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Hyperglycemia as a common metabolic disorder in diabetes led to oxidative stress, inflammation and
other complications. Natural and manufactured antioxidants alleviates the side effects of diabetes. The
purpose of current study is to investigate the effect of pyrroloquinoline quinine (PQQ) as an antioxidant
on the content of glucose-induced oxidative stress generation in the cells of the human hepatocellular
liver carcinoma (HepG2) by inhibiting advanced glycation end products (AGEs) formation. The HepG2
cells were exposed to high dose (50 mM) of glucose (HG) only and with PQQ (HG + PQQ). Treatment with
high dose increased AGEs formation, expression of receptor for advanced glycation endproducts (RAGE),
reactive oxygen species ROS production, and oxidative stress markers in treated HepG2 cells.
Interestingly, PQQ significantly reduced AGEs formation and (RAGE) expression, ROS formation, and
inflammation induced by glucose. In conclusion, PQQ has a potentiail role as an antioxidant to reduce
the oxidative damage during hyperglycemia by AGEs inhibition.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Diabetes is a chronic disease that impacts several individuals
around the globe (Gupta et al., 2019; Singh et al., 2020; Syed
et al., 2020, 2021). Throughout this disorder, insulin resistance,
secretion, or both severely impair glucose metabolism leading to
hyperglycemia (Samadder et al., 2011). Hyperglycemia result in
oxidative stress, inflammations and other disorders in body organs
(Kapoor and Kakkar, 2012). Hyperglycemia also leds to generation
of free radicals that exert an essential role in the complexities of
diabetes and cause cellular dysfunction. A natural body system
defines oxidative stress and keep the balance between production
and removing free radical Oxidative stress includes aging and a
variety of illnesses such as cardiovascular conditions, cancer, and
complications of diabetes (Atalay and Laaksonen, 2002). Abnormal
cellular metabolism in a person with diabetes has been docu-
mented to generate free oxygen radicals and develop antioxidant
capacity (Antunes and Cadenas, 2000; Nishikawa et al., 2000).

Advanced glycation end products (AGEs), non-enzymatic bind-
ing products of free sugar reduction, and reactive carbonyls to pro-
teins are produced within the body during homeostasis (Njoroge
et al., 1987; Reddy et al., 1995; Syed et al., 2020). AGEs formation
levels have been related to redox balances. Excessive accumulation
of AGEs occurs in pathological conditions such as hyperglycemia
(Hu et al., 2020; Syed et al., 2020; Yamagishi and Matsui, 2011).
AGEs’ role in cancer initiation and progression is attracting ever
more attention. AGE treatment of various cancer cell lines pro-
motes cell proliferation, migration, and invasion (Jiao et al., 2011;
Sparvero et al., 2009; van Heijst et al., 2005). Oxidative stress is a
discrepancy between the reactive oxygen species (ROS) and the
antioxidant protection system. ROS acts as signal molecules at
some rates to promote cell proliferation, apoptosis, and gene
expression (Chan, 2001; Finkel, 1998). High level of ROS result
oxidative damage, which inhance the progression of diabetes and
cancer diseases (Moloney and Cotter, 2018; Newsholme et al.,
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2016; Syed et al., 2016a, 2016b). High levels of AGE lead to
increased ROS generation (Rochette et al., 2014; Volpe et al.,
2018). The liver is the main organ of metabolism and management
of glucose. In addition, hyperglycemia causes liver dysfunction
thus, reducing the production of (ROS) and inhance the normal
function of liver prevent liver disorders. According to previous
reports, oxidant stress is the biochemical trigger for hepatic dys-
function in diabetic rats, (Cusi, 2009). Morever, mitochondria is
one of the cell organels that response to high level of ROS and high
glucose-induced oxidative stress (Sun et al., 2012; Xu et al., 2012).
However, controlling hyperglycemia by insulin or other kind of
medications causes various complications, like fatty liver
(Kandhare et al., 2012; Zhang and Liu, 2011). The side effects of
hyperglycemia can be reduced by using antioxidants (Kapoor and
Kakkar, 2012; Vincent et al., 2004).

Pyrroloquinoline quinone (PQQ) beneficial effects in reducing
hyperglycemia have not been investigated as causing oxidative
stress in an in vitro. In vivo, PQQ has been demonstrated to shield
living cells from oxidative damage, and in vitro, it was shown to
protect biomolecules from artificially induced reactive oxygen spe-
cies (Misra et al., 2012). A study reported that PQQ treatment with
PQQ reduced the ROS, oxidative stress levels, ameliorated mtDNA
damage, and increased the mitochondrial membrane potential
(MMP) (Masudul et al., 2021). It serves as a nutrient and vitamin
to enable living cells development and defend themselves while
they are under stress (Misra et al., 2012). The protective activity
of PQQ due to its antioxidant effect (Decker, 1995; Misra et al.,
2012; Nunome et al., 2008; Tao et al., 2007).

Therefore, this research work investigated the preventive
effects of (PQQ) as an antioxidant on the content of glucose-
induced (ROS) production in the (HepG2) cell line by inhibiting
AGEs formation.
2. Material and methods

2.1. Cell culture

The used (PQQ) was obtained from Sigma Aldrich Chemical Co.,
St., USA. The hepatocytes, HepG2 cells were purchased from the
American Type Culture Collection (Manassas, VA, USA) and were
upheld in DMEM (Sigma), having 10% FBS (Gibco), kept at 37 �C
and 5% CO2. It was incubated for 24 h, and when there was semi-
confluent cells, it was exposed to PQQ (100 nM) (Yamada et al.,
2020) and to the 50 mMD-Glucose (HG). Subsequently, the cells
proceeded for various assays after 24 h incubation.

2.2. Estimation of advanced glycation end products AGE

The AGEs level was estimated in HepG2 cells using the ELISA kit.
In brief, the HepG2 cells were cultured in 6-wells culture plates
and treated with HG (50 mM) with and without PQQ (100 nM).

2.3. Estimation of reactive oxygen species (ROS)

The (ROS) was estimated in cells by using DCFDA, and the image
was captured under fluorescent microscope and by fluorometry
(Syed et al., 2016a, 2016b). The formation of a fluorescent product
was measured at an excitation wavelength of 488 nm and an emis-
sion wavelength of 530 nm using fluorescent microscope EVOS FL
auto (Life technology, USA).

2.4. Estimation of oxidative stress

Stress markers like malonaldehyde (MDA), and reduced glu-
tathione (GSH), were estimated as per the described protocol
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(Dai et al., 2019; Prabhakar et al., 2012). SOD was measured by
using a SOD kit (item no. 706002, Cayman chemical) according to
manufactory protocol.

2.5. Estimation of tumor necrosis factor-a (TNF-a) and cytokines

The TNF-a, interleukin (IL-1b) and interleukin 6 (IL-6) were
determined using ELISA kit according to the manufacturer’s
instructions.

2.6. Real-time PCR

The RNA from cells were isolated using the TRIzol (Sigma
Aldrich) method as described previously (Syed et al., 2016a,
2016b). The primers were obtained from Eurofins Scientific,
Luxembourg.

2.7. Data analysis

The obtained results in the present research was written as
Mean ± SEM. The data were analyzed by one-way ANOVA followed
by a Tukey’s tests using GraphPad Prism 8.0 software. p < 0.05
value was set as statistically significant.

3. Result

3.1. The levels of AGEs and RAGE

The level of AGEs was estimated in cell lysate by ELISA (Fig. 1A).
The high glucose group (HG) exposed cells demonstrated signifi-
cantly enhanced levels in the HG group as compared to the control
group. At the same time, the PQQ treated group showed signifi-
cantly decreased level as compared to the HG group. The mRNA
(Fig. 1B) expression of RAGE measured by qPCR which further sup-
ported the above AGEs level.

3.2. The effects of PQQ on ROS and oxidative stress markers

The ROS activity was substantially increased in the HG exposed
cells. On treatment with PQQ, the ROS level was substantially
decreased as compared to the diseased (HG exposed) group
(Fig. 2A, B). The level of oxidative stress markers like MDA and
GSH were measured to be abnormal in the HG group as compared
to the control group. Additionally, the cells treated with PQQ had
shown significant protection against oxidative stress by showing
the level comparable to the control group (Fig. 3A, B). The level
of SOD activity was significantly reduced in HG exposed cells as
compared to the control group. On treatment with PQQ, it showed
a significant increse as compared to the HG group. (Fig. 3C).

3.3. The effects of PQQ on the inflammatory cytokine markers

The level of inflammatory markers, including TNFa, IL6, and
IL1b revealed significantly enhanced level in HG exposed cells as
compared to the control group. On treatment with PQQ, it showed
a significant decrease as compared to the HG group. The expression
of the cytokinesat the mRNA level measured by qPCR supports the
cytokine level determined by ELISA kit (Fig. 4).

4. Discussion

It has been documented that PQQ exerts protecting effects on
oxidative stress-induced cell damage in the brain, liver and heart
by reducing oxidative stress and ROS (He et al., 2003; Nunome
et al., 2008; Pandey et al., 2014; Tao et al., 2007). In the present



Fig. 1. Effect of PQQ on (A) AGEs level and (B) mRNA RAGE expression. Data are shown as Mean ± S.E.M, *Control vs HG; #HG vs HG + PQQ. **P < 0.01, ***P < 0.001; #P < 0.05,
##P < 0.01.

Fig. 2. Effect of PQQ on ROS production was determined using DCFDA by (A) microscopic imaging (magnification 40x), and (B) fluorometry. Data are shown as Mean ± S.E.M,
*Control vs HG; #HG vs HG + PQQ. **P < 0.01; ##P < 0.01.

Fig. 3. Effect of PQQ on oxidative stress marker (A) MDA level, (B) GSH level and SOD activity (C). Data are shown as Mean ± S.E.M, *Control vs HG; #HG vs HG + PQQ.
*P < 0.05, ***P < 0.001; ##P < 0.01; ###P < 0.01.
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research, we concentrated on PPQ’s inhibitory effect on the cell
model of HG-induced cell damage by inhibiting AGEs formation.
In this research, we have used hepatocyte, HepG2 cells and high
glucose concentration as an in vitro model of the toxicity of glucose
in liver cell lines. However, when the HepG2 cells were incubated
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with a HG (50mM), we observed a substantial reduction in cell via-
bility. Several studies have utilized a high glucose concentration
(50 mM) as an in vitro model to investigate toxicity caused by
hyperglycemia that simulated the in vivo state of diabetic ketoaci-
dosis in acute or untreated diabetes (Chandrasekaran et al., 2010;



Fig. 4. Effect of PQQ on inflammatory markers (A) TNF-a, (B) IL6, (C) IL-1b, (D) mRNA TNF-a expression, (E) mRNA IL6 expression, and (F) mRNA IL-1b expression. Data are
shown as Mean ± S.E.M, *Control vs HG; #HG vs HG + PQQ. **P < 0.01, ***P < 0.001; #P < 0.05; ###P < 0.001.
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Greene et al., 1992; Jiang et al., 2015). The development of induced
hyperglycemia-ROS in different cell types plays a vital role in the
pathogenesis of diabetic complications (Giugliano et al., 1996; Ha
and Lee, 2000; Volpe et al., 2018). LPO and protein oxidation can
result in damage to the membrane, impairment of the production
of ATP, and other essential cell functions. As a result, the the total
damage leads to the beginning of death signals in the cell via apop-
tosis or necrosis resulting in damage of tissues (Shi et al., 2005;
Tandon et al., 2004). In vivo, PQQ has been demonstrated to shield
living cells from oxidative damage, and in vitro, it was shown to
protect biomolecules from artificially induced reactive oxygen spe-
cies (Misra et al., 2012). It serves as a nutrient and vitamin to
enable living cells development and defend themselves while they
are under stress (Misra et al., 2012). The protective activity of PQQ
due to its antioxidant effect (Decker, 1995; Misra et al., 2012;
Nunome et al., 2008; Tao et al., 2007). PQQ showed antioxidant
activity as depicted by ROS activity (Fig. 2), MDA, GSH level ans
SOD activity (Fig. 3). We initially examined an oxidative stress
indicators after exposure to hyperglycemic conditions of the
HepG2 cells. We observed elevated development of ROS along with
oxidative stress markers after exposure to 50 mM glucose com-
pared to control group, as shown in the results (Figs. 2 and 3).
Interestingly, this increase in ROS is due to the increased level of
AGEs formation and RAGE expression, which demonstrated the
role of oxidative stress in cell damage caused by hyperglycemia.
These data support earlier reports on the role of glucose-
mediated oxidative stress in complications with diabetes
(Chandrasekaran et al., 2010; Haidari et al., 2013; Kang et al.,
2011; Nelson et al., 2012). It has been documented that the risk
of development of complications in diabetic patients with increase
in LPO and plasma GSH enzymes has a direct relationship (Anwer
et al., 2012; Rabbani et al., 2010; Safhi et al., 2019). Moreover, PQQ
can increases the activity of antioxidant enzymes, inhibits the pro-
duction of ROS and MDA, reduces the expression of inflammatory
genes. Furthermore, these data also suggest that PQQ controls
mitochondrial activity through directly affecting the NADH dehy-
drogenase (Lixia et al., 2021). The most effective way of minimizing
complications of diabetes is strict glycemic control, but this control
can not be accomplished in most cases (Molitch et al., 1993;
Vincent et al., 2004). Instead of additional therapy, it is important
to use antioxidants to inhibit the pathological pathways that lead
to complications caused by hyperglycemia (Chugh et al., 2001;
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Krishan and Chakkarwar, 2011). As indicated in the data, following
exposure to a increased concentration of glucose (50 mM), PQQ at a
concentration of 100 nM significantly decrease AGEs level and
RAGE expression in the HepG2 cell line. This effect was likely
due to the inhibition of ROS formation caused by glucose. In HepG2
cells, we measured the rate of ROS formation which showed a sig-
nificant increase in the high glucose treated group compared to the
control group. Curiously, due to antioxidant properties, PQQ pre-
vented the development of glucose-induced ROS. In HepG2 cells
PQQ strongly inhibited MDA, which was induced by hyper-
glycemia. We performed the GSH assay as the significant antioxi-
dant cell that might scavenge H2O2 and other ROS (Shaki and
Pourahmad, 2013). Our data showed that GSH oxidation induced
by 50 mM glucose was significantly reversed with PQQ. In another
study, red wine treatment substantially prevented the oxidative
stress caused by streptozocin in the rat brains (Montilla et al.,
2005). The exposure of hepatocytes (rat primary cells) to a
increased concentration of glucose (40 mM) resulted in reduced
cell viability, increased ROS formation, and reduction of hepatocyte
antioxidant material. In primary rat hepatocytes, however, treat-
ment with PQQ has reversed high glucose-induced oxidative stress
and cell death (Kapoor and Kakkar, 2012). The liver is well known
to be very susceptible to oxidative damage under hyperglycemic
conditions, which may lead to damage to the liver cells of diabetic
patients in a chronic state (Pourkhalili et al., 2011). Antioxidant
treatment may also be used as a preventive technique to attenuate
the side effects of hyperglycemia.
5. Conclusion

Current results showed that PQQ ameliorates the production of
ROS, reduced oxidative stress and inflammation due to hypergly-
caemia. Thus this study illustrated the potential role of PQQ as
an effecvtive candidate for attenuation of oxidative damage to
hyperglycemia by AGEs inhibition.
6. Availability of data

Data will be available on request to corresponding or
firstauthor.
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