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Abstract
HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to 
manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral 
growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. 
Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the 
organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to 
macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein 
genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both 
Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here 
why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore 
the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.

Introduction
The monocyte-macrophage lineage represents the only
natural target common to all known lentiviruses, which
include the primate immunodeficiency viruses (HIVs and
SIVs). As a terminally differentiated cell, the macrophage
is in a non-proliferative state. The ability to infect non-
dividing cells is a characteristic that is unique to members
of the lentiviral genus in the retrovirus family (reviewed
in [1]). It has opened a promising path in the field of gene
therapy since the use of HIV-derived lentiviral vectors
has dramatically expanded the range of cell types amena-
ble to gene transfer. The consequence of this property is
of course much less fortunate in the setting of natural
infection since macrophages are considered major actors
in HIV pathogenesis [2-4]. Macrophages are widely rec-
ognized as early targets of infection during HIV transmis-
sion. They represent long-term producers of the virus
due to their higher resistance to HIV cytopathic effects
and their relatively long half-life as compared to activated
T cells [5]. Macrophages are also capable of migrating
into many tissues including the brain. Altogether, these

features greatly contribute to transmission, persistence
and dissemination of HIV. Accordingly, the multiple
aspects of the relationship between HIV and mac-
rophages, as well as other monocytic cells, have long been
actively studied.

Sequencing of the genomes of HIV-1 and HIV-2 follow-
ing their identification as causative agents of human
AIDS revealed an unsuspected genetic complexity. In
addition to the gag, pol and env genes, which represent
the prototypical retroviral genes, the HIV genomes
encode two critical regulatory proteins, Tat and Rev, as
well as a set of so-called accessory proteins (Figure 1).
The latter were soon found to be dispensable for viral
growth, at least in certain ex vivo cellular systems, hence
the term "accessory". However, the emergence of these
accessory proteins, which have no counterparts in other
retroviral groups, strongly suggested that they fulfill spe-
cific needs of HIVs in the context of natural infection [6].
Accordingly, they have stimulated intense investigation
for more than 20 years. Here we will focus on the two
accessory proteins thought to be more specifically dedi-
cated to macrophage infection by HIVs, namely Vpr,
which is shared by HIV-1 and HIV-2, and Vpx, which is
specific for the HIV-2/SIVsm lineage. A more general
overview of HIV accessory proteins can be found in two
recent reviews [7,8]. The unifying view that is currently
emerging in this field deserves to be mentioned because it
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illustrates the quite common necessity for viruses to cope
with a cellular environment that may restrict their repli-
cation in many ways. Thus, it appears that HIV accessory
proteins mainly serve as a means to neutralize host fac-
tors that compromise the efficiency of viral replication in
particular settings. Moreover, several of these host factors
are not passive barriers but rather intrinsic antiviral cell
defenses acquired during evolution.

A common genetic origin for Vpr and Vpx
As mentioned above, the genome of the HIV-2 lineage
encodes Vpr, an ortholog of the HIV-1 Vpr protein, and
Vpx, which has no counterpart in the HIV-1 lineage [9-
11]. Thorough comparisons soon revealed sequence simi-
larity between Vpx and Vpr, pointing to a common ances-
tral origin of the two genes [12-14]. This similarity
extended to an important biological aspect: Vpx and Vpr
were shown to be actively encapsidated through their
association with the p6 gag product, a feature unique to
these two accessory proteins [15-21]. Thus, these pro-
teins are delivered into the cell upon virion entry, sug-
gesting a role in the early steps of the viral life cycle which
culminate in the integration of the viral cDNA into the
host genome.

It is now widely accepted that HIV-1 and HIV-2
emerged from cross-species transmission of primate len-
tiviruses that naturally infect chimpanzees (SIVcpz) and
sooty mangabeys (SIVsm) respectively [22]. Transmission
events from SIVsm-infected mangabeys to macaques also
occurred in captive animals giving rise to SIVmac, which
causes a disease similar to human AIDS and is therefore
largely used as an experimental model [23].

Besides the HIV-1 and the HIV-2/SIVsm lineages, sev-
eral other lentiviral lineages have been identified in

diverse African primates, prompting additional genetic
comparisons and phylogenetic studies. The Vpr/Vpx pre-
cursor gene is believed to have undergone complex dupli-
cation and recombination events during the
diversification of primate lentiviruses [14].

Both SIVrcm and SIVmnd2, which infect red-capped
mangabeys and mandrils respectively, carry two genes
which are likely orthologs of the Vpr and Vpx genes found
in the HIV-2 lineage and which have therefore been
named Vpr and Vpx [24,25]. All other primate lentiviral
lineages, such as African green monkey SIVagm, contain
a single gene named Vpr, in reference to the genetic orga-
nization of HIV-1 which contains only one of the two
genes. However, this nomenclature might be misleading
since the corresponding genes do not form a monophyl-
etic cluster and show substantial sequence divergence
from the prototypical HIV-1 Vpr [25].

Role and importance of Vpr in macrophage infection by HIV 
viruses: absence of a clear picture
Up until quite recently, Vpr had been presented in most
publications and reviews as a protein which facilitates
HIV-1 macrophage infection by contributing to nuclear
import of the viral pre-integration complex (PIC) [26].
Several lines of evidence supported this view. In the ret-
rovirus life cycle, integration of viral cDNA into the host
DNA is a prerequisite for the synthesis of new virions.
Unlike gammaretroviruses, lentiviruses can achieve this
step independently of the nuclear envelope breakdown
which occurs during mitosis, hence their ability to infect
non-cycling cells. This property implies that lentiviruses
such as HIVs have evolved a mechanism that enables effi-
cient nuclear translocation of the viral PIC which is
formed in the cytoplasm after completion of the reverse

Figure 1 Schematic representation of HIV-1 and HIV-2 genomes. Grey boxes represent structural genes; blue boxes indicate regulatory genes; 
and pink boxes indicate accessory genes.
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transcription step. As a virion-packaged protein, Vpr is
present from the start of the virus life cycle and based on
their finding that it also displays nucleophilic properties,
Lu et al. hypothesized that Vpr might contribute to
nuclear targeting of the viral PIC [27]. A number of stud-
ies provided experimental evidence consistent with this
prediction although pointing to functional redundancy
between Vpr and other karyophilic viral components
such as the Matrix protein [28-34]. Moreover, it was
reported that Vpr-deficient HIV-1 showed a significant
replication defect in primary macrophages but not in
established cell lines or activated T cells [35,36]. Thus,
Vpr seemed to be required for optimal viral replication in
non-cycling target cells.

However, later studies showed that HIV infection of
non-cycling cells does not depend on the karyophilic
properties of viral proteins [37-42]. In addition, HIV-1-
derived lentiviral vectors devoid of accessory proteins
efficiently transduce terminally differentiated cells such
as neurons [43-45]. Thus, the ability of Vpr to enhance
infection of macrophages has to be related to specific fea-
tures of these cells rather than to their non-cycling status.
In further support of this hypothesis, experiments con-
ducted using lymphoid tissue explants showed that tissue
macrophages were less permissive to infection by Vpr-
deficient HIV-1 than by wild type HIV-1, whereas resting
T cells within the same tissue were equally well infected
by both types of viruses [46]. Therefore, it remains
unclear whether a helper role in nuclear import of viral
DNA represents the functional basis for Vpr-mediated
increase in macrophage infection by HIV-1. It should also
be noted that a role of Vpr in the nuclear targeting of viral
DNA would rely on the Vpr pool present in the incoming
virion, which was shown to be much less abundant than
initially estimated [47].

It is somewhat difficult to estimate the extent of the
facilitation effect of Vpr in macrophage infection by HIV-
1. In single cycle infection experiments, the absence of
Vpr resulted in only a two-fold decrease in the percentage
of transduced macrophages [43]. Although modest, this
effect on transduction efficiency is expected to be cumu-
lative in a spreading infection using replicative viruses.
This may partly explain the much larger defect range (>
10-fold) reported in the two studies which are commonly
taken as reference [35,36]. Of note, in other studies,
which also used propagative viruses, the lack of Vpr had a
lower effect on viral replication [28,48]. If de novo synthe-
sized Vpr contributes to the spreading of infection in
macrophages, as was proposed by Connor et al [36], it
might also amplify the quantitative differences between
single cycle and spreading infections. In that case, the
overall effect of Vpr would result from two distinct Vpr
functions, the first occurring prior to viral integration
and performed by the virion-delivered Vpr pool, the sec-

ond taking place after viral integration and performed by
de novo synthesized Vpr. Consistent with a function dur-
ing the late steps of the viral life cycle, Vpr has been
shown to stimulate HIV-1 transcription in monocytic
cells [49]. Strong variations between donors were also
recurrently reported regarding the effect of Vpr on viral
replication in macrophages [35,50], adding another diffi-
culty in interpreting the data obtained in these experi-
mental systems. Moreover, the magnitude of Vpr's effect
appears to depend on the multiplicity of infection used in
the initial inoculum [51].

Although no systematic mutagenesis approach has
been carried out in order to genetically dissect the helper
effect of Vpr in the context of macrophage infection, sev-
eral studies have addressed whether this effect segregates
with another property of the protein. Remarkably,
reduced viral replication in macrophages was observed
for mutations of Vpr disrupting its interaction with host
proteins as diverse as uracil-DNA glycosylase, hCG1
nucleoporin, importin alpha and exportin 1 [50,52-54].
Thus to date, no unifying view has emerged regarding the
putative host partners of Vpr in its ability to increase the
replicative capacity of HIV-1 in macrophages.

Finally, the functional importance of Vpr in mac-
rophage infection markedly differs between lentiviral lin-
eages. As described above, HIV-1 Vpr appears to
facilitate macrophage infection but is not critical. HIV-2/
SIVsm replication was found to be only mildly - if at all -
affected by the lack of Vpr [55-58], whereas SIVagm was
reported to be critically dependent on Vpr for mac-
rophage infection [59]. The fact that Vpr knock-out
shows such species-specific effects with respect to mac-
rophage infection suggests that the Vpr genes have signif-
icantly diverged from each other in the selective
advantages they confer to their cognate viruses. This also
indicates, as mentioned previously, that they are not gen-
uine orthologs.

A potential link between Vpr and HIV evasion of host 
immune defenses
Macrophages and dendritic cells (DC), in addition to
being targets and reservoirs for HIV, play a critical role in
the coordination between innate and adaptive immune
responses to infection. Following detection and capture
of pathogen products, these cells undergo a maturation
process and deliver activation signals to antigen-specific
T cells through both cell-cell contacts and secretion of
cytokines. In turn, activated T cells secrete specific
cytokines which potentiate both the adaptive and innate
immune responses. There is increasing evidence that
these complex regulatory circuits are impaired by persis-
tent viruses such as HIVs, as a means to undermine the
overall host antiviral immune response [60]. The possible
contribution of Vpr to HIV-1 immune escape was
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addressed by several groups. Two reports showed that
Vpr downregulates the expression of Interferon regula-
tory factor 3 (IRF-3) [61,62], a factor which is essential for
interferon (IFN) beta production in response to viral
infection. The lack of IRF-3 activation during the course
of HIV-1 infection is however unrelated to Vpr's effect
since deletion of Vpr did not restore IFN beta production
by HIV-1-infected cells [62]. A remarkably broad spec-
trum of Vpr-mediated immunosuppressive effects was
documented in immune cells. Thus, Vpr was found to
impair DC/macrophage maturation, to compromise nat-
ural killer (NK) effector functions, to induce apoptosis of
cytotoxic T cells, to downregulate the production of
chemokines by macrophages and T cells, and to compro-
mise T cell activation pathways [63-70]. Overall, Vpr
appears to impair the so-called Th1 immune response,
known to be critical for antiviral immunity (reviewed in
ref [71]). This raises the interesting possibility that Vpr
contributes to viral persistence by compromising the
proper cooperation between immune cells rather than by
(or in addition to) modulating the viral replicative capac-
ity at the cell level. However, there are unsolved questions
and controversies. For example, several of the immuno-
modulatory effects of Vpr were observed using cells
exposed to extracellular recombinant Vpr protein and
whether this unusual way of delivering Vpr is biologically
relevant to the setting of natural infection requires confir-
mation. Conflicting data have been reported regarding
the effect of Vpr on NK cells. In two studies, Vpr induced
anergy of bystander NK cells [69,70], whereas in another
study, Vpr stimulated their ability to recognize and lyse
infected cells [72]. How Vpr might alter immune func-
tions of infected or bystander cells is unclear as well. It
has been proposed that Vpr acts by enhancing the immu-
nosuppressive action of endogenous glucocorticoids [73]
or by inhibiting the activity of NFkB, a key transcription
factor in the induction of proinflammatory mediators
[68]. However, opposite effects of Vpr on NFkB were
reported by other investigators [49,74]. Mutations which
abolish the immunosuppressive activities of Vpr have not
yet been characterized. Finally, it will be important to
address whether presumed orthologs of HIV-1 Vpr also
show immunoregulatory properties, given that persistent
infection is a hallmark of primate lentiviruses.

Mechanism of Vpr-mediated cell cycle arrest: a clue for its 
actual function?
Expression of Vpr in cycling cells triggers cell cycle arrest
at the G2 phase, i.e. after completion of DNA replication
and prior to mitosis. Vpr-mediated G2 arrest, which was
underscored in 1995 by several groups [75-79], represents
by far the most widely admitted property of the viral pro-
tein. However, the biological significance of this activity is
unclear given that efficient viral replication does not

require Vpr in dividing cells infected ex vivo. Conversely,
Vpr-mediated G2 arrest is obviously irrelevant to its elu-
sive role in HIV-1 infection of macrophages since these
cells do not divide.

In spite of the above paradox, the underlying mecha-
nism of Vpr-mediated G2 arrest has been searched for
during many years. In 2007, these efforts finally bore
fruit; when several studies, including ours, identified
VprBP/DCAF1 as a critical host factor in the ability of
Vpr to promote cell cycle arrest [80-86]. Zhao et al. had
previously identified VprBP as a cellular protein binding
to Vpr with high affinity [87]. Unfortunately, at the time,
this finding had not drawn much attention presumably
because of the plethora of proposed Vpr host partners.
More recent studies in a totally different field crossed the
path of VprBP, which was isolated as a member of the
DDB1-Cullin4-associated factors (DCAFs) [88-91].
DDB1 represents a core component of complexes assem-
bled by Cullin 4 (Cul4), which act as E3 ubiquitin ligases.
These cellular enzymes control the selection of protein
substrates that will undergo ubiquitin conjugation, a pre-
requisite for their subsequent proteasome-mediated deg-
radation. In a given Cul4-based complex, substrate
specificity is likely dictated by the nature of the DCAF
protein bound to DBB1. Of note, while investigating
another activity of Vpr, Landau's group reported the asso-
ciation of Vpr with two members of the cullin-based
ubiquitin ligase family Cullin 1 and Cullin 4 [92]. Regard-
ing the physical and functional connection between Vpr
and VprBP, now renamed DCAF1, the data collectively
obtained by the different investigators support the model
depicted in Figure 2[80-85]. Vpr simultaneously recruits
the Cul4A ubiquitin ligase through DCAF1 and a so far
unknown cellular protein which is required for entry into
mitosis. As a result, the Vpr target protein undergoes
ubiquitination and subsequent proteasome-mediated
degradation, which in turn precludes the G2/M transition
of the cell cycle. Vpr itself appears to be immune to
DCAF1-induced degradation and is even stabilized by its
association with the Cul4A-DDB1 ubiquitin ligase [93].

Diverting the host ubiquitination machinery to inacti-
vate an undesirable host protein is a fairly common viral
strategy. Two HIV-1 accessory proteins have previously
been shown to use this mechanism. Vpu promotes desta-
bilization of the intracellular pool of CD4 [94], to ensure
the liberation of infectious viruses, and inactivates BST-
2/tetherin, a cellular membrane protein which traps
newly synthesized virions at the cell surface [95-97]. Vif
induces the degradation of the antiviral APOBEC3G and
APOBEC3F enzymes, preventing their incorporation into
newly formed virions and therefore avoiding their delete-
rious effects during the following infection cycle [98-
101].
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It should be stressed that the model proposed for the
Vpr mechanism of action does not enlighten us about the
biological significance of G2 arrest in the context of viral
infection. As already mentioned, Vpr does not confer a
measurable growth advantage to HIV in the dividing cells
used for ex vivo infection experiments. However, both the
transcription and the translation of viral genes reach
maximal levels during the G2/M phase of cell cycle and it
has been suggested that in the context of natural infec-
tion, Vpr-mediated G2 arrest could serve as a means to
optimize viral production by the short-lived infected cells
[102,103]. In view of our present knowledge of Vpr's
mechanism of action, one might also consider that the
intended effect of Vpr is the degradation of a specific host
protein rather than the resulting cell cycle arrest. In this
case, the Vpr host target is expected to be detrimental for
viral replication or persistence in the context of natural
infection in vivo. Identification of the host protein(s) tar-
geted for degradation by Vpr will certainly be instrumen-
tal for our understanding of the genuine function of this
accessory protein.

Vpr from the SIVsm/HIV-2 lineage also binds DCAF1
[82,86] and triggers G2 arrest albeit less efficiently than
HIV-1 Vpr [56,86,104-107]. This strongly suggests that
the Vpr proteins from HIV-1 and HIV-2 use the same
mechanism of action and target at least one common
host protein. The latter is, however, unlikely to play a role
in the relationship between HIVs and macrophages given
that Vpr-deficient HIV-2 efficiently replicate in these
cells. That an additional factor is inactivated by HIV-1
Vpr to facilitate macrophage infection might, however, be

envisioned in light of the recently revealed ability of Vpr
to divert the host ubiquitination machinery.

An earlier view of Vpx as the functional counterpart of HIV-
1 Vpr in macrophage infection
As previously mentioned, members of the HIV-2/SIVsm
lineage carry both Vpr and Vpx, the latter being specific
to this lineage (Figure 1). The common genetic origin of
Vpr and Vpx raised the question of their respective func-
tions in the HIV-2 lineage as compared to that of the sin-
gle Vpr protein encoded by HIV-1.

Early data showed that Vpr from HIV-2/SIVsm, like Vpr
from HIV-1, had the ability to arrest the cell cycle at the
G2 phase whereas Vpx had no effect on cell cycle pro-
gression [56,104-106]. However, several lines of evidence
supported a role for Vpx in the nuclear import of viral
DNA in non-dividing cells. First, a number of studies
reported that Vpx is critical for the infection of non-
dividing macrophages, but not of cycling cells
[56,108,109]. Secondly, the replication defect induced by
Vpx mutants correlated with the failure to promote accu-
mulation of 2LTR circles, which are considered as mark-
ers of viral DNA entry into the nucleus. Finally, the
nuclear localization of Vpx in macrophages was consis-
tent with its ability to promote productive infection [110-
113]. Therefore, it was hypothesized that the two activi-
ties attributed to HIV-1 Vpr had somehow segregated in
the HIV-2/SIVsm lineage: the ability to induce G2 arrest
became specific to Vpr in this lineage, and the ability to
import viral DNA into the nucleus became specific to
Vpx [56]. However, uncertainties remained regarding the
role of Vpx in viral DNA nuclear import. Some studies
reported a role of Vpx in the infection of dividing T cells
in addition to its role in macrophages [57,58,114-118],
while other studies failed to detect a nuclear localization
of Vpx [119]. Of note, Vpx was also found to interfere
with the reverse transcription step in early studies. How-
ever, this effect appeared minor compared to the effect on
the viral DNA nuclear import and therefore was not fur-
ther investigated [56].

First evidence that Vpx is not the functional counterpart of 
HIV-1 Vpr in macrophage infection
Although the deletion of Vpr in HIV-1 induces a moder-
ate decrease of HIV-1 transduction in macrophages, its
effect was minor compared to that of Vpx in SIV/HIV-2
[58,112,115,118,120]. The requirement for Vpx is even
stronger in monocytes and in monocyte-derived den-
dritic cells infected by SIVmac, in which cell transduction
is entirely dependent on its presence [121-124]. These
data underscore the major role of Vpx during the infec-
tion of cells from the monocytic lineage. As already men-
tioned, the picture is not very clear in lymphoid cells

Figure 2 Model for HIV-1 Vpr mechanism of action. HIV-1 Vpr re-
cruits the Cul4A-DDB1 ubiquitin ligase through DCAF1 binding, which 
leads to the ubiquitination and inactivation of an unknown cellular tar-
get required for entry into mitosis.
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where the dependence on Vpx for viral growth is still con-
troversial.

In vivo experiments in macaque models also pointed
out major differences between viruses deleted for Vpr or
Vpx [125,126]. Surprisingly, in the two studies, Vpr-
deleted viruses behaved similarly to the wt viruses. In
experiments using the acutely pathogenic virus SIVsmPBj
inoculated into pigtailed macaques, the effect of Vpx
deletion is dramatic: macaques infected with the wt virus
developed fulminant disease whereas animals inoculated
with the Vpx-deleted virus showed delayed kinetics of
viral replication and no disease manifestations [126]. In
the study using rhesus monkeys infected with a virus
derived from SIVmac239, progression to death occurred
in the absence of a gene for Vpx, but lower virus burdens
and delayed disease induction were noticed [125].

The essential role of Vpx both in cells from the mono-
cytic lineage and in vivo suggests that Vpx is not just a
pale imitation of Vpr in its ability to transport the viral
DNA.

A specific function for Vpx: degradation of a cellular 
restriction factor in macrophages
It came as a surprise when Vpx was found to promote the
accumulation of HIV-2/SIV reverse transcripts and
therefore to act prior to the transport of the pre-integra-
tion complex. These findings were first demonstrated in
monocyte-derived dendritic cells and thereafter in mac-
rophages [55,122,127-129]. Whether Vpx plays a role in
nuclear import of viral DNA in addition to its role at the
reverse transcription step remains a subject of debate
[109].

It appeared unlikely that Vpx targeted HIV and SIV
viral components since the effect of Vpx, which is partic-
ularly dramatic in dendritic cells, appeared to be cell-type
dependent and since Vpx facilitated viral transduction of
dendritic cells with retroviruses as divergent as primate
lentiviruses (HIV-1), non-primate lentiviruses (FIV) or
gammaretroviruses (murine leukemia viruses) [122]. The
question was, did Vpx complement the lack of a cellular
activity, such as viral DNA nuclear import, or did Vpx
counteract an antiviral activity present in dendritic cells.
The ability of the proteasome inhibitor MG132 to par-
tially restore infectivity of Vpx-deficient SIVmac lentiviral
particles led Cimarelli's group to propose that Vpx pro-
motes retroviral escape from a proteasome-dependent
restriction pathway present in monocyte-derived den-
dritic cells [122]. Based on sequence homology between
Vpr and Vpx, we predicted that Vpx may divert the same
ubiquitin ligase as Vpr and we demonstrated, using a two
hybrid system that Vpx from SIVsmPBj physically inter-
acts with the DCAF1 adaptor subunit of the Cul4A-
DDB1 ubiquitin ligase [83]. Binding of Vpx from SIV or
HIV-2 to DCAF1 was further confirmed in mammalian

cells [55,129,130]. Altogether, the data pointed to a
hypothesis in which Vpx would use the DCAF1 ubiquitin
ligase to get rid of a cellular restriction factor present in
dendritic cells and in macrophages. This hypothesis
received experimental support in macrophages in the
context of SIVsmPBj, SIVmac239 and HIV-2 infection
[55,129,130]. Stevenson's group demonstrated that Vpx
counteracts a macrophage-specific restriction factor
using heterokaryons, a technique previously adopted to
characterize the mechanism of action of another HIV
accessory protein, Vif [131,132]. Heterokaryons gener-
ated between COS cells, in which Vpx is dispensable for
virus infection, and macrophages, in which Vpx is essen-
tial for virus infection, supported transduction by wt SIV
but not Vpx-deleted SIV [130]. This definitively discarded
the possibility that Vpx may complement the lack of a cel-
lular factor necessary for viral replication in mac-
rophages. Vpx, like Vpr, is a virion-incorporated protein
and was therefore expected to perform its function prior
to de novo synthesis of viral proteins in the target cell. In
agreement with this, infection of macrophages harboring
wt Vpx alleviated the block to subsequent infection by
Vpx-deficient SIV, providing evidence that Vpx delivered
in trans can counteract the restriction [130]. Two studies
showed that inactivation of the DCAF1-binding property
of Vpx mimicked the absence of Vpx, impairing HIV-2/
SIV growth in macrophages. In addition, silencing of
DCAF1 or DDB1 impaired replication of wt HIV-2/SIV
[55,129,130]. This latter result argues against a model in
which Vpx would inhibit the endogenous activity of the
ubiquitin ligase, and subsequently prevent the degrada-
tion of a positive factor, but rather favors a model in
which Vpx diverts the activity of the Cul4A-DDB1DCAF1

complex to induce the degradation of a macrophage-spe-
cific restriction factor (Figure 3).

What properties can be attributed to this restriction
factor? We must underline here that the restriction factor
targeted by Vpx is unlikely to also be inactivated by HIV-1
Vpr since infectivity of Vpr-deleted HIV-1 is dramatically
enhanced in macrophages by Vpx but not by HIV-1 Vpr
[7,121,130].

The restriction factor antagonized by Vpx appears to
inhibit the accumulation of reverse transcripts, a step
which is also targeted by the Trim5α restriction factor
[133-137]. However, the two proteins differ in many
aspects. In contrast to Trim5α, the restriction factor
antagonized by Vpx should be conserved across primate
species since SIVsm Vpx can substitute HIV-2 Vpx in
HIV-2 macrophage infection and HIV-2 Vpx can comple-
ment Vpx-defective SIVmac. Also in contrast to Trim5α,
which is ubiquitous, the Vpx-targeted restriction factor is
specific of the monocytic lineage. However, unlike
Trim5α, this restriction factor is probably not saturable,
at least in dendritic cells, since high amounts of viral par-
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ticles fail to restore infectivity of Vpx-deficient SIVmac
[122,123]. Similarly to Trim5α though, the Vpx-antago-
nized factor is type I IFN-inducible as highlighted lately
by a report [7].

Recently, Vpx has been shown to counteract a cellular
restriction in monocytes, which are highly susceptible to
SIVsmPBj infection provided that Vpx is expressed
[124,128,138]. Whether a unique restriction factor is

Figure 3 Vpx recruits the Cul4A-DDB1DCAF1 ubiquitin ligase to counteract a cellular retriction in the early phases of macrophage infection. 
Vpx is absolutely required for HIV-2 infection of human monocyte-derived macrophages. During the early steps of replication, Vpx, a virion-packaged 
protein, hijacks the Cul4A-DDB1 ubiquitin ligase by binding to DCAF1. This leads to the inactivation of a macrophage-specific restriction factor, result-
ing in the completion of reverse transcription and the integration of viral DNA into the host chromosome. In the absence of Vpx, the restriction factor 
blocks the accumulation of HIV-2 reverse transcripts.
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antagonized by Vpx in macrophages, dendritic cells and
monocytes remains to be clarified. In the latter, the
potential dependence on the Cul4A-DDB1DCAF1 ubiquitin
ligase has not been addressed. Surprisingly, a DCAF1-
independent role of Vpx has been described in dendritic
cells, as well as in differentiated monocytic THP1 cells
which are supposed to recapitulate the functional proper-
ties of macrophages [121]. The possibility remains that
Vpx uses different mechanisms in different cell types to
counteract a cellular restriction. It is striking however,
that Vpx in both macrophages and dendritic cells acts at
the level of reverse transcription. Further investigations
will be needed to understand whether the reverse tran-
scription step itself is inhibited by the cellular restriction,
whether an abnormal destruction of the newly synthe-
sized viral cDNA occurs, or whether a step prior to the
reverse transcription is affected.

The ability of HIV-1 to transduce macrophages, and to
a lesser extent dendritic cells, in the absence of any acces-
sory proteins may suggest that the cellular restriction fac-
tor antagonized by Vpx senses a viral component that is
highly specific for HIV-2/SIVsm and which is not present
in HIV-1. However, the restriction antagonized by Vpx is
also active against HIV-1 since Vpx increases the permis-
sivity of dendritic cells and macrophages to HIV-1. In
addition, monocytes, which are normally refractory to
HIV-1, become permissive in the presence of Vpx
[121,122,128,130,138-140]. In macrophages, the helper
effect of Vpx towards HIV-1 transduction has been
shown to depend on DDB1 [130] and thus probably also
relies on the hijacking of the Cul4A ubiquitin ligase, lead-
ing to subsequent degradation of an inhibitory factor.
Whether such a mechanism exists in monocytes has not
been addressed yet. If the same restriction factor antago-
nizes HIV-1 in monocytes and macrophages, its level of
expression is expected to be higher in monocytes due to
their resistance to HIV-1 infection (c.f. the accompanying
review by A. Bergamaschi and G. Pancino).

Vpr and Vpx: rival brothers?
To date, the only functional characteristic common to
Vpr and Vpx is their ability to recruit the Cul4A ubiquitin
ligase. This raises the possibility that Vpr and Vpx com-
pete for function. In the early steps of the viral life cycle,
such a competition is difficult to envision given that the
amount of virion-bound Vpr and Vpx is minor compared
to the pool of DCAF1. In addition, it has been shown that
deletion of Vpr does not affect Vpx-dependent HIV-2/
SIV infection [7,55]. However, in later steps of viral infec-
tion, competition might occur assuming that the amount
of de novo synthesized Vpr and Vpx now exceed that of
DCAF1. Consistent with this possibility, G2 arrest-defec-
tive mutants of Vpr which conserve DCAF1-binding
activity were shown to inhibit G2 arrest induced by wt

Vpr, suggesting that the amount of DCAF1 might be lim-
iting [81,83]. Whether this probable competition in turn
affects Vpr and Vpx functions requires further investiga-
tion.

Conclusion
The ability to recruit the Cul4A ubiquitin ligase is shared
by Vpr and Vpx proteins from diverse lentiviral origins,
suggesting that this trait was acquired early in the evolu-
tion of the vpr-like gene family. While conserving this
functional characteristic, Vpr and Vpx have likely
diverged in the nature of the substrates they target and
therefore in their respective functions. The modest effect
of HIV-1 Vpr deletion on viral replication in mac-
rophages and the absence of a clear phenotype in ex vivo
cell cultures for Vpr-deleted HIV-1 raised questions
regarding the true role of Vpr in viral infection. Further
investigation is required to understand whether Vpr plays
a role in early steps of infection, as expected considering
its virion-bound nature, or whether Vpr plays a more
indirect role by regulating the spread and (or) persistence
of infection, as would suggest its reported immunomodu-
latory properties [65,66,69,70]. What is certain is that Vpr
must confer some selective advantage to the virus since
reversion events in vpr occur rapidly in rhesus monkeys
infected with Vpr-defective SIVmac [125]. The require-
ment for the Cul4A-DDB1DCAF1 ubiquitin ligase, which
was first shown for Vpr, has not unravelled the role of
Vpr-mediated G2 arrest during viral infection. Somewhat
ironically, this property has enlightened the underlying
mechanism of the well known critical function of Vpx in
macrophage infection. It is now widely acknowledged
that Vpx specifically counteracts a cellular restriction
present in macrophages leading to establishment and
productive spread of infection. Why HIV-1 Vpr has not
kept or acquired this powerful activity from an ancestral
vpr-like gene remains a mystery, in particular since this
restriction appears to be active against HIV-1 [122,130].
The discovery of the cellular target(s) of Vpr and Vpx will
provide great help in understanding the susceptibility of
cells from the monocytic lineage to infection by both
HIV-1 and HIV-2/SIVsm. This might in turn lead to the
elaboration of antiviral strategies to prevent viruses from
establishing reservoirs in these cells.
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