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Dysbiosis, defined as an imbalance in the gut microbiota caused by too few beneficial bacteria and an overgrowth 
of bad bacteria, yeast, and/or parasites, is now being associated with several diseases, including the development of 
colorectal carcinoma (CRC). In this study, the potential association of Clostridioides difficile (formerly Clostridium 
difficile) with CRC was investigated. Plasma samples obtained from preoperative histologically confirmed CRC 
patients (n=39) and their age- and sex-matched clinically healthy controls (n=39) were analyzed for antibodies 
to toxin B of C. difficile (anti-tcdB) by enzyme-linked immunosorbent assay (ELISA). A significantly greater 
number (p=0.012) of CRC cases (n=26/39, 66.7%) had anti-tcdB IgG levels above the cutoff value compared 
with controls (n=12/39, 30.8%). Eight cases (8/39, 20.5%) and none of the controls registered anti-tcdB IgA levels 
above the cutoff value (p=0.0039). Anti-tcdB IgG and IgA levels were not shown to be significantly associated with 
tumor grade or tumor stage. Anti-tcdB IgG showed 66.7% sensitivity and 69.2% specificity. For anti-tcdB IgA, 
sensitivity and specificity were 20.5% and 100%, respectively. The positive predictive values for anti-tcdB IgA 
and IgG were 100% and 68.4%, respectively. The anti-tcdB IgA and IgG negative predictive values were 55.7% 
and 67.5%, respectively. The results suggest the potential association of C. difficile with CRC and anti-tcdB levels, 
particularly the IgA level. Hence, anti-tcdB antibodies can be candidate serologic markers for CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent cancers 
in the world [1]. Diet, particularly the consumption of poultry and 
animal products, has been linked to increased cases of CRC [2]. 
Imbalance in chromosome number, genomic amplifications in the 
subchromosomal region, and high frequency of heterozygous loss 
also lead to mutation and malignant transition of cells in the colon 
[3, 4].

In addition, the potential role of gut microbes in CRC 
development has been a hot topic lately. Several hypotheses 
have emerged on how these bacteria promote carcinogenesis. 
Dysbiosis and alterations in the normal microbial community 
remodel the whole microbiome, initiating inflammation and cell 
differentiation which could eventually lead to cancer [5]. The 

“driver-passenger” model proposes that some bacteria classified 
as “bacterial drivers” initiate the development of colonic tumors 
through gene damage, stimulating the colonization of passenger 
bacteria in the tumoral microenvironment [5, 6]. Some “keystone 
pathogens” that emerge during dysbiosis and are likely to be 
part of carcinogenesis include Bacteroides, Enterococcus, 
Fusobacterium, Streptococcus, Escherichia coli, and Clostridium 
[5, 7].

Clostridioides difficile (formerly Clostridium difficile) is a 
gram-positive, anaerobic, motile endospore-forming bacterium 
that is part of the normal gut microbiota and present in 2–5% of 
the adult population [8]. Few studies have been conducted on the 
potential role of C. difficile in the malignant transformation of 
cells in the colon [9–12]. Supposedly, the toxin B of C. difficile 
(tcdB) deregulates Rho-GTPases, leading to increased expression 
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of proto-oncogenes [13]. Hence, this study was conducted to 
determine any association of C. difficile with CRC development 
among preoperative Filipino patients by analyzing their antibody 
levels against tcdB.

MATERIALS AND METHODS

This study was approved by the Institutional Review Boards 
of the University of Santo Tomas Hospital (USTH) in Manila 
(IRB-2016-11-191-IS-A1/CR2) and Mariano Marcos Memorial 
Hospital and Medical Center (MMMHMC) in Ilocos Norte 
(RERC-17-001). All participants gave their written informed 
consent.

Preoperative patients with histologically confirmed CRC 
(n=39) seen at USTH and MMMHMC between April 2018 and 
March 2019 were enrolled as cases. They were age (± 2 years) 
and sex-matched with physician-assessed clinically healthy 
controls (n=39) living in the same locality. All clinical data were 
retrieved from medical records. Blood was collected in EDTA 
tubes from all participants. Plasma was immediately separated 
by centrifugation at 2,500 RPM for 15 min and stored at −20°C 
until analysis.

Plasma samples were analyzed for anti-tcdB IgG and IgA using 
a commercial enzyme-linked immunosorbent assay (ELISA; 
tgcBiomics, Bingen am Rhein, Germany) according to the 
manufacturer’s protocol. Negative and positive controls provided 
by the manufacturer were run in parallel with the samples for 
each plate. Absorbance readings equal to or above the cutoff value 
(OD450-620=0.200) as set by the manufacturer were considered 
positive. Each sample was analyzed in duplicate, and ELISA was 
run twice to assess reproducibility of results.

Anti-tcdB IgG and IgA levels of CRC cases and matched 

clinically healthy controls were compared using paired t-test, and 
p<0.05 was considered significant. Logistic regression analyses 
followed by one-way ANOVA and two-sample t-test with equal 
variances were performed to determine any association of 
anti-tcdB IgG or IgA levels with tumor grade and tumor stage, 
respectively. Diagnostic performance (sensitivity, specificity, 
positive and negative predictive values) of the anti-tcdB ELISA 
was also computed. All statistical analyses were conducted using 
the Stata 14 software (StataCorp, College Station, TX, USA).

RESULTS

Clinical and serologic profiles of CRC cases and matched 
clinically healthy controls

There were more males (22/39, 56.4%) than females, and 
the mean age at initial diagnosis was 58 years old. Most of the 
cases had well (28.2%) or moderately (35.9%) differentiated 
tumors and were in an advanced stage (stage III or IV, 48.7%) at 
presentation (Table 1).

Significantly higher numbers of CRC cases had anti-tcdB 
IgG (p=0.012) and IgA (p=0.004) levels above the cutoff values 
compared with controls. Among the study participants, 26 
(66.7%) cases and 12 (30.8%) controls tested positive for the 
anti-tcdB IgG. For IgA, only 8 (20.8%) of the cases and none 
of the controls were positive. Mean absorbances of the cases 
(IgG=0.520; IgA=0.171) were significantly higher (p=0.0041 for 
IgG; p=0.0051 for IgA) than those of the controls (IgG=0.260; 
IgA=0.073; Fig. 1).

Association of anti-tcdB IgG and IgA levels with tumor grade 
and stage

Mean anti-tcdB IgG and IgA levels of CRC cases with well-
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Table 1. Clinical characteristics of the cases

Characteristics n=39 %
Sex

Male 22 56.4
Female 17 43.6

Age at initial diagnosis
<50 years 11 28.2
≥50 years 28 71.8

Mean age at initial diagnosis (years ± SD) 58 ± 12
Median age at initial diagnosis (years ± SD) 61 ± 12
Tumor grade

G1 (well-differentiated) 11 28.2
G2 (moderately-differentiated) 14 35.9
G3 (poorly-differentiated) 3 7.7
No information available 11 28.2

Tumor stage
T1/2 (early) 8 20.5
III/IV (advanced) 19 48.7
No information available 12 30.8

Tumor location
Colon 17 43.6
Rectum 17 43.6
Rectosigmoid 3 7.7
Cecum 1 2.6
Sigmoid 1 2.6

Fig. 1. Anti-tcdB IgG and IgA levels of CRC patients versus healthy 
controls. Significantly higher numbers of CRC cases had anti-tcdB 
IgG (p=0.012) and IgA (p=0.004) titers above the cutoff values 
compared with controls. The mean IgG absorbance of the cases 
(0.520) was significantly higher (p=0.0041) than that of the controls 
(0.260). The mean IgA absorbance of the cases (0.171) was also 
significantly higher (p=0.0051) than that of the controls (0.073).
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differentiated, moderately differentiated, and poorly differentiated 
tumors were not significantly different (IgG, p=0.5337; IgA, 
p=0.7506) from each other. Likewise, those diagnosed with early 
(I/II) stages of CRC had mean anti-tcdB IgG and IgA levels that 
were not significantly (IgG, p=0.4845; IgA, p=0.2522) different 
from those who presented at an advanced (III/IV) stage of the 
disease (Table 2).

Diagnostic value of anti-tcdB IgG and IgA levels
The performance of the anti-tcdB ELISA in discriminating 

CRC was computed using the histologically confirmed CRC cases 
who tested positive for anti-tcdB IgG or IgA as true positives and 
the physician-assessed clinically healthy and malignancy-free 
volunteer controls who tested negative for anti-tcdB IgG or IgA as 
true negatives. Table 3 shows that anti-tcdB IgG is fairly sensitive 
(66.7%) and moderately specific (69.2%) for detection of CRC. 
Meanwhile, anti-tcdB IgA was very specific (100%) but showed 
very low sensitivity (20.5%). Since the positive predictive value 
for anti-tcdB IgA was 100%, a positive test could be equated with 
having CRC. Since the negative predictive value was 55.7%, a 
negative or normal test for anti-tcdB IgA would require other 
tests to confirm the results.

DISCUSSION

The results of this study show that a significantly higher 
number of preoperative histologically confirmed CRC cases were 
positive for the anti-tcdB IgG and IgA antibodies compared with 
their age- and sex-matched clinically healthy controls. Based on 
the above observations, it can be inferred that there is a potential 
association of C. difficile with CRC among selected Filipino 
patients.

A high prevalence of C. difficile among preoperative CRC 
patients was previously reported in China [10]. It was also observed 
that a significantly higher quantity of Fusobacterium nucleatum 
and C. difficile were present in fecal samples of CRC patients 
compared with healthy controls in Brazil, suggesting that these 
bacteria may play a significant role in colon carcinogenesis [9]. 
Whole-genome sequencing of the gut microbiota further showed 
that Bacteroides, Fusobacterium, Streptococcus, and Clostridium 
were the most abundant genera in tumor versus normal samples 
[12]. Another study unexpectedly discovered that Clostridium, 
Fusobacterium, and Lactobacillus species were more abundant in 
the gut than Helicobacter pylori. The study also found that these 
bacteria demonstrated certain cancer-specific bacterial signatures 
[11].

Members of the human intestinal microbiota have been 

implicated in the development of CRC. Enterotoxigenic 
Bacteroides fragilis (ETBF) induces colonic tumors by triggering 
a Th17 inflammatory response [14] and activating signal 
transducer and activator of transcription 3 (STAT3) [15]. F. 
nucleatum is thought to promote inflammation and tumorigenesis 
by modulating the tumor immune microenvironment via 
expansion of myeloid-derived immune cells [16]. A study found 
intraepithelial E. coli in the tumors of CRC cases, specifically 
in the colonic mucosa [17]. The prevalence of E. coli in the 
colon could have induced chronic inflammatory responses [18], 
contributing to CRC development, as has been observed [19]. 
Streptococcus gallolyticus subsp. gallolyticus has also been 
demonstrated to promote malignant transformation of colon cells 
depending on cell context, bacterial growth phase, and direct 
contact between bacteria and colon cancer cells [20–22].

The potent toxin B enterotoxin of C. difficile (tcdB) has 
been proven to induce the inflammatory response that occurs in 
pseudomembranous colitis [23]. First, it binds to the receptors of 
the target-specific host cells when released into the environment. 
The toxin-receptor complex is endocytosed into the host cells, 
and the toxin is translocated into the cytosol, passing through 
the acidic endosomal membrane. As the active toxin moiety 
(glucosyltransferase) is released into the environment, it transfers 
glucose into the Rho proteases, preventing the normal binding 
of GTP to the GDP-bound form of Rho protein, thus making 
it inactive. Any deregulation of the activities of these proteins 
promotes pathogenic effects such as the disruption of epithelial 
integrity and opening of tight junctions [24]. Immune mechanisms 
such as vascular permeability, tumor necrosis α activation, and 
pro-inflammatory interleukin production are then stimulated, 
leading to chronic inflammation-induced colitis and inflammatory 
bowel disease, which are major risk factors for growth and 
proliferation of tumor cells in the colorectal tract [25–27].

C. difficile has been proven to proliferate during antibiotic-
induced dysbiosis in the gut microenvironment [28–31]. 
Antibiotic treatments deplete the commensal bacteria in the gut, 
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Table 2. Association of tumor grade and tumor stage with anti-tcdB levels

Tumor grade n=28 Mean IgG SD p-value* Mean IgA titer SD p-value*
Well-differentiated 11 0.54 0.46 0.5337 0.21 0.23 0.7506
Moderately differentiated 14 0.63 0.64 0.19 0.22
Poorly differentiated 3 0.23 0.25  0.10 0.04  

Tumor stage n=27 Mean IgG SD p-value# Mean IgA titer SD p-value#

Early stages (I/II) 8 0.62 0.63 0.4845 0.22 0.27 0.2522
Advanced stages (III/IV) 19 0.46 0.48  0.13 0.11  

SD: standard deviation. *One-way ANOVA. #Two-sample t-test with equal variances.
It should be noted that information was not available for the tumor stages and grades of 11 and 12 cases, respectively.

Table 3. Diagnostic performance of anti-tcdB levels in 
detecting colorectal carcinoma

Parameters* IgG (%) IgA (%)
Sensitivity 66.7 20.5
Specificity 69.2 100.0
Positive predictive value 68.4 100.0
Negative predictive value 67.5 55.7

*At 95% confidence interval (CI).
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which are known to metabolize primary bile acids into secondary 
bile acids that, in turn, inhibit the proliferation of C. difficile. 
Hence, depletion of commensal bacteria leads to accumulation of 
primary bile acids, which serve as energy sources of C. difficile 
for growth and proliferation [32].

Records show that the Philippines has a history of prevalent 
antibiotics misuse [33] and self-medication [34]. Antibiotics 
are widely available in convenience stores, and Filipinos have 
been observed to often share them with family members, 
even those without prescriptions [33]. Moreover, agriculture, 
aquaculture, and horticulture businesses in the Philippines 
commonly incorporate antibiotics in their products [35]. Hence, a 
longitudinal study of long-term antibiotic use in patients answer 
questions related to antibiotic-induced C. difficile proliferation 
and CRC development.

While previous studies [9, 10] analyzed fecal samples by 
molecular techniques, the current study compared the anti-tcdB 
IgG and IgA levels of preoperative CRC patients with matched 
physician-assessed clinically healthy controls. The results show 
that the anti-tcdB IgA titer was more associated with CRC than 
the anti-tcdB IgG titer and hence was a more valuable serologic 
marker. The elevated anti-tcdB IgA levels may be attributed to 
the invasion of the mucosal barrier of the colon or rectum by 
C. difficile [36]. Meanwhile, the presence of this bacterium in 
2–5% of the adult population [8] may explain why a number of 
clinically healthy cases also tested positive for anti-tcdB IgG.

Similarly, higher levels of anti-F. nucleatum (anti-Fn) IgA 
have been recorded in preoperative CRC patients compared with 
healthy controls [37]. In the current study, anti-tcdB IgG and 
IgA levels were not seen to be associated with the tumor stage or 
tumor grade. In comparison, anti-Fn IgG, but not IgA, levels were 
associated with the tumor grade [37]. But similar to the current 
study, tumor stage was not also associated with anti-Fn IgG or 
IgA levels [37]. Serologic markers have been useful in evaluating 
other infection-associated cancers, such as those caused by the 
human papillomavirus [38, 39], Epstein Barr virus [40], and H. 
pylori [41].

While the results show that a significantly greater number 
of preoperative CRC patients were positive for the anti-tcdB 
antibodies, it is not certain whether this organism directly or 
indirectly induced the malignant transformation of colon cells. 
It could be that the increase in anti-tcdB IgG and IgA levels was 
due to chronic infection with C. difficile or that the presence 
of malignancy weakened the beneficial members of the gut 
microbiota, thereby increasing the risk of C. difficile colonizing 
the large intestine. Whichever is the underlying reason, anti-tcdB 
antibodies have proven to be valuable in evaluating CRC.

This study contributes to the limited data on the high occurrence 
of C. difficile in CRC cases. However, it was only able to enroll 
a small number of preoperative CRC cases, since the majority of 
the patients from the study sites had already undergone surgery 
and other forms of treatment when the study was initiated. Future 
studies should include information on long-term antibiotics use 
and history of inflammatory bowel disease. Molecular analysis 
of tissues and fecal samples must also be done to confirm the 
results of the current study. Finally, assays for carcinoembryonic 
antigen (CEA) and CA 19-9 can be run in parallel with anti-tcdB 
IgG and IgA to determine if the sensitivity of the latter can be 
significantly improved without compromising the specificity, as 
has been observed with anti-Fn antibodies [37].
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