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Abstract
Labeling RNA is of utmost interest, particularly in living cells, and thus RNA
imaging is an emerging field. There are numerous methods relying on different
concepts ranging from hybridization-based probes, over RNA-binding proteins
to chemo-enzymatic modification of RNA. These methods have different
benefits and limitations. This review aims to outline the current state-of-the-art
techniques and point out their benefits and limitations.
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Introduction
The localization of mRNA in the cell has been a topic of interest 
since the 1980s, when protein localization was linked to local-
ized mRNA translation1. At that time, the only method by which 
RNA could be visualized was in situ hybridization (ISH)2. Since 
then, the options for RNA detection have expanded greatly. Labe-
ling RNA—particularly mRNA—is of utmost interest, as mRNA 
localization has been shown to be important in a range of situations. 
For example, in a developing Drosophila oocyte, asymmetri-
cally localized mRNA produces a bicoid protein gradient through  
localized translation, which specifies the anterior-posterior polar-
ity of the developing larva3. In neurons, localization of mRNA is 
also particularly important, and localized mRNA leads to multiple 
rounds of translation at the synapse and activity-dependent changes4. 
Additionally, since the number of genes transcribed was found to 
surpass the amount of protein-coding genes, interest in non-coding 
RNAs has increased5. Thus, imaging microRNAs or small inter-
fering RNAs (siRNAs) is also of interest6. Furthermore, defects in 
mRNA localization play an important role in some diseases such as 
fragile X syndrome7, and non-coding RNAs have been shown to be  
important in diseases such as cancers8.

Hybridization methods
ISH is used to visualize RNA containing a known sequence. A 
DNA or RNA strand of complementary sequence hybridizes to the 
RNA strand of interest via Watson-Crick base pairing. The probe 
bears features that enable its visualization (e.g., a fluorophore; 
Figure 1A). Fluorescence in situ hybridization (FISH) can distin-
guish between RNA molecules that differ in only a single base9. 
FISH is highly sequence-specific, and individual RNA strands 
may be detected when combined with various amplification proce-
dures in fixed cells9,10. A variety of derivatives of ISH that reduce  

background signal have been developed, most notably molecular 
beacons (Figure 1B). Molecular beacons consist of a DNA probe 
that is linked to a fluorophore at one end and a quencher at the 
opposite end. When unbound, the probe folds into a hairpin struc-
ture, bringing the fluorophore and quencher together, thereby inhib-
iting fluorescence. Upon target recognition, the probe anneals and 
stretches out, separating the quencher from the fluorophore and 
enabling fluorescence11. Molecular beacons have been advanced 
further since the 1990s. For example, the types of quencher used 
have been expanded to include nanoparticles12. Microinjected 
molecular beacons can mislocalize to the nucleus in live cells; 
however, incorporating a tRNA sequence was shown to abrogate 
this problem13.

An alternative approach to increase the specific fluorescent signal 
upon binding is to use forced intercalation (FIT) probes (Figure 1C). 
FIT probes are peptide nucleic acid (PNA) or DNA single strands 
containing a base surrogate (typically, thiazole orange) that 
intercalates between the Watson-Crick base pairs and fluoresces 
only upon exact hybridization14,15. Their strong turn-on effect 
(~30-fold) makes FIT probes an attractive improvement of ISH. 
FIT probes have been expanded to contain dyes that emit in the blue 
and green ranges16,17 and have been successfully used for mRNA 
visualization in cells and Drosophila embryos14,18.

Hybridization-based RNA detection is an excellent tool for use in 
fixed samples and can be used in living cells and organisms when 
strong turn-on effects are achieved (e.g., molecular beacons and 
FIT probes). However, probes based on modified nucleic acids 
or derivatives thereof are neither cell-permeable nor can they 
be produced by the cell itself. Furthermore, hybridization has to 
occur in regions of the target RNA free of secondary structure, and 

Figure 1. Hybridization-based methods for RNA imaging. (A) Standard fluorescence in situ hybridization (FISH): a fluorophore-linked RNA 
probe binds the target RNA sequence. (B) Molecular beacon: signal to noise is improved relative to a standard FISH probe because the 
fluorescence signal of the reporter probe is quenched when unbound. (C) Forced intercalation (FIT) probes: binding enforces intercalation of 
the dye molecule into the probe-target duplex, resulting in a strong turn-on effect of the fluorophore.
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hybridization conditions are typically not optimized for the cellular 
milieu. Recently, probes and conditions have started to be devel-
oped for use in live cells; this approach is termed fluorescence 
in vivo hybridization (FIVH)19–21. In particular, 2′-O-methylated 
oligonucleotides exhibit faster hybridization kinetics, increased 
melting temperatures, enhanced binding specificity, improved 
nuclease stability, and the ability to bind structured molecules—
properties beneficial for FIVH probes20. They were used to detect a 
variety of RNA types, such as snRNAs, rRNA, and poly(A) RNA20. 
Nevertheless, these probes need to be introduced into the cells and 
thus FIVH requires transient permeabilization of cells.

Aptamers
RNA aptamers are another form of nucleotide-based probe but 
work on a different principle to the above mentioned hybridiza-
tion probes. Aptamers are short, single-stranded oligonucleotides 
capable of binding specific target molecules based on their shape 
and can be obtained by in vitro selection22. Recently, an aptamer 
termed “Spinach” was selected that folds to allow binding of a 
small-molecule fluorophore that fluoresces only upon binding the 
RNA aptamer (Figure 2C)23. Herein, the reporter and probe are con-
tained within the same oligonucleotide. The aptamer sequence can 
be appended to the RNA of interest to enable visualization of that 
RNA upon binding of the fluorophore23. RNA aptamers in conjunc-
tion with said small fluorophore are available in a range of colors 
from blue to red23 and have been improved to further enhance bind-
ing efficiency and fluorescence strength24. Additionally, the folding 

properties have been optimized for the cellular milieu25,26. A down-
side of RNA aptamers is the potential impediment in localization 
or function of some RNAs by the “Spinach” RNA tag.

Particle-associated hybridization-based imaging probes
The group of Mirkin describe a nanoparticle conjugated spherical 
nucleic acid that recognizes specific RNA targets and is capable 
of entering the cell without the need for transfection27,28. However, 
there is considerable controversy surrounding this study, mainly 
concerning whether these sticky- or nano-flares mark specific 
RNAs or merely remain in endosomes after uptake by the cell29. 
Gold nanoparticles bound to quantum dots via hybridizing DNA 
strands have been developed to detect specific microRNA30. The 
microRNA triggers the dissociation of the quantum dots from the 
gold particle, resulting in the abrogation of quenching and thus a 
signal. These gold nanoparticle-quantum dot-probes bind target 
RNA quantitatively in vitro, and cell lines expressing a certain 
microRNA can be distinguished from cell lines that do not.

Covalent modification of RNA in cells
An alternative method to mark RNA is to incorporate visualizable 
moieties directly into the RNA. A convenient way to achieve mark-
ing RNA without introducing a large moiety that may interfere with 
RNA function is to incorporate a small chemical group that may be 
further reacted by using click chemistry to attach to a fluorophore. 
There are a number of different click reactions, the most prominent 
being the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC). 
Here, an azide reacts with an alkyne in the presence of Cu(I) as a 
catalyst. CuAAC is rapid and extremely selective; however, Cu(I) 
at millimolar concentrations is toxic to cells and thus this approach 
is limited to fixed cell samples. Jao and Salic succeeded in incor-
porating ethynyl groups into total RNA by feeding cells with the 
uridine analog 5-ethynyluridine (EU), which is converted to the 
respective triphosphate inside the cell (Figure 3A)31. Using a similar 
approach—feeding cells with N6-propargyl adenosine—the poly(A) 
dynamics of mRNA could be monitored32.

There are also a number of copper-free click reactions, which are 
more suitable for live-cell imaging, termed bioorthogonal click reac-
tions (reviewed in 33). Sawant et al. synthesized an azido-modified 
UTP analog that can be used in the bioorthogonal strain-promoted 
azide-alkyne cycloaddition (SPAAC)34. This allowed the click  
reaction to proceed in live cells; however, this UTP analog had to 
be transfected into the cells as its uridine precursor was no longer 
cell-permeable or was not a good substrate for the ribonucleoside 
salvage pathway (Figure 3A).

A downside of incorporating modified nucleotides during tran-
scription or poly(A) tail addition is that different subtypes of RNA 
cannot be distinguished. A possible method by which to obtain spe-
cific labeling of different subtypes is to attach chemical groups used 
for click reactions post-synthetically by using RNA-modifying 
enzymes. Subtypes of RNA may also be labeled by taking advan-
tage of certain structures or modifications in an RNA type. For 
example, the 5′ cap of mRNA may be specifically labeled by using 
an engineered methyltransferase that is only active on the mRNA 
cap (Figure 3B)35–37. This approach should be suitable in live cells 

Figure 2. Visualization based on reporter molecules binding to a 
specific RNA sequence. (A) A green fluorescent protein-fused-MS2 
coat protein (GFP-MCP) binds a consensus sequence (MS2) 
appended to the RNA of interest. (B) Two pumilio variants fused to 
different halves of split-GFP recognize a target sequence within an 
RNA molecule of interest. (C) The aptamer “Spinach” folds to bind a 
turn-on fluorophore and can be appended to an RNA of interest.
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Figure 3. Introducing covalent modifications into RNA and subsequent labeling by click chemistry allow visualization. (A) Incorporation 
of modified nucleotides into nascent RNA by endogenous RNA polymerases. Ethynyluridine is cell-permeable, and the respective 
triphosphate is made inside the cell; hence, feeding the cell with the nucleoside precursor is possible. In other examples (azido-U), the cells 
have to be transfected with the respective triphosphates. (B) Hallmarks of RNA subtypes, such as the 5′ cap, can be selectively modified. 
A methyltransferase (MTase) variant can be used to modify the mRNA cap with the clickable group if the respective S-adenosylmethionine 
(AdoMet) analog is provided. (C) Transcript-specific installation of a click reactive moiety can be achieved by appending a tRNA-mimicking 
sequence to the RNA of interest. The enzyme tRNAIle2-agmatidine synthetase (Tias) modifies the tag with a clickable group if appropriate 
agmatine analogs are provided.

because the S-adenosylmethionine (AdoMet) analog can be made 
from cell-permeable and stable methionine analogs by a variant of 
the methionine adenosyltransferase (MAT), which is responsible 
for AdoMet synthesis37.

Sequence-specific RNA-modification with a propargyl group 
and subsequent labeling with a fluorophore have been achieved  
in vitro by using a box C/D methyltransferase-guide RNA com-
plex and the respective propargyl-bearing analog of the cosub-
strate AdoMet38. Li et al. developed an RNA labeling system 
in which an RNA of interest was extended by a tRNA-derived 
sequence and an enzyme that specifically modifies this sequence 
(tRNAIle2-agmatidine synthetase, or Tias) was introduced into a cell 
(Figure 3C)39. This RNA-Tias combination can also accept agma-
tine analogs that are click-reactive and thus can be used to label 
RNA in cells39. Similarly, a tRNA-derived recognition motif may 
be specifically marked by using an engineered transglycosylase 
that is able to transfer large visualizable groups40.

RNA-binding proteins
A number of bacteriophage-derived RNA-binding proteins have 
been used to mark RNA in cells. The most notable of these is the 
MS2-MS2 coat protein (MS2-MCP) system (Figure 2A). This 
comprises a green fluorescent protein (GFP)-fused version of the 

bacteriophage MCP (an RNA-binding protein that recognizes a 
specific RNA sequence-determined hairpin) and the RNA of inter-
est extended by multiple MS2-binding sites (MBS)41. Recently, the 
MS2 system has been used to image single mRNA molecules in 
living mouse cells42. This study displays both the power and draw-
back of this method. On the one hand, the MS2 system allows 
tracking and resolution of single mRNA molecules; on the other, 
producing a transgenic organism is very time-consuming. Another 
drawback is that the size of the MS2-fusion tag and the append-
ages to the RNA might interfere with normal mRNA function or  
localization43,44. Furthermore, the quantity of MS2 used must be 
sufficient to saturate the target RNA without raising background 
fluorescence, which may be difficult to achieve45.

Another RNA-binding protein worth mentioning is pumilio. Pumilio 
is a member of the RNA-binding protein family PUF46. Like many 
RNA-binding proteins, pumilio is modularly composed of domains 
that can be engineered to alter the specific RNA sequence bound47–49. 
Pumilio is of particular interest as it can target RNA directly  
without the need to introduce an RNA tag into the target RNA.

An advantage of using RNA-binding proteins to visualize RNA is 
that two individual RNA sequences may be targeted by separate 
RNA-binding proteins, thus allowing the imaging of the  
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association of two RNA molecules of interest50,51. The potential 
drawback of high background fluorescence due to unbound protein 
may be countered by using a split GFP, which fluoresces only upon 
dimerization (Figure 2B)52,53.

Reporter protein expression by trans-splicing to 
visualize RNA
Two approaches have been developed by which a pre-mRNA may 
be spliced into a functional form, which allows the expression of 
a reporter protein. This enables tissue-specific localization of an 
mRNA of interest, although the resolution at a subcellular level is 
lost. Bhaumik et al. described a method based on trans-splicing that 
results in the expression of luciferase in cells of a living organ-
ism microinjected with an exogenous RNA that was processed to 
pre-mRNA54. So et al., employing a similar approach, developed 
an engineered ribozyme, which fuses a reporter gene to a specific 
gene of interest55. The authors were able to detect p53 in a whole 
organism and on a cellular level. Despite theoretical expansion 
potential56, the approach taken by the Gambhir lab has not been sig-
nificantly developed since the publication of the original study, leav-
ing it with the limitation that only exogenous RNA can be visualized. 
Similarly, the work of So et al. has not been further developed.

Conclusions: current applications and outlook
Imaging of RNA is of interest at the level of both single cells and 
the whole organism. Labeling RNA in a single cell can show the 
localization of a specific transcript, which may have important 
biological consequences57. RNA imaging at the whole organism 
level is important to determine the tissue expression pattern of a 
specific transcript. RNA labeling has seen extensive use in imag-
ing of infection by RNA viruses (e.g., 58). Another interesting  

application of RNA imaging has been to monitor transcription and 
this has been used, for example, to determine the toxicity of certain 
substances that inhibit transcription59.

In summary, RNA may be visualized by a variety of methods. 
RNA may be seen via hybridization of a reporter molecule, most 
commonly through FISH or variations thereof. Alternatively,  
RNA-binding proteins that bind specific sequences may mark an 
RNA molecule of interest, or an RNA aptamer that fluoresces upon 
binding of a fluorophore may be incorporated into the target mol-
ecule. RNA may be sequence- or subtype-specifically labeled by 
using click chemistry. Challenges facing the field of RNA imaging 
are the cell permeability of dyes used and the low abundance of 
target RNA. Furthermore, no method of RNA labeling is yet able 
to yield quantitative data on its target RNA. However, with contin-
ued development, RNA imaging will continue to provide important 
biological insights.
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