SEVs bind to extracellular matrix proteins and
support cell adhesion through avf33 integrin binding
Integrins carried by EVs should be displayed on the out-
side of the vesicles, competent to interact with ECM. To
identify the ability of SEVs to adhere to ECM, purified
SEVs were labeled with ExoGlow kit (System Biosci-
ences) and added to tissue culture dishes coated with
purified ECM components. As the ExoGlow dye is based
on the carboxyfluorescein succinimidyl diacetate ester
(CFSE) chemistry, upon internalization into intact EVs,
it is hydrolyzed to a fluorescent green structure, allowing
the employment of EVs on in vitro assay.

We found that SEVs adhere to both collagen I (COL
I)- and FN-coated plates (Fig. 2a). The presence of
DisBa-01 in concentrations relevant to its affinity for
avB3 integrin (250-1000 nM) inhibited SEV binding to

a) SEVs LEVs
£ 5007 —10som 215"
< 400 - 165 nm
E 300- g"’"
2
E 200 § 345nm
E k] 50 405 nm
8 1004 5
; £
= 0 T T T T 1 z 0
0 200 400 600 800 1000 260 400 800 1000
Size (nm) Size (nm)
1.055 1.223 (g mL")
C) WCLLEV 1 2 3 4 5 6 7 8 9 10 11 12 KDa
cD63 | . ' —— 50
Flot. | s W = = ——50 " g
Alix | w= ~—- o= d_95 | ZQF'
v
@ |
CANX| =a» -1—95 ’

Fig. 1 Validation of cancer cell-derived EV isolation and characterization. a Representative trace and video acquisition snapshot from nanoparticle
tracking analysis of small and large EVs. Both traces show vesicles within a typical size profile. b Transmission electron microscopy of density
gradient-purified SEVs and LEVs. Yellow arrows point to representative EVs. Scale bar: 500 nm (large image) and 100 nm (zoomed images). ¢
Western blotting for the EV markers CD63, Flotillin and Alix across 12 iodixanol density gradient fractions, large vesicles (LEV) and whole cell lysate
(WCL) of the EV donor cells. Calnexin (CANX) antibody was used as a negative control
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EN, suggesting the presence of avp3 integrin on the sur-
face of SEVs while only the highest DisBa-01 concentra-
tion inhibited binding to COL I (Fig. 2a, b). Western
blot analysis showed that a5, a2, av, B1 and B3 integrin
subunits are present in SEVs whereas LEVs contain only
a5 and B1 integrin subunits (Fig. 2c). Notably, SEVs but
not LEVs also had a significant amount of associated
COL I and FN (Fig. 2c).

The presence of ECM components associated with
SEVs suggested a mechanism by which SEVs may asso-
ciate with cells via ECM-integrin complexes that might
interact with cellular integrin receptors [36]. To test this
possibility, we performed cell adhesion experiments to
EV-coated surfaces. Isolated SEVs (Suppl. Fig. 1) or
LEVs were used as substrates to support MDA-MB-231
cell adhesion (Fig. 2d). Calcein-labeled MDA-MB-231
cells showed higher adhesion to SEV-coated wells com-
pared to non-coated wells. Cell adhesion to SEV coating
was comparable with the positive FN-coated control,
which could potentially be explained by the presence of

EN or COL bound to integrin subunits on the SEVs. On
the other hand, LEV coating did not support significant
cell adhesion when compared with control (Fig. 2d and
e). In parallel, we treated cells and SEV/LEV coating
with DisBa-01 (30 min incubation) to analyze the effect
of integrin inhibition. Cell adhesion on SEV and fibro-
nectin coating was significantly reduced by DisBa-01
treatment, which was not observed for LEV coating
(Fig. 2f).

SEV uptake is inhibited by avp3 integrin blocking

An important question in the EV field is how are EVs
recognized and taken up by recipient cells. On the basis
of the adhesion data shown in Fig. 2, we performed im-
munofluorescence microscopy to investigate whether the
interaction of EVs with recipient cells would be affected
by DisBa-01. SEVs purified from MDA-MB-231 cells
were labeled with carboxyfluorescein succinimidyl ester
(CFSE), incubated with DisBa-01 in different concentra-
tions for 30min, and added to adherent non-
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tumorigenic MCF 10A breast epithelial cells. Epifluores-
cence microscopy revealed the presence of green fluores-
cent signals in MCF 10A cells suggesting the
internalization of SEVs. On the other hand, treatment of
SEVs with DisBa-01 (100 and 1000 nM) caused a signifi-
cant reduction of this uptake (Fig. 3a and b).

To identify whether avp3 integrin plays a role in SEV
uptake, we stably expressed GFP-CD63 in MDA-MB-
231 cells. A tetraspanin CD63 is an intrinsic membrane
protein that is involved in exosome biogenesis and de-
tected only in the SEV fraction (Fig. 1c) being consid-
ered an exosome/SEV marker [46]. MDA-MB-231 cells
expressing GFP-CD63 (donor cells) and MCF 10A cells
(recipient cells) were respectively plated in the upper
and lower wells of Transwell plates (Fig. 3c). GFP-
CD63-enriched SEVs secreted from MDA-MB-231 cells
were internalized into MCF 10A cells and the internal-
ization was significantly reduced by DisBa-01 (Fig. 3d
and e), suggesting that avP3 integrin has a key role in
this uptake.

Integrin inhibition affects uptake of tumor SEVs by breast
epithelial cells

Thus far, our experiments show that adhesion and up-
take of purified SEVs by MCF10A cells are reduced by
DisBa-01 using a transwell co-culture system. To ex-
plore the role of avp3 integrin in the interchange of EVs
between breast cancer and epithelial cells, MDA-MB-
231 and MCF 10A cells were labeled with the cytoplas-
mic Cell Trace CFSE (Thermo Scientific) and Cell
Tracker Red CMTPX (Thermo Scientific), respectively.
After 24h of co-culture, the transfer of vesicles from
tumor cells to non-tumorigenic epithelial cells was
clearly observed in the control condition by the presence
of green signals in the red cells (Suppl. Fig. 2a). By con-
trast, we did not observe significant uptake of red signals
by the green cells. Additionally, delivery of vesicles to
MCEF 10A cells was strongly reduced upon treatment for
24 h with 1000 nM of DisBa-01 (Suppl. Fig. 2b). To val-
idate this finding, we used the GFP-CD63-expressing
MDA-MB-231 cells in the adjacent co-culture model
and a confocal microscopy to validate that the SEVs
were inside of the recipient cells.

Analysis of scanning electron microscopy (SEM) con-
firmed the communication between tumor and non-
tumorigenic cells (Fig. 4a, co-culture). DisBa-01 changed
MDA-MB-231 cell morphology that was confirmed by
circularity values of control and DisBa-01-treated cells
(Fig. 44, left column and b). In co-culture, the two differ-
ent cell lines were connected to each other through ei-
ther filopodia or retraction fibers and that connection
was reduced by DisBa-01 (Fig. 4a, right column, zoom-
in). Using fluorescence microscopy, we confirmed that
GFP-CD63-enriched vesicles are transferred through the
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connection observed in Fig. 4a (Fig. 4c). MDA-MB-231-
GFP-CD63 cell morphology was also affected by DisBa-
01 (Fig. 4d). Confocal microscopy revealed a significant
reduction of GFP signal in MCF 10A cells after DisBa-
01 treatment (Fig. 4e, f, and g Supplementary Movie
S1). Furthermore, extracellular deposition of GFP-CD63
was also reduced by DisBa-01 (Fig. 4h).

avB3 inhibition affects GFP-CD63 content in MDA-MB-
231-GFP-CD63 cells

Considering the reduction of SEV uptake and extracellu-
lar CD63-GFP release by DisBa-01 treatment shown in
Fig. 4, we investigated whether the disintegrin could
affect SEV content inside the tumor cells. For this pur-
pose, Alexa Fluor 546-labeled DisBa-01 was incubated
with MDA-MB-231 cells expressing GFP-CD63 for 1h
and 4 h. Evident reduction of CD63 signal was observed
in the treated cells at the two incubation times (Fig. 5a,
b and c). The disintegrin was detected inside the cells
after 1 h treatment and its signal was even stronger after
4h, indicating internalization of the protein (Fig. 5b).
Furthermore, we observed that the greater the disinte-
grin signal, the smaller was the GFP signal, which sug-
gests that DisBa-01 could be altering the endogenous
SEV biogenesis or content. To confirm this effect, we
demonstrated by Western blotting of cell lysates that
CD63 protein levels were reduced by treatment with
DisBa-01 (Fig. 5d), corroborating the results obtained
from confocal image analysis (Fig. 5c). Similarly, cellular
levels of the exosome biogenesis-related protein Alix
were also affected by disintegrin treatment (Fig. 5e).
Since extracellular CD63 deposition was reduced by this
treatment (Fig. 4h), these data suggest that binding of
DisBa-01 with avf3 integrin may affect exosome biogen-
esis components in the endocytic system. Moreover,
treatment of isolated vesicles with DisBa-01 reduced
EV-avP3 integrin levels, supporting the effect of DisBa-
01 on SEVs (Suppl. Fig. 4, c).

Discussion

During tumor progression, constant exchange of infor-
mation between cancer cells and the surrounding micro-
environment must occur to support tumor growth,
vascularization and spreading. Extracellular vesicles co-
operate with these processes by delivering information
from malignant to non-malignant cells and to the ECM
[47]. The avp3 integrin participates actively in tumor de-
velopment and has been extensively studied as a target
for anticancer therapy at a cellular level [48-51]. How-
ever, the role of avP3 integrin in EVs has not been fully
addressed. Here, we demonstrate the impact of avp3 in-
tegrin inhibition by the disintegrin DisBa-01 on tumor
derived-SEV adhesion and uptake.
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GFP-CDB3; ****p < 0.001

Fig. 4 DisBa-01 inhibits SEV uptake in a co-culture system. a Scanning electron microscopy of MDA-MB-231 and MCF 10A cells in single and co-
culture systems. Ctrl, control. DisBa-01, 1000 nM. Scale bar, 10 um. b Effect of integrin inhibition on MDA-MB-231 cell morphology; **p < 0.01. c
Representative epifluorescence images highlighting the distribution of GFP-CDé3-enriched vesicles between MDA-MB-231 expressing GFP-CD63
(green) and MCF 10A (red) cells. Scale bar, 50 um. d Effect of integrin inhibition on MDA-MB-231-GFP-CD63 cell morphology; ***p < 0.001. e
Extracellular GFP-CD63-EVs from tumor to non-malignant cells. Z-stack slices from confocal acquisition show reduction of internalized and
extracellular SEVs in DisBa-01 treated cells. f Orthogonal view of MCF 10A cells showing internalized GFP-CD63-SEVs and their reduction upon
DisBa-01 treatment. g Effect of integrin inhibition on SEV uptake; ***p < 0.001. h Effect of integrin inhibition on extracellular

Exosomes are SEVs formed as intraluminal vesicles
(ILVs) inside the lumen of endosomes during their mat-
uration into late endosomes/multivesicular bodies
(MVBs), in a process involving precise machineries, such
as the endosomal sorting complex required for transport
(ESCRT) [7, 52]. During this process, integrins trafficked
to early endosomes can be sorted to late endosomes,
packaged into ILVs and secreted as exosomal integrins
[53, 54]. SEVs isolated from triple negative breast cancer
cells contain avp3 integrin, which is the main target of
DisBa-01. DisBa-01 inhibits cancer cell adhesion, migra-
tion and invasion as a result from its binding to avp3 in-
tegrin. The active binding site of avP3 integrin is
recognized by the RGD motif within the amino acid se-
quence of DisBa-01, which impairs the interaction be-
tween the integrin and the ECM components,
interfering in cell-microenvironment processes [55—58].
Therefore, we decided to use DisBa-01 to study the role
of SEV-avpB3 integrin.

Purified SEVs adhesion to FN coating on tissue culture
plates was significantly inhibited by DisBa-01, which
suggests that avp3 integrin is involved in the interaction
between SEVs and ECM proteins [23]. We discarded a
possible effect caused by the EV-marker in avf3 integ-
rin, since CFSE chemistry is highly employed in cells
and it is not toxic, being used in diverse EV-papers [59—
62]. Moreover, the avf33 integrin is a transmembrane re-
ceptor, whose C-terminal end is located inside the mem-
brane while its N-terminal is located outside the
membrane. In this way, we would not expect a chemical
interaction between the active CFSE and the avf33 integ-
rin of EVs, attributing the observed effect to DisBa-01/
EV- integrin binding.

We have also found that the adhesion of MDA-MB-
231 cells to tissue culture plates was aided by SEVs but
not by LEVs, which lack avf3 integrin and EN; both
molecules were detected only in SEVs. Previous reports
described the ability of tumor derived EVs in promoting
tumor cell adhesion [33, 34]. Also, the role of EV-avf3
integrin in platelets adhesion has been demonstrated
[63]. Upon DisBa-01 addition, cell attachment was
inhibited only in SEV coating, corroborating that SEV
binds to cells in an integrin-dependent manner and with
the involvement of ECM components. However, the

integrin-ECM interaction is a complex process, and add-
itional elements could influence EV-avp3 integrin / cell
/ ECM communication in the tumor microenvironment.
For example, integrins form complexes with other mem-
brane receptors such as growth factor receptors and pro-
teoglycans, and its inhibition triggers the activation and
inhibition of different pathways, including integrin re-
cycling [64, 65]. Likewise, the expression of other types
of integrins can occur in order to recover cell adhesion
upon its suppression by some inhibitors [64, 66, 67].
These alterations can result in different fates of EV on
cells, thus, is crucial to understand all the machinery in-
volved in EV interactions with ECM, cell and other
microenvironment components to address the complete
elucidation of the mechanism by which EV-integrins
participate in tumor progression.

Surface ligands present on EVs are probably the main
agents responsible for the specific targeting of EV [68].
For cancer cells, the transference of EV content can dic-
tate the success of metastasis. In this context, the exoso-
mal avp3 integrin is related to the propagation of
integrin-associated migratory phenotypes to recipient
non-tumor cells [30, 69-71], being a convenient EV-
receptor for uptake experiments. We addressed the abil-
ity of DisBa-01 in reducing uptake of MDA-MB-231
cell-derived SEVs by MCF 10A cells. As expected, the
amount of labeled SEVs in recipient cells was signifi-
cantly reduced, indicating an active participation of avf33
integrin in this route. Furthermore, we designed a new
transwell co-culture system using MDA-MB-231 cells
stably expressing GFP-CD63 and detected the reduction
of GFP-CD63-enriched exosome binding and internal-
ization into MCF 10A cells. This result confirmed the
participation of SEV- avP3 integrin in cell-cell
communication.

Similar results were obtained when malignant cancer
cells and non-malignant epithelial cells where co-
cultured in the same compartment. Despite the absence
of phenotypic alterations in non-malignant epithelial
cells, avP3 integrin inhibition altered MDA-MB-231 cell
morphology, reduced filopodia-like protrusions and
vesicle delivery. Furthermore, quantitative analysis of
confocal fluorescence images from MDA-MB-231-GFP-
CD63 and MCF 10A co-culture showed that DisBa-01
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Fig. 5 DisBa-01 decreases GFP-CD63 content. (a) Stacks from confocal images showing reduction of GFP-CD63 intensity 1 h and 4 h after DisBa-
01 treatment. CTRL, control. (b) Orthogonal view of DisBa-01-Alexa Fluor-546 internalized on MDA-MB-231-GFP-CD63 cells, evidencing an
increased level of red signal in 4 h condition. (c) Quantitation of green fluorescent signal of GFP-CD63. Reduced expression level of CD63 (d) and
Alix (e) after treatment with DisBa-01 in western blotting analysis. **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar, 10 um

treatment not only inhibited uptake of SEVs by recipient
cells but also reduced the number of vesicles released to
the extracellular space.

DisBa-01 internalization induced the downregulation
of GFP-CD63 levels in donor cells, data supported by re-
duction of CD63 and Alix protein in cell lysates. CD63
and Alix are among the proteins mostly identified on
exosomes. CD63 is a tetraspanin widely explored as exo-
some marker, as is expressed in various late endocytic
organelles [72, 73], while Alix works as an auxiliary com-
ponent for the ESCRT machinery during ILVs formation
[74, 75]. Alix also binds to the cytosolic adaptor synte-
nin, which in turns connects to the transmembrane pro-
teins syndecans and supports EV biogenesis [76]. Given
the high affinity of DisBa-01 by avf3 integrin, the bound
disintegrin could be internalized with the receptor,

promoting effects on EV biogenesis. Besides, there is an
association between integrins and syndecan proteins,
and it is possible that an integrin inhibitor could affect
syndecan functioning, impairing syndecan-syntenin-Alix
complex formation and leading to imbalance of SEVs
biogenesis. To the best of our knowledge, integrin regu-
lation of EV biogenesis has not been reported yet. More
in-depth investigations are necessary to understand how
integrin inhibition affects the production and uptake of
SEVs.

We propose a model of which DisBa-01 inhibits cell-
cell communication by decreasing vesicle adhesion and
transfer through binding to ovB3 integrin in SEVs
(Fig. 6), showing for the first time disintegrins acting in
a vesicular level. Moreover, the results shown here high-
light the relevance of avP3 integrin on a role of SEVs,

-
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which mediates cell-cell communication. Cancer cells
can modify their environment by communicating with
other cells through many mechanisms and cancer-
derived EVs have been identified as a major way of cell
communication [5, 6]. Mechanisms by which integrins
in SEVs induce the interaction with recipient cells and
how disintegrins inhibit this interaction are still unclear.
Our results show that integrin inhibition is more com-
plex than expected and may be helpful in defining new
targets for cancer treatment, since there are no available
pharmacological agents to modulate vesicular integrins
from aggressive cancer cells [16].

Conclusions

EVs are important players during tumor development,
supporting cell communication with the microenviron-
ment and adjacent cells. Here we provide evidence that
adhesion receptors, formerly studied only at a cellular
level, are present on the membrane of SEVs, thus being
involved in processes such as EV adhesion and uptake.
Our findings show that inhibition of avB3 integrin af-
fects such processes, emphasizing the relevance of EV-
carried integrins as a new target for cancer research.
More in-depth research on the mechanisms should be
addressed in future works.
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1186/512964-020-00630-w.

Additional file 1 : Supplementary Movie S1. MCF 10A cell with
internalized MDA-MB-231-GFP-CD63 content. Three-dimension projection
from confocal imaging of MCF 10A (red) cell containing internalized GFP-
CD63, related to Fig. 5. The movie was generated by Image J Fiji software
from a Z-stack image (36 slices).

Additional file 2 : Supplementary Figure S1. Characterization of SEVs
used for EV coating. (a) Representative trace and video acquisition
snapshot from nanoparticle tracking analysis of small EVs obtained after
an 18h, 100,000 x g ultracentrifugation step. Traces show vesicles within
a typical size profile. (b) Transmission electron microscopy of SEVs. Yellow
arrows point to representative EVs. Scale bar: 500 nm (large image) and
100 nm (zoomed images). (c) WB for the EV markers CD63, Flotillin and
Alix. WCL: whole cell lysate; UC-SEV: small extracellular vesicles from
ultracentrifugation.

Additional file 3 : Supplementary Figure S2. MDA-MB-231 and MCF
10A cells EV exchange. Co-cultured cells labeled with cytoplasmic

markers, showing exchange of EVs between cells. (a) Control conditions:
MDA-MB-231 (green, left); MCF 10A (red, middle); MDA + MCF10A (right).
(b) Treated conditions: MDA-MB-231 (DisBa-011000 nM, green, left); MCF
10A (Cell Tracker red, middle); MDA (DisBa-011000 nM) + MCF10A (right).

Additional file 4 : Supplementary Figure S3. Full-length blots related
to the results presented in Figs. 1 and 2.

Additional file 5 : Supplementary Figure S4. Full-length blots related
to the results presented in Fig. 5.
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