RNF17 blocks promiscuous activity
of PIWI proteins in mouse testes
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PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two
classes of piRNAs—primary and secondary—are defined by their mechanisms of biogenesis. Primary piRNAs are
processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive
amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ
cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward
transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs

derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not
well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production
of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong
initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs,
including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation

of a small RNA-based autoimmune reaction.
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The piRNA pathway comprises an elegant, small RNA-
based innate immune system, generally tasked with pro-
tecting germ cell genomes against the activity of mobile
genetic elements (Malone and Hannon 2009; Siomi et al.
2011). The specificity of the pathway derives from piRNA
clusters, which direct the selective silencing of parasitic
DNA elements (Aravin et al. 2007). The piRNA pathway
and its protective role are deeply conserved in animals;
impairment most often results in the derepression of
normally silent transposons and loss of functional germ
cells (Klattenhoff and Theurkauf 2008; Pillai and Chuma
2012).

piRNAs function through their association with PIWI
proteins. In mice, three PIWI proteins—MILI, MIWI, and
MIWI2—are expressed in developing male germ cells,
and all are essential for proper germ cell development
(Kuramochi-Miyagawa et al. 2004; Carmell et al. 2007;
Pillai and Chuma 2012). During embryogenesis, germ
cells undergo an epigenetic reprogramming that requires
the erasure and re-establishment of DNA methylation
patterns genome-wide (Aravin et al. 2008; Kota and Feil
2010; Bao and Yan 2012). A key element of reprogram-
ming is the recognition of transposons and the deposition
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of heritable DNA methylation marks that maintain mo-
bile elements in a silent state (Aravin et al. 2008; Cas-
taneda et al. 2011; Bao and Yan 2012). This requires the
piRNA pathway; specifically, two embryonically ex-
pressed PIWI family proteins: MILI and MIWI2 (Aravin
et al. 2008; Bao and Yan 2012). In embryonic germ cells,
MILI and MIWI2 are primed by primary piRNAs derived
from a variety of dispersed transposon-rich loci (Aravin
et al. 2008). Once primed, these proteins engage in the
adaptive ping-pong cycle, which produces secondary piR-
NAs (Aravin et al. 2007; Siomi et al. 2011), perhaps honing
the pathway against active element subfamilies (Aravin
et al. 2008).

Shortly after mice are born, male germ cells initiate
meiosis (Chuma and Nakano 2013), and piRNA popula-
tions shift from a collection of primary and secondary spe-
cies, enriched for transposon content, to mainly primary
piRNAs, which are derived from a collection of discrete
genomic loci, termed pachytene piRNA clusters (Aravin
et al. 2006; Girard et al. 2006; Lau et al. 2006). These main-
ly produce uniquely mapping piRNAs that match only the
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loci from which they are derived (Aravin et al. 2006; Gi-
rard et al. 2006). PIWI protein expression also shifts,
with MIWI2 being lost, and MIWTI joining MILI as the ma-
jor piRNA-binding partner (Fig. 1A; Aravin and Hannon
2008). MIWI is required for successful spermatogenesis
(Deng and Lin 2002), implying that meiotic piRNAs
have a critical role in germ cell development. However,
the precise functions of meiotic piRNAs remain a topic
of debate.

PIWI proteins function in conjunction with an array of
accessory factors. One such family of proteins, the Tu-
dors, is particularly important, with functions that are
well conserved across a range of species (Siomi et al.
2010; Chen et al. 2011). Tudor proteins recognize methyl-
ated arginines present on PIWI proteins through their tu-
dor domains and facilitate the localization of PIWI to
RNA processing granules. Tudors often have additional
domains, opening the possibility that they could perform
any of a variety of functions in the formation of PIWI-piR-
NA complexes (Chen et al. 2011).

Here we assessed the role of a Tudor family member,
RNF17, and found that it helps to shape piRNA content
throughout adult spermatogenesis. RNF17 associates
with pachytene piRNA precursors, facilitates piRNA bio-
genesis, and represses secondary piRNA amplification in

adult gonads. Deletion of RNF17 unleashes ping-pong
during meiosis and enriches meiotic piRNA populations
with transposon-derived secondary piRNAs. piRNAs
that arise specifically in mutant animals also derive
from a wide range of transcribed, genomic loci, including
protein-coding genes. As a result, genic transcripts join
the secondary piRNA biogenesis loop and are degraded
as byproducts of secondary piRNA production. Thus,
loss of Rnf17 results in a cellular autoimmune-like state,
where the piRNA machinery, typically directed selective-
ly against transposons, targets protein-coding transcripts,
potentially leading to male sterility in adult mice.

Results

Pachytene piRNA cluster organization supports their
presumptive role in transposon silencing

It has been reported that mutations in MIWTI affect trans-
poson expression (Reuter et al. 2011). This suggests that
pachytene piRNA clusters may produce at least some
piRNAs whose role is to suppress transposable elements
(TEs). Given that the catalytic activities of MIWI and
MILI are important for their function (Reuter et al. 2011;
Di Giacomo et al. 2013), it is surprising that a strong

Figure 1. Pachytene piRNA clusters are
the main source of transposon-derived
piRNAs during meiosis. (A) Expression of
piRNAs, PIWI proteins, and RNF17 through
spermatogenesis. (Zyg) Zygotene; (PSpc)
pachytene spermatocyte; (SSpc) secondary
spermatocyte; (RS) round spermatid; (ES)
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Miwi~/~ (green) mice. (B) Pie chart summa-
rizing the annotations of piRNA population
(24-32 nucleotides [nt]) in adult wild-type
testes. LINEs were further broken down
into classes, which map to different genomic
loci: pachytene clusters, outside pachytene
clusters, and multimappers. (C) Size pro-
files of LINE small RNA reads in adult
wild-type testes. Sense and antisense orien-
tations to LINEs are indicated in black and
white, respectively. Horizontal bars indi-
cate the size range of MILI- and MIWI-asso-
ciated piRNAs. Reads were normalized per
million unique genomic mappers (RPM).
(D) Percentage of antisense LINE and LTR
piRNAs derived from pachytene piRNA
clusters that have predominant transposon
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A genome browser view of piRNAs derived
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ping-pong signature is not seen when such piRNAs engage
transposon targets (Beyret et al. 2012). To investigate this
inconsistency, we analyzed piRNA populations from
whole adult mouse testes, pachytene spermatocytes, and
round spermatids, with a focus on LINE-derived piRNAs
(LINE piRNAs).

Eighty percent of LINE piRNAs in adult testes ema-
nated from pachytene piRNA clusters. The same was
true for piRNAs corresponding to LTR elements and
SINEs (Fig. 1B; Supplemental Fig. S1A,B), and a similar ob-
servation has been made recently in marmosets (Hirano
et al. 2014). This was surprising because pachytene
PiRNA clusters are generally transposon-poor in compar-
ison with both their adjacent genomic regions (Aravin
et al. 2006) and the rest of the genome (Supplemental
Fig. S1C). Only a fraction (~25%]) of pachytene piRNA
clusters gave rise to the vast majority (~96%) of trans-
poson piRNAs. This is true even though those clusters
are not enriched for transposon content (Supplemental
Fig. S2).

In Drosophila, the flamenco cluster produces piRNAs
that repress transposons in the absence of ping-pong (Bren-
necke et al. 2007). Transposon insertions into this cluster
are overwhelmingly oriented opposite to its unidirection-
al transcription, producing antisense-enriched piRNA
populations. Similarly, a number of pachytene clusters
in mice and humans had significant (false discovery rate
[FDR] < 0.05) bias for antisense transposon content and
produced antisense-biased piRNAs (Fig. 1C-E; Supple-
mental Fig. S1D; Supplemental Tables S1, S2). This indi-
cates an evolutionary pressure for the production of
piRNAs antisense to transposon transcripts. This con-
trasts with marmosets, in which TE piRNAs derived
from pachytene piRNA clusters have no clear bias (Hirano
et al. 2014). Support for the function of pachytene piRNA
clusters in transposon silencing can be drawn from
analysis of a mutation introduced into one such mouse
cluster, which resulted in derepression of LINEs in adult
testes (Xu et al. 2008). Approximately 88% of LINE
piRNAs in adult testes exhibited features of primary
piRNAs (U at position 1), while a small fraction, 5%, dis-
played characteristics of secondary piRNAs (A at position
10 and no 1U).

Considered together, the aforementioned findings are
consistent with pachytene piRNA clusters playing a role
in suppressing transposons during meiosis (Reuter et al.
2011; Di Giacomo et al. 2013). Detection of a small num-
ber of secondary piRNAs indicated that MIWI and/or MILI
are capable of engaging in the ping-pong cycle in meiotic
cells, yet the data suggest limitations on the activity of
this arm of the pathway in adult testes.

Rnfl17 knockout unleashes ping-pong
from transposon-derived piRNAs in adult mice

Previous studies have demonstrated that Tudor proteins
act in concert with PIWI proteins (Siomi et al. 2010;
Chen et al. 2011). In Drosophila, the Tudor protein Qin/
Kumo acts as a positive regulator of heterotypic ping-
pong between Aubergine and Ago3 (Zhang et al. 2011).

RNF17 blocks ping-pong in spermatogenesis

Qin/Kumo has a characteristic structure comprising an
E3 ubiquitin ligase domain and five Tudor domains (Sup-
plemental Fig. S3A). This structure is shared by its mouse
homolog, RNF17. RNF17 is predominantly expressed in
adult testes (Tsutsumi et al. 2012) and interacts physically
with MIWI (Vagin et al. 2009). Loss of Rnf17 produces a
phenotype similar to that of a Miwi mutant, with arrest
in spermatogenesis at the round spermatid stage (Fig.
1A; Supplemental Fig. S3B,C; Deng and Lin 2002; Pan
et al. 2005). However, MIWI (or MILI) localization and pro-
tein levels are unaffected in Rnf17~/~ mice (Supplemental
Fig. S4A-C). Given its role as a positive regulator of ping-
pong in flies, we explored the role of RNF17 in the meiotic
piRNA pathway in mammals, where its binding partner,
MIWI, does not participate in a robust ping-pong cycle
(Beyret et al. 2012).

In Rnf17~/~ adult testes and also in isolated secondary
spermatocytes and round spermatids, the content of
piRNA populations was substantially altered (Fig. 2A;
Supplemental Fig. S5A). Overall levels of transposon
piRNAs that could be mapped to pachytene piRNA clus-
ters remained unchanged; however, the distribution of
transposon piRNAs was dramatically different (Fig. 2A,
B; Supplemental Fig. S5A). piRNAs mapping to younger
transposon subfamilies (Sookdeo et al. 2013; Molaro
et al. 2014) were increased, while other transposon
piRNAs were depleted. A reduction was also observed
for nontransposon pachytene piRNAs as a whole (Fig.
2A; Supplemental Fig. S5B,C). These changes were most
profound in sorted pachytene spermatocytes and round
spermatids but were also clearly detectable in small
RNAs prepared from whole testes. Such changes were
not observed in in premeiotic gonia (Fig. 2A,B; Supple-
mental Fig. S5A). Although testes of RnfI7 mutant
mice differ from wild type in their cellular content, the
piRNA phenotype of Rnf17~/~ mice did not appear to
be a consequence of shifts in cell type representation re-
sulting from arrested germ cell development. Moreover,
the observed phenotype was Rnf17-specific. Miwi~/~ or
Tdrd6~'~ mice that arrest spermatogenesis at a stage sim-
ilar to that of Rnf177/~ (Deng and Lin 2002; Vasileva et al.
2009; Tanaka et al. 2011) failed to show changes in propor-
tions of transposon and nontransposon piRNA popula-
tions (Supplemental Fig. S6A-D).

In the Rnf17 mutant, uniquely mapping LINE piRNAs
derived from loci outside pachytene piRNA clusters—
i.e., dispersed LINE insertions—exhibited an average
10-fold increase in abundance, and multiply mapping
LINE piRNAs showed an average 35-fold increase in abun-
dance (Fig. 2A; Supplemental Fig. S5A). Interestingly,
these trends were magnified for piRNAs that map to evo-
lutionarily younger transposon families (Supplemental
Fig. S5B,C; Sookdeo et al. 2013; Molaro et al. 2014). While
PiRNAs corresponding to LINEs were the most strongly
affected, similar trends were seen for piRNAs correspond-
ing to SINEs and LTR elements (Supplemental Figs. S5C,
S7A). Shifts in transposon piRNA abundance were accom-
panied by changes in piRNA strand bias (Fig. 2C; Supple-
mental Fig. S7B), with Rnf17 mutants showing a relative
increase in sense piRNAs. This was consistent with an
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meiotic cells, in effect shifting the meiotic piRNA popula-
tion toward an embryonic-like state enriched for transpo-
son-derived secondary piRNAs.

RNF17 associates with piRNA precursors and impacts
their selection for further processing

To investigate the mechanisms by which RNF17 might
impact piRNA populations, we examined the levels of
pPiRNA precursors and processing intermediates by sur-
veying RNAs longer than mature piRNAs by RNA se-
quencing (RNA-seq) and 5 RACE (Supplemental Fig.
S8A; Vourekas et al. 2012, 2015). In RNA-seq analysis of
RNF17 immunoprecipitates, we noted enrichment in
long RN As mapping to piRNA clusters (P < 0.001) (Supple-
mental Fig. S8B). Additionally, global transcriptional pro-
files revealed an increase in pachytene cluster transcripts
(P<0.001) in Rnf177/~ testes (Fig. 4A), as was observed in
gin mutant flies (Zhang et al. 2014). Both results pointed
toward RNF17 affecting the flux of precursors into mature
piRNAs.

We profiled potential intermediates in piRNA pro-
duction using RACE to select those long RNAs with 5’
monophosphate ends. We compared such species found
in association with MILI or MIWI between Rnf17*/~ and
Rfn17 mutant animals and saw changes in representation
that paralleled changes in mature small RNA content.
Specifically, potential intermediates derived from pachy-

RNF17 blocks ping-pong in spermatogenesis

tene cluster transcripts decreased, and those from transpo-
sons increased (Fig. 4B; Supplemental Fig. S9A,B). In total
RNA, the number of cleaved, 5 monophosphorylated
transposon transcripts was unaffected by the Rnf17 muta-
tion (Fig. 4B; Supplemental Fig. SOA,B), suggesting that,
in the mutants, a greater fraction of cleaved transposon
RNAs might become associated with PIWI proteins as
precursors to piRNA production.

Considered together, our data suggested a role for
RNF17 in the selection of precursors for piRNA pro-
duction (Supplemental Fig. S8A). This could occur by
RNF17 directly regulating primary biogenesis. Based on
RNA-seq of RNF17 immunoprecipitates, this protein is
likely present in the complexes in which precursors are se-
lected. Thus, RNF17 might promote the entry of pachy-
tene cluster transcripts into the biogenesis pathway,
while its absence might simply make MILI and MIWI pro-
teins available for ping-pong by reducing the competitive
advantage of cluster transcripts. Alternatively, RNF17
might regulate the flux of cluster transcripts into PIWI
proteins indirectly. Qin/Kumo has been proposed as an
inhibitor of homotypic ping-pong (Zhang et al. 2011).
RNF17 could similarly block the ability of MILI and
MIWI to play ping-pong. In this way, transposon tran-
scripts would be unable to serve as precursors for piRNA
production in the presence of RNF17, leading to nearly
exclusive loading of products from pachytene piRNA
clusters. In the absence of RNF17, ping-pong would be

Figure 4. RNF17 impacts the selection of
piRNA precursors. (A) DESeq analysis of
transcript abundance in testes of Ruf17"/~
versus Rnf17~/~ mice. Genes are indicated
in black, pachytene piRNA precursors are
in green, and transposon transcripts are in
red. Axes represent normalized read counts
from two independent biological replicates
on a log, scale. The P-value was calculated
using Fisher’s one-tailed test. (B) The
scheme of intersecting the 5’ ends of total
5'RACE libraries with mature piRNA se-
quences (in color) is shown above the bar
graphs. The bar graphs display results from
5RACE analysis from testes of Rnf17%/~
and Rnf177/~ adult mice. The bar graphs in-
dicate the normalized number of collapsed
reads mapping to LINE (blue), SINE (yel-
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activated, leading to an increased population of MILI and
MIWI with transposon piRNAs.

Genic transcripts harboring fragments of transposons
can be drawn into the deregulated piRNA pathway
in Rnfl7~/~ mice

Both Rnf17 and Miwi mutants are sterile and show defects
in spermatogenesis (Deng and Lin 2002; Pan et al. 2005).
However, in Miwi mutants, L1 elements were strongly de-
repressed, whereas in Rnf17 mutants, increased ping-pong
led to strengthened repression of transposons (Supple-
mental Fig. S10A,B). Moreover, while piRNAs from
pachytene piRNA clusters were reduced somewhat in
Rnf17 mutants, they were still highly abundant. Thus, it
was difficult to rationalize the strong impact of Rnf17
loss on fertility. We analyzed piRNAs from ~1130 focal
sites scattered throughout the genome in Rnf17~/~ mice
(Fig. 5A,B). The majority of those “miniclusters” seen in
Rnf17 mutants were not observed in wild-type mice
(Fig. 5A—-C). The same sites that gave rise to increased lev-
els of piRNAs also gave rise to increased levels of piRNA
processing intermediates (detected in 5 RACE data sets)
(Fig. 5C; Supplemental Fig. S10C). All of these “mini-
clusters” overlapped with transposon-containing regions
(Supplemental Fig. S10D). Interestingly, 54 % of the mini-
clusters form within protein-coding genes or long non-
coding RNAs (IncRNAs) (Fig. 5D). Clusters formed
within protein-coding genes favored SINE subfamilies,
while those within IncRNAs or unannotated regions fa-
vored LINE subfamilies (Fig. 5E). All de novo clusters in
Rnf17~/~ mice were enriched for evolutionarily younger

and hence more active elements (Fig. 5E; Sookdeo et al.
2013; Molaro et al. 2014).

These observations suggested the possibility that, in the
absence of RNF17, protein-coding mRNAs and IncRNAs
might be inappropriately targeted by the piRNA pathway
simply because they harbor evolutionarily recent trans-
poson insertions. In accord with this hypothesis, Rnf17
mutants showed a >700-fold increase in ping-pong pairs
mapping to protein-coding genes (Fig. 6A). We tested
whether transcript cleavage via the ping-pong cycle
caused transcript depletion using RNA-seq. Global tran-
scriptional profiles from whole testes identified a number
of genes that both harbored de novo miniclusters and
showed significant down-regulation in Rnf17 mutants
(Supplemental Table S3; Supplemental Fig. S11A-C).
Nine of those genes were pachytene spermatocyte-specif-
ic or round spermatid-specific and exhibited a rise in ping-
pong pairs from their 3’ untranslated regions (UTRs) in
the absence of RNF17 (Supplemental Fig. S12A). Of these,
Rnf168 showed the greatest increase in piRNAs (43-fold)
upon RNF17 loss. Rnf168 piRNAs map to a set of SINEs
in its 3’ UTR and show a strong ping-pong signature
(Fig. 6B; Supplemental Fig. S12B). Notably, these SINE in-
sertions are not conserved in Rnf168 homologs in other
mammals, suggesting a relatively recent insertion event.
Both Rnf168 and another down-regulated de novo piRNA
target, Tektd, are involved in proper progression of sper-
matogenesis, although, individually, their terminal phe-
notypes differ from those of RNF17 loss (Roy et al. 2007;
Bohgaki et al. 2013).

In an effort to characterize the molecular aspects of
the Rnf17~/~ phenotype further, we prepared RNA-seq
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Figure 6. RNF17 blocks ping-pong between
genic transcripts harboring transposon frag-
ments. (A) The 5-5" overlap (ping-pong signa-
ture) between piRNAs from opposite strands of
the 3" UTRs of genes overlapping with piRNA
“miniclusters” from testes of Rnfl17*/~ and
Rnf177/~ adult mice. The number of pairs of
piRNA reads at each position is reported. The
Z-score indicates significance of the 10-nt
overlap. (B) Genome browser view of piRNAs
that uniquely map to a down-regulated gene
(Rnf168) and an unaffected gene (Mili) from tes-
tes of Raf17*/~ and Ruf17~/~ adult mice. (Dark
blue) piRNAs in sense orientation to the gene;
(dark red) piRNAs in antisense orientation to
the gene (none detected). Repeats and conser-
vation are marked for each gene. (C) Box plot
representing the expression fold changes of tran-
scripts in Rnf17~/~ versus Rnf17*/~ pachytene
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libraries from sorted pachytene spermatocytes and round
spermatids from Rnf17*/~ and Rnf17~/~ mice to avoid
any confounds due to the mixture of different cells in
whole testes. Given that we identified a number of tran-
scripts that become targets of the piRNA pathway and
are down-regulated in Rnf17 mutants, we wished to eval-
uate whether this observation represented a global trend.
We therefore correlated changes in gene expression in
Rnf177/~ pachytene spermatocytes and round spermatids
with changes in piRNAs mapping within their tran-
scripts (exons only). Interestingly, there is a significant
correlation between genes with less steady-state mRNA
in Rnf177/~ mice and increased numbers of mapping
piRNAs. The converse is also true. Genes with fewer map-

= HiRNA in antisense orientation to the gene

Transcripts with more
piRNAs in Rnf17-/-

ping piRNAs in the mutants showed increased RNA
levels (Fig. 6C; Supplemental Table S4). This suggests
that a subset of transcripts is targeted by aberrant ping-
pong in Rnf17~/~ mice, although the extent to which
these changes in gene expression form the underlying
basis of the RNF17~/~ sterility phenotype remains to be
determined.

Discussion
Considered together, our data indicate that the ping-pong

cycle is actively repressed in meiotic cells and that this
requires the Tudor protein RNF17. Loss of RNF17 activates
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the ping-pong cycle and redirects the pathway toward
younger transposon families as well as protein-coding
genes. Although the meiotic piRNA pathway normally
disfavors ping-pong, accumulated evidence suggests that
it still functions to repress at least some transposons.
Moreover, protein-coding genes that harbor insertions of
transposon sequence are also down-regulated as a class
during spermatogenesis in wild-type animals (P < 0.005)
(Supplemental Fig. S12C). Thus, perhaps many protein-
coding genes are already affected to some extent by the
piRNA pathway and may become increasingly ensnared
by hyperactivated ping-pong responses in Rnf17 mutants.
This is especially interesting in the context of recent dis-
coveries that a small fraction of mouse pachytene piRNAs
actually target protein-coding genes, pseudogenes, and
IncRNAs (Goh et al. 2015; Watanabe et al. 2015; Zhang
et al. 2015). This observation also suggests that genes
strongly expressed at stages when piRNAs are abundant
are likely to be under active selection for avoiding trans-
poson insertions. Ping-pong responses are robust during
embryonic germ cell development, and this certainly
has the potential to consume protein-coding mRNAs
with transposon content. The degree to which the activity
of ping-pong at these developmental stages would affect
RNA levels post-transcriptionally, though, is uncertain.
The major outcome of the embryonic piRNA pathway is
transcriptional repression, correlating with the deposition
of DNA methylation marks (Aravin et al. 2008; Kuramo-
chi-Miyagawa et al. 2008). Methylation within transposon
promoters and regulatory elements is essential for their
silencing, yet methylation is often observed within the
bodies of expressed genes (Lister et al. 2009). Thus, even
if the piRNA pathway directs methylation of transposon
sequences within introns or 3’ UTRs, these marks may
be largely irrelevant to the activity of gene promoters.

Our data could suggest that the sterility of Rnf17 mu-
tant animals results at least in part from the cumulative
depletion of one or more coding or noncoding transcript
via a piRNA-based autoimmune mechanism. Among
the transcripts that were down-regulated and had in-
creased numbers of piRNA mappers in Ruf17~/~ mice
(Fig. 6C; Supplemental Table S4) we found a helicase, tran-
scription factors, translation initiation factors, phospha-
tases, and many proteins that generally regulate the cell
cycle in different manners (Supplemental Table S4).
This depletion of transcripts is potentially necessary for
meiotic division, or proper progression of spermatogenesis
could certainly cause a cascade of secondary effects result-
ing in arrested germ cell development. One such effect is
down-regulation of protamines (Prm1 and Prm2) and tran-
sition proteins (Tnpl and Tnp2) required for round sper-
matid nucleus elongation and might partially explain
the arrest at the round spermatid stage (Supplemental Ta-
ble S5).

Recently, it was shown that secondary piRNAs initiate
the spreading of primary piRNA production along the pre-
cursor transcripts (Mohn et al. 2015; Zhang et al. 2015). In
light of these data, it is possible that even a single, second-
ary piRNA could lead to a burst of piRNA production from
the targeted locus. This finding supports a crucial role of
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RNF17 in the suppression of ping-pong during mouse
meiosis.

In wild-type testes piRNAs target a number of genic
transcripts during adult spermatogenesis, and this target-
ing is most likely required for proper progression of sper-
matogenesis (Goh et al. 2015; Watanabe et al. 2015;
Zhang et al. 2015). In our data sets, we identified many
genes that had fewer piRNAs in Rnf17~/~ testes with a cor-
responding increase in transcript abundance (Fig. 6C; Sup-
plemental Table S4). Interestingly, the most up-regulated
transcript in Rnd1 77/~ pachytene spermatocytes was Pre-
lid1 (Supplemental Table S4). Prelid7 mRNA contains
MIR and LINE2 sequences and is targeted by piRNAs
during spermatogenesis in wild-type testes (Watanabe
et al. 2015). MIR- and LINE2-derived piRNAs go down in
Rnf177/~ mice (Supplemental Fig. 5B,C), as do piRNAs
mapping to Prelidl transcript (the ratio of Rnf177/~:
Rnf17*/~ piRNAs mapping to Prelid1 was 0.02). Perhaps,
since MIR and LINE2 are not evolutionarily young trans-
poson families, those types of transposons do not present
sufficient amounts of sense and antisense RNA to fuel
the ping-pong cycle. This raises an alternative explanation
of the Rnf17~/~ phenotype in which we hypothesize that
the shift of MIWI and MILI away from binding canonical
piRNA populations might cause sterility, just as loss of
MIWI does, for example. It should be noted, however,
that meiotic piRNA populations are still relatively abun-
dant (approximately half of wild type) in the Rnf17 mu-
tants despite the activation of the ping-pong cycle.

Overall, our study demonstrates that the protein com-
ponents of the meiotic piRNA pathway are perfectly capa-
ble of engaging in the ping-pong cycle but that this is
normally actively repressed. Suppression of ping-pong pre-
sumably protects protein-coding genes, fully one-quarter
of which contain transposon-derived sequences, from be-
ing silenced by the pathway, preserving the expression of
genes essential for spermatogenesis.

Materials and methods

Mice

Rnf17 knockout mice were generously provided by Jeremy Wang
(Pan et al. 2005). Miwi knockout mice were generously provided
by Haifan Lin (Deng and Lin 2002). All mice were maintained ac-
cording to the guidelines of the Cold Spring Harbor Laboratory
Institutional Animal Care and Use Committee.

Germ cell isolation and purification by
fluorescence-activated cell sorting

Germ cells were isolated and purified according to a previously
published protocol (Bastos et al. 2005) with minor modifications.
Briefly, testes were isolated from one adult mouse for each sorting
experiment, and the tunica was removed. Tissue was digested for
45 min at 37°C in a dissociation buffer containing 25 mg of colla-
genase A (Roche), 25 mg of Dispase II (Life Technologies), and
2.5 mg of DNase I (Roche). Cell suspensions diluted to 1 x 10°
cells per milliliter were then stained with Hoechst 33342 (Sigma,
H3570) at a concentration of 5 mg/mL for 30 min at 37°C in HBSS
buffer, 25 mM Hepes, 1.5 mM EDTA, and 5% FBS (HBSS*). Cells



were then washed and stained with Ep-CAM antibody conjugated
with Alexa fluor 647 (Biolegend, clone G8.8) for 30 min on ice.
Cells were then washed in HBSS* and resuspended at a concentra-
tion of 10 x 10° cells per milliliter in HBSS*. Immediately before
analysis, 1 mg/mL propidium iodide was added for dead cell ex-
clusion. Analysis was performed in a five-laser Aria II cell sorter
(Becton Dickinson). Hoechst was excited with a UV laser at 350
nm, and fluorescence was recorded with a 450/50 filter (Hoechst
Blue) and 670LP filter (Hoechst Red). A 505LP filter was used to
separate the emission wavelengths. Pachytene spermatocytes
and round spermatids were gated based on their Hoechst Blue—
Red profile in scatter plots as well as Hoechst Blue fluorescence
and forward and side scatter properties. Diploid spermatogonia
were gated based on their Hoechst Blue-Red profile and further
distinguished from somatic cells based on EpCAM staining. After
applying gates, cells were plated directly into Trizol (Invitrogen)
for RNA isolation.

Immunofluorescence, RNA immunoprecipitation,
and Western blot

For immunofluorescence, mouse testes were dissected in 1x PBS
and fixed in fresh 4% PFA (in 1x PBS) for 2-3 h at 4°C and then
washed twice with 50% ethanol and twice with 70% ethanol
for 30 min each. After fixation, samples were embedded in
OCT blocks and cut at 5-pm slices. Paraffin was removed with
Histoclear (National Diagnostics), and slices were washed with
1x PBS, blocked with 10% goat serum (in 1x PBS) for 30 min, in-
cubated with primary antibodies (1:500) overnight at 4°C, washed
three times with 1x TBST for 10 min each, and incubated with
secondary antibodies (1:1000) for 1 h at room temperature. The
slices were then washed twice with 1x TBST and incubated
with DAPI (1:10000 in 1x PBS) for 5 min, washed twice for
10 min each with 1x PBS, and mounted using ProLong Gold
anti-fade reagent (Invitrogen, P36930). Images were acquired
with a Zeiss 710 LSM confocal microscope. The primary anti-
bodies used were rabbit L1-ORF antibody (a kind gift from Alex
Bortvin) (Soper et al. 2008), mouse phospho-Histone H2A.X
(Millipore, 05-636), SCP3 (Abcam), mouse MILI (Santa Cruz Bio-
technology), and rabbit TDRDG6 (Hosokawa et al. 2007). The sec-
ondary fluorescent antibodies (Invitrogen) used were goat anti-
rabbit IgG Alexa fluor 488 (A11008) and goat anti-mouse IgG
Alexa fluor 546 (A21043). RN A immunoprecipitations and West-
ern blots were done as previously described (Aravin et al. 2008;
Vagin et al. 2013); we used rabbit RNF17 1774 antibody (Pan
et al. 2005), rabbit MIWI-N2 antibody, rabbit MILI antibody
(Vagin et al. 2009), and Tubuline antibody (Sigma, T6074).

Small RNA, transcriptome, and global 5'RACE library
preparation

Small RNA and NSR transcriptome libraries were prepared as
previously described (Armour et al. 2009; Malone et al. 2012).
Transcriptome libraries from sorted pachytene spermatocytes
and round spermatids were prepared using Ovation RNA-seq sys-
tem version 2 (Nugen) according to manufacturer’s instructions.
Global 5’RACE libraries were prepared from total testes or MIWI/
MILI immunoprecipitations as previously described (Karginov
et al. 2010). Material was obtained from testes or sorted cells of
sibling adult (6- to 10-wk-old) Rnf17~/~ and Ruf17*/~ mice.

Sequencing, mapping, and annotation

Small RNA libraries were run on an Illumina Genome Analyzer IT
(single end 36). After removing adapters, small RNA reads were
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first mapped to the mm9 mouse genome with Bowtie (Langmead
et al. 2009), with up to two mismatches and a maximum of 100
multiple alignments (otherwise suppressed). Unmapped reads
were remapped using STAR (Dobin et al. 2013) with the same cri-
teria in order to extract spliced reads. Transcriptome and 5RACE
libraries were run on an Illumina Genome Analyzer II or MiSeq
(single end 76 or single end 101). NSR transcriptome libraries
were reverse-complemented and trimmed (removing the first
8 nt). They were then mapped to the mm9 mouse genome with
STAR (allowing two mismatches and a maximum of 100 multiple
alignments). 5RACE libraries were mapped to the mm9 mouse
genome with STAR (allowing two mismatches and a maximum
of 100 multiple alignments).

All reads were annotated based on genomic locations against
structural RNAs (University of California at Santa Cruz [UCSC]
RepeatMasker track), microRNA (miRNA) (miRBase 18), TEs
(UCSC RepeatMasker track), 214 pachytene piRNA cluster coor-
dinates (Li et al. 2013), RefSeq genes (UCSC RefSeq track), and
testis-specific IncRNAs (Liu et al. 2011; Sun et al. 2013). At least
50% of the read was required to overlap with the feature before
being assigned an annotation.

Transcriptome analysis

Reads mapped to structural RNAs and miRNAs were removed
from each library. The rest of the reads were assigned to TEs,
pachytene piRNA clusters, and genes. For genes and pachytene
PiRNA clusters, only uniquely mapped reads were used for down-
stream analysis. Expression abundance estimation was per-
formed for genes and pachytene piRNA clusters using the
HTSeq count script available in the HTSeq Python framework
(Anders et al. 2015). For TEs, uniquely and multiply mapped reads
were used separately for downstream analysis and counted using
BEDTools (Quinlan and Hall 2010). Differential expression anal-
ysis was performed using the DESeq (Anders and Huber 2010)
package available in R/Bioconductor. Reads were normalized
based on an internally calculated “size factor” in DESeq. Biolog-
ical replicates were averaged and converted into a log, trans-
formed scale. Linear regression was then estimated between
libraries by fitting a linear model in R. The numbers of data points
above and below the regression line from genes, pachytene piR-
NA clusters, and TEs were counted, and a one-tail Fisher’s statis-
tic was calculated to obtain P-values. All plots were generated in
R. The numbers of replicates used from Rnf17*/~ and Rnf177/~
mice were three pachytene spermatocytes, three round sperma-
tids, and three whole testes.

Small RNA library analysis

In order to create the averaged graphs of small RNA libraries, reads
from independent biological replicates were summed up and nor-
malized with a sum of total unique genomic mappers (excluding
structural RNA). The numbers of replicates used from Rnf17+/~
and Rnf17~/~ mice were two gonia, three pachytene spermato-
cytes, three round spermatids, and two whole testes. Miwi*/~,
Miwi~'~, Tdrd6*'~, and Tdrd6~/~ libraries had no replicates.

5 RACE analysis

Only RACE reads >40 nt were analyzed in order to avoid potential
contamination from mature piRNAs. To assess intersections/
overlaps between the 5’ RACE and small RNA libraries, the 5" ge-
nomic position of each read was compared with the unique 5’ ge-
nomic position of all mature piRNA reads (24-31 nt] to identify
shared 5 ends, indicative of intersection.
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Sequence logos

In order to generate nucleotide distributions (sequence logos),
reads matching the desired criteria were separated into unique
mappers or multimappers and based on their orientation to de-
sired features. The logos were generated with Weblogo3 (Crooks
et al. 2004).

Ping-pong analysis

We determined the ping-pong signature using the tool generously
provided by Phil Zamore (Li et al. 2013). For assessing a ping-pong
signal of L1 elements, we mapped small RNA reads to an L1 con-
sensus sequence (L1D84391) with two mismatches. For assessing
ping-pong signals in mini-piRNA clusters, we mapped all small
RNA reads to the minicluster coordinates with two mismatches.
We then assessed ping-pong signals of uniquely mapped reads ori-
ented sense to miniclusters against all reads oriented antisense.
We then normalized antisense ping-pong contribution by the
number of miniclusters to which the antisense read mapped.
The mapped results were then processed to provide the strength
of ping-pong pairs at each offset. A “Z-score” was calculated using
Z =(P10-A)/S, where P10 is the value at offset 10, and A and S are
the mean and standard deviation, respectively, of values at offsets
1-9 and 11-30.

In order to count homotypic and heterotypic ping-pong pairs,
we analyzed MIWI and MILI small RNA immunoprecipitation li-
braries. First, we counted the total number of pairs with 10-nt
5" end overlap present within each immunoprecipitation library.
These pairs can perform homotypic ping-pong. We then counted
the number of pairs with 10-nt 5" end overlap across MIWI and
MILI immunoprecipitations (excluding the pairs that were count-
ed as homotypic) and treated them as heterotypic ping-pong sub-
strates. Importantly, since the majority of MIWI- and MIWI-
associated piRNAs share their 5" ends, many of the theoretically
homotypic ping-pong pairs can in fact be heterotypic. The num-
ber of homotypic ping-pong pairs was normalized with total num-
ber of unique mappers for each immunoprecipitation. The
number of heterotypic pairs was normalized with the sum of
unique mappers from both immunoprecipitations.

Identification of miniclusters

Using the guidelines described previously (Aravin et al. 2006), we
searched for the presence of de novo piRNA clusters in wild-type
and Rnf17 mutant testes. In brief, a series of sliding windows were
generated from the mouse genome using BEDTools, each 1 kb
in size and having 900 base pairs (bp) overlapping with adjacent
windows. Sliding windows that overlap previously annotated
piRNA clusters were removed from subsequent analyses. Cover-
age of each sliding window was calculated from small RNA librar-
ies generated from whole wild-type or Rnf17 mutant testes using
only reads that are uniquely mapped and at least 24 nt in length.
Windows with a coverage less than three piRNA reads per kilo-
base were discarded. Differential analyses performed using DESeq
identified sliding windows that show differential expression
(FDR < 0.05) between heterozygous mice and Rnfl7 mutants,
which were merged into larger intervals if they were overlapping
or bookended. The coordinates were further refined by the posi-
tion of the outermost piRNA in each region.

Measuring transposon content in pachytene clusters

We counted total transposon length (total number of base pairs
covered) within prepachytene and pachytene piRNA clusters (Li
et al. 2013) and the length of the genomic intervals between the
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piRNA clusters using BEDTools (Intersect). Transposon coordi-
nates were obtained from the RepeatMasker track from UCSC.
We calculated the average percent of transposon content in those
three classes of intervals and compared them using the Wilcoxon
rank sum test.

Identification of the pachytene piRNA clusters with genomic
transposon insertion bias

We filtered for clusters that were at least 20 kb or longer and had
at least two insertions of LINEs, LTRs, or SINEs. Orientation of
transposon instance/insertion was determined relative to geno-
mic strand, and the proportion of transposon inserted on the
plus (+) and minus (—) strands was calculated. A permutation
test was performed in which 100-kb genomic regions were ran-
domly selected that do not overlap piRNA clusters, and the rela-
tive orientation bias (proportion) was calculated. piRNA clusters
were then compared with the permutation data set to obtain an
empirical P-value, corrected for multiple testing using Benja-
mini-Hochberg (FDR).

Word cloud

We calculated total transposon length in three groups of piRNA
miniclusters (in protein-coding genes, IncRNAs, and areas with
no annotation) for known transposon subfamilies. We represent-
ed total length of a subfamily with the number of words equal to
the number of base pairs that this subfamily occupies within the
piRNA miniclusters. The words served as input for the word
cloud generator (https://www.jasondavies.com/wordcloud).

Genic transcript level comparison before and during meiosis

We compared transcript levels between 10.5 d post-partum (dpp;
P10, before meiosis) and 17.5 dpp (P17, start of meiosis) from pub-
licly available transcriptome data sets (Li et al. 2013). All tran-
scripts for which at least one transposon was identified as being
fully enveloped in its 3 UTR were identified using intersectBed
(BEDTools). Following this, the log, (P10/P17) values of FPKM
(fragments per kilobase per million mapped fragments) values
were compared between transcripts harboring at least one trans-
poson versus no transposon in the 3’ UTR.

Correlation of gene transcription and piRNA targeting

The current (May 30, 2015) mm9 RefSeq GTF file was obtained
from UCSC genome browser. All gene entries were collapsed us-
ing BEDTools “merge” to develop a BED file of nonoverlapping
genomic intervals. Using this BED file, a fasta file was generated
using BED tool “get fasta,” and this was then transformed into
a Bowtie index. Sequencing reads (three replicates of each library)
from pachytene spermatocytes and round spermatids of Rnf1”*/~
and Rnf17~/~ mice were trimmed of their adapters using
FASTX clipper. Files were filtered for reads 24-32 nt long. Reads
were then aligned with no mismatches and no maximum on the
number of alignments allowed. Mapped counts were then nor-
malized using DESeq. Genes were identified where either one
of the Rnf17*/~ or Rnf177/~ library had an average of 10 piRNA
reads mapped per million and the log, fold changes were in either
the top or bottom quintile. These genes were then compared for
their RNA-seq expression fold changes (described above). In the
case of botch pachytene spermatocytes and round spermatids,
there was a significant difference in the fold changes among
the two gene sets; Wilcoxon Rank-Sum P-value = 8.2 x 107¢ for
pachytene spermatocytes, and P-value=9.73x1077 for round
spermatids.
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Quantitative RT-PCR (qRT-PCR) for the genes that harbor
PiRNA miniclusters

RNA was extracted using TRIzol reagent (Invitrogen) according
to the manufacturers’ instructions. RNA was treated with DNase
I amplification grade (Invitrogen). Complementary DNA was
prepared by reverse transcription using oligo(dT)20 primer and
SuperScript IIT reverse transcriptase (Invitrogen). QPCR was car-
ried out using SYBR Green PCR master mix (Invitrogen) on a
Chromo4 real-time PCR detector (Bio-Rad). Transcripts were
quantified using the AACt method (Livak and Schmittgen 2001)
and normalized to transcript levels of a reference gene (Mvh or
Actb). At least two biological replicates were used to measure
the gene expression. We used the following primers: Rnf168-f
(CAAGAAGAGCAGGACAGATTGTT) and Rnf168-r (GGGT
GTGCGTAGCTGGTACT), Spata9f (TCCTGCCAACAAGC
AGAGTA) and Spata9-r (TCCCTACCCTGTCCCTTCTT),
Spatcl-f (AGTTGGATGAGGACCTGTGC) and Spatcl-r (TAG
CACACGCTGCAAGAAGT), Tektd-f (CGAGGTGGAGGAG
TTGAACA) and Tektdr (GCGGTGGGTCATACACTTCT),
GM597-f TGATCTTGTTCCGAGGCTCT) and GM597-r (AAT
CAGTGGAGGCATTCCAG), Mvh-f (AAAGAAATCGCTCTG
CCAGT) and Mvh-r (ATTTTCGCTGTGGAAAGTGC|, Ruf17-f
(CCCTCAAGAAAATGAAGATGGA) and Rnf17-r (GGCTGC
TTCTTTTTCCCTTC), Miwi-f (AGTGAGAAGCGGGAGTGT
GT) and Miwi-r (CACGTGGCAGAGCTTGTATG), and Actb-f
(CGGTTCCGATGCCCTGAGGCTCTT) and Actb-r (CGTCA
CACTTCATGATGGAATTGA).

Primary sequencing data can be obtained from the Gene Ex-
pression Omnibus (GSE53919 and GSE17319).
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