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Abstract

Original Article

Introduction

Magnetic resonance imaging (MRI) is increasingly integrated 
into radiotherapy workflows due to its high spatial soft‑tissue 
contrast that improves the delineation of targets and organs 
at risk  (OARs), especially in homogeneous tissue areas 
such as the head–neck and pelvic area.[1,2] However, image 
registration has the potential for systemic error stemming from 
misalignments between two image datasets. Consequently, 
MRI‑only radiotherapy workflows have been developed 

to address this concern.[2‑7] Nonetheless, MRI images are 
susceptible to geometric distortion. This phenomenon results 
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in structure distortion and affects the accuracy of radiation dose 
delivery.[1,4,8,9] This distortion becomes particularly critical in 
the context of a small target for stereotactic radiosurgery, as it 
may result in underdosage by as much as 30%.[10]

Geometric distortion mainly contributes to systemic geometric 
distortion (SGD) and objected‑induced distortion (OID). SGD 
originates within the system itself and comprises gradient 
nonlinearity (GNL) and inhomogeneity of the main magnetic 
field  (B0). GNL increases in magnitude with increasing 
distance away from the magnet bore isocenter. On the other 
hand, the OID is associated with materials or tissues under the 
magnetic field, each possessing distinct magnetic susceptibility 
characteristics. The magnitude of OID depends on increasing 
magnetic field strength and is specific to an individual patient. 
The field of view (FOV) influences the degree of geometric 
distortion arising from the GNL, which is the principal source 
of SGD, surpassing OID. Correspondingly, GNL is the primary 
source of geometric distortion.[3,4,11‑15] In particular, vendors 
offer distortion correction software to address SGD, albeit only 
partially. Hence, residual SGD necessitates consideration when 
evaluating the machine’s performance. Therefore, this study 
aims to characterize the effect of different bandwidths (BWs) 
on the geometric distortion and assess the dosimetric accuracy 
from the impact of residual distortion of 1.5T MRI simulation 
by creating a distorted computed tomography  (dCT) to 
compare against the original computed tomography (oriCT) 
plan for MRI‑only prostate treatment planning.

Materials and Methods

Geometric distortion acquisition
An MRID3D geometric distortion phantom  (QUASAR™, 
Modus Medical, Canada) underwent scanning using a 
three‑dimensional (3D) T1 volumetric interpolated breath‑hold 
examination pulse sequence  (410  mm  ×  420  mm FOV, 
1.2 mm3 isotropic voxel, single excitation, and enabled 
vendor’s 3D geometric distortion correction) on 1.5T MRI 
simulation  (MAGNETOM Aera, Siemens Healthcare, 
Erlangen, Germany). The scan covered the phantom’s full 
dimensions  (370  mm in diameter and 320  mm in length). 
The pulse sequence was designed to represent the worst‑case 
scenario of residual distortion. The inverse gradient method 
facilitated the separation of GNL and B0 inhomogeneity.[11,16] To 
investigate the effect of different BWs on geometric distortion, 
five BWs were tested at 130, 200, 380, 680, and 840 Hz/pixel. 
Subsequently, the acquired phantom images were imported 
into the MRID3D geometric distortion software analysis 
system, where the 3D distortion vector field was calculated 
by the software algorithm. Images with opposite gradient 
polarity (e.g., anteroposterior (AP) and posteroanterior, right–left 
(RL), and left–right) were selected to separate the distortion 
source into GNL and B0 inhomogeneity. The software provided 
statistical measures of absolute radial distortion from the magnet 
isocenter (mean, standard deviation, and maximum distortion). 
Then, distortion induced from GNL was used to generate 
distortion maps for each BW and phase‑encoding direction.

Distorted computed tomography plan generation
The workflow demonstrated the generation of the dCT plan 
to compare with the original plan for dosimetric evaluation, 
as shown in Figure 1.

Ten retrospective prostate cancer patient treatment plans 
using volumetric modulated arc radiotherapy (VMAT) were 
randomly selected from the hospital’s records spanning 
from 2020 to September 2022. To simulate SGD effects 
on the patient plan, distortion maps with varying BWs and 
phase‑encoding directions were applied to the oriCT images 
of each patient using the MICE Toolkit (NONPI Medical AB, 
Umeå, Sweden). Furthermore, the distortion map’s central 
coordinates were translated back to their oriCT location to 
maintain spatial consistency.

The original Radiotherapy (RT) structure was then deformed 
onto the dCT images for each patient using deformable 
image registration  (DIR) within the treatment planning 
system (TPS: Eclipse, Varian Medical Systems, Palo Alto, 
CA). The radiation plan parameters were identically used 
as the oriCT plan. Subsequently, the radiation dose was 
recalculated without re‑optimization for the dCT plan while 
keeping the monitor unit fixed. Evaluation of contour overlap 
between the dCT and oriCT plans was conducted using the 
dice similarity coefficient (DSC), where a DSC of 0 indicates 
no overlap, and 1 indicates a perfect overlap. Moreover, a 
radiation oncologist did not review the contour after DIR. 
According to the AAPM‑TG132 recommendations, a DSC 
value >0.8–0.9 is acceptable.[17] Therefore, a cutoff criterion 
was established, with the DSC value below 0.9 for all 
structures to indicate inadequate performance. After applying 
the cutoff criterion, the average of the absolute percentage 
dose error (%Dose error) and DSC were calculated across 
the remaining structure.

Dosimetric accuracy evaluation
The assessment of dosimetric accuracy involved the calculation 
of the %Dose error between the dose of the dCT (DdCT) and 
the dose of the oriCT (DoriCT) according to the dose volume 
histogram (DVH). The %Dose error was determined using the 
following equation:

oriCT dCT

oriCT

D ‑ D
%Dose error =  

D
×100

� (1)

Figure 1: Schematic diagram of the distorted computed tomography 
generation and the percentage dose error (%Dose error) determination 
process. oriCT: Original computed tomography, dCT: Distorted computed 
tomography, MRI: Magnetic resonance imaging
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The evaluation parameters are followed by ICRU‑83.[18] These 
parameters included:
1.	 Near‑minimum dose (D98%) of clinical target volume (CTV) 

and planning target volume (PTV)
2.	 Maximum dose (Dmax) for CTV, PTV, rectum, bladder, 

and femoral head
3.	 Median dose (D50%) for PTV, rectum, and bladder
4.	 Absorbed dose in fraction 30% of volume (D30%) of the 

rectum and bladder.

The %Dose error values were computed for each of the 
mentioned evaluation parameters, comparing the doses 
obtained from the dCT with those from the oriCT using the 
DVH. Based on the dCT and oriCT images, this analysis 
provided insights into the accuracy of the radiation dose 
delivered to various anatomical structures.

Results

Geometric distortion
The residual distortions from GNL were plotted for all BWs at 
both phase‑encoding directions, as presented in Figure 2. The 
distortion increases with an increasing distance from the bore 
isocenter. The mean distortion across the phantom was <2 mm 

at all conditions. The ranges of the mean, standard deviation, 
and maximum values for residual distortion are shown in 
Table 1. When comparing different BWs, higher BWs reduced 
distortion, predominantly affecting B0 inhomogeneity rather 
than GNL, as described in Table 1. The result showed that 
the highest BWs reduced the distortion from 0.51 to 0.07 mm 
and 4.00 to 0.81  mm for the mean and maximum values, 
respectively.

Impact on contour volume
The RT structures in the dCT plan were evaluated by calculating 
the DSC for each BW and phase‑encoding direction to observe 
the impact of geometric distortion on the structures. The mean 
DSC was computed by averaging the DSC values across all 
10 cases for each BW and phase‑encoding direction. Structures 
failing to meet the criteria were excluded, and DSC averaging 
was performed for the remaining structures.

Across all BWs and both phase‑encoding directions, the mean 
DSC values for the CTV and PTV ranged from 0.95–0.96 
to 0.97–0.98, respectively. For all OARs except the rectum, 
the mean DSC exceeded 0.95. In comparison, the rectum’s 
mean DSC ranged from 0.93 to 0.94. Notably, using higher 
BWs improved DSC values, indicating that higher BWs 
mitigated the distortion effects. Conversely, differences in 
phase‑encoding directions did not exhibit impact. Additional 
details regarding DSC values for each structure are provided 
in Table 2.

Dosimetric accuracy
The %Dose error was assessed in accordance with ICRU‑83. 
The analysis revealed that D98% for CTV and PTV was below 
2% for all BWs and phase‑encoding directions. The highest 
observed error was 1.63% for D98% at PTV, specifically for 
130 Hz/pixel in the AP direction. In contrast, the CTV exhibited 
a minor variation between high and low BWs due to its central 
location. Simultaneously, distortion was more pronounced in 

Table 1: The mean, standard deviation, and maximum of 
the systemic geometric distortions due to the gradient 
nonlinearity on the different bandwidths  (Hz/pixel) and 
phase‑encoding directions

BW 
(Hz/
pixel)

Phase‑ 
encoding 
direction

GNL (mm) B0 inhomogeneity (mm)

Mean±SD Maximum Mean±SD Maximum

130 AP 0.58±0.42 2.85 0.51±0.43 4.00
RL 0.57±0.43 3.00 0.42±0.42 3.89

200 AP 0.58±0.41 2.74 0.41±0.28 2.68
RL 0.56±0.43 2.98 0.27±0.27 2.50

380 AP 0.57±0.43 2.80 0.18±0.14 1.42
RL 0.55±0.44 2.91 0.11±0.13 1.21

680 AP 0.58±0.43 2.89 0.08±0.07 0.72
RL 0.55±0.44 2.94 0.08±0.07 0.65

840 AP 0.56±0.43 3.21 0.07±0.06 1.45
RL 0.57±0.44 2.99 0.10±0.06 0.81

GNL: Gradient nonlinearity; BW: Bandwidth, AP: Anteroposterior, 
RL: Right to left, SD: Standard deviation

Figure 2: Scatter plot of the systemic geometric distortion as a result of 
the effect from gradient nonlinearity at varied bandwidths (Hz/pixel) for 
anteroposterior and right‑to‑left phase‑encoding direction in a function of 
radial distance from magnet isocenter. AP: Anteroposterior, RL: Right to left
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the peripheral or distant regions from the isocenter. The D50% 
and Dmax at PTV showed that the %Dose error was <0.10% 
and 0.09% across all plans, respectively.

For the relevant OARs, the rectum exhibited %Dose errors 
beyond 2% for D50% and D30% in certain BWs. D50% errors for 
680 Hz/pixel in the RL direction reached up to 2.32%, and 
D30% errors for 200 Hz/pixel in the AP direction reached up to 
2.33%. However, the Dmax for the rectum remained below 2% 
for all plans. In the case of the bladder, %Dose errors beyond 
2% were observed for D50%, specifically 2.04%, 2.51%, 2.10%, 
and 2.08% for 130 (AP), 130 (RL), 380 (AP), and 680 (AP) Hz/
pixel, respectively. Concerning both femurs, the %Dose error 
for Dmax remained below 2% for all plans. Table 3 provides an 
overview of the dosimetric errors.

Discussion

Patients with prostate cancer would benefit from MRI‑only 
treatment planning to reduce errors from CT/MRI registration. 
Furthermore, this approach eliminates the need for radiation 
dose and costs associated with CT simulation.[1] However, 
concerns persist regarding geometric distortion inherent 
to MRI. GNL was considered the main factor of the SGD. 
In addition, various parameters and phantom types also 
contributed to the magnitude of distortion.[7] In this study, the 
SGD from the GNL on 1.5T MRI simulation was quantified 
while excluding distortion from B0 inhomogeneity. To achieve 
this, the QUASAR™ MRID3D geometric distortion phantom 
was employed, utilizing the inverse gradient method to extract 
GNL without interference from other sources.[11] This approach 
overcomes the limitations observed in the study by Gustafsson 
et al., in which their results were influenced by a combination 
of OID and SGD from phantom.[3]

The results demonstrated that the mean residual distortion, 
both from GNL and B0 inhomogeneity, met the American 

College of Radiology quality assurance (QA) criteria, which 
stipulates that distortion should be <2 mm.[19] Consistent with 
the AAPM‑TG 284 recommendations, the inverse gradient 
method was employed to evaluate SGD. The study aligned 
with the first but not the second criterion due to the smaller 
size of the phantom.[16] The observed increase in SGD with 
greater distance from the isocenter aligns with expectations 
and corroborated previous findings.[3,4,8,20] Fatemi et al.[20] 
reported a mean distortion of 2.79 mm for a similar phantom 
and MRI model with a BW of 120 Hz/pixel, which contrasts 
with our results, showing a mean magnitude lower than 1 mm 
for a BW of 130 Hz/pixel. Differences in magnetic resonance 
parameters and machine‑specific factors can contribute to 
variations in distortion magnitude, even among the same 
model.[20] The study revealed that higher BWs contributed 
to reduced distortion, particularly for B0 inhomogeneity. 
However, this reduction was accompanied by a decrease in 
signal‑to‑noise ratio and an increase in scan time.[7,8,21] While 
such considerations are manageable in a phantom‑based study, 
they may be more limited in clinical settings due to patient 
comfort and image quality requirements. In this study, the 
phase‑encoding direction was varied between AP and RL 
directions, and the results showed that they were slightly 
different because the phantom dimension is a cylindrical shape 
with the same diameter along the axial plane (z‑axis). On the 
other hand, when the phantom dimension has a longer side 
than the other, the effect increases the distortion on the longer 
side of the phantom.[22]

The impact of structure volume was evaluated with DSC 
between oriCT and dCT structures. The RT structure of the dCT 
plan simulated the effect of distortion by DIR on TPS. The DSC 
was similar in the different BWs with the same RT structure. 
The only effect on the bandwidths was due to B0 inhomogeneity 
[as shown in Table 1], which was excluded from the distortion 
map. As a result, the RT structure of dCT was adopted from 

Table 2: Mean with±standard deviation of dice similarity coefficient for radiotherapy structures at different bandwidths 
and phase‑encoding directions

Structure Phase‑encoding 
direction

DSC at Bws (Hz/pixel)

130 200 380 680 840
PTV AP 0.97±0.01 0.97±0.01 0.97±0.01 0.97±0.01 0.97±0.01
CTV 0.95±0.01 0.95±0.02 0.95±0.01 0.95±0.01 0.95±0.02
Rectum* 0.93±0.02 0.93±0.02 0.93±0.02 0.93±0.02 0.94±0.03
Bladder 0.97±0.01 0.97±0.01 0.97±0.01 0.97±0.01 0.98±0.01
Femur left 0.96±0.01 0.96±0.01 0.96±0.01 0.96±0.01 0.97±0.01
Femur right 0.96±0.01 0.96±0.01 0.96±0.01 0.96±0.01 0.97±0.02
PTV RL 0.97±0.01 0.97±0.01 0.97±0.00 0.98±0.01 0.98±0.01
CTV 0.95±0.01 0.95±0.01 0.95±0.01 0.96±0.02 0.95±0.02
Rectum* 0.93±0.02 0.93±0.02 0.93±0.02 0.94±0.03 0.94±0.03
Bladder 0.97±0.01 0.97±0.01 0.97±0.01 0.97±0.01 0.98±0.01
Femur left 0.96±0.01 0.97±0.01 0.96±0.01 0.97±0.01 0.97±0.01
Femur right 0.96±0.02 0.96±0.01 0.96±0.01 0.96±0.02 0.96±0.02
*One case was removed for the rectum because the DSC at bandwidths of 130, 200, 680, and 840 Hz/pixel at both phase-encoding directions was below 
the cutoff requirement. PTV: Planning target volume, CTV: Clinical target volume, AP: Anteroposterior, RL: Right to left, DSC: Dice similarity coefficient, 
BWs: BW: Bandwidths
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the original plan. We found that in some cases, the DSC was 
lower than the criteria. Thus, the deformation algorithm was 
considered. The deformation algorithm used in this study was 
the demon algorithm (clinical routine in our hospital), which 
is based on the intensity difference between the two datasets, 
which would be a problem in homogeneous tissue, such as a 
pelvic area.[23,24] This point corresponds with Varadhan et al., 
which studied the accuracy of RT structure after DIR on 
prostate cancer patients and reported that the demon algorithm 
has a low DSC and performs worse at the rectum. For that 
reason, it was ambiguous to identify the impact on RT structure. 
Hence, another algorithm such as B‑spline deformation should 
be used to limit the factor from the deformation algorithm error 
on a homogeneous area.[25]

To ensure that the beam parameter and couch structure of the 
dCT plan were identical to the oriCT plan for comparison, 
the dosimetric accuracy needed to be evaluated. Moreover, 
the center of images between the patient CT set and the 
distortion map must match the generated distorted plan, 
which would otherwise distort the air instead. [21] The 
%Dose error in this study was within 2% for CTV, PTV, 
and both femurs at all conditions, which is consistent with 
prior reports.[22,26] Exceptions were observed in some cases 
for the bladder and rectum, particularly for D50% and D30% 
where deviations above 2% were noted. These parameters 
are sensitive to changes in volume as the dose is averaged 
across the volume of interest. On the other hand, the Dmax 
of all structures and conditions was 1% lower, reflecting its 
representation of a point dose and its insensitivity to volume 
changes.[27] In this study, the overall %Dose error was higher 
than that of the other reports,[3,22,28] while the DIR algorithm 
may not be suitable for the homogeneous area as mentioned 
above. In contrast, Adjeiwaah et al.,[22] Gustafsson et al.,[3] 
and Kemppainen et al.[28] utilized B‑spline interpolation. To 
address this limitation, a pilot case was selected to compare 
the performance of the demon algorithm used in this study 
with the B‑spline algorithm. The comparison demonstrated 
that using the B‑spline algorithm improved the DSC of the 
rectum from 0.88–0.91 to 0.93–0.94, meeting the cutoff 
criteria. This improvement was consistent with the finding 
of Varadhan et al., indicating the potential benefits of further 
investigation, including gamma analysis, to evaluate radiation 
dose distribution. Furthermore, while this study solely 
evaluated the dosimetric impact of SGD induced by GNL, the 
potential effects of combined GNL and B0 inhomogeneity were 
not explored. Such a combination is anticipated to increase in 
%Dose error.[22]

Conclusion

The utilization of MRI‑only radiotherapy raises concerns 
regarding geometric distortion, as it has the potential to alter 
a patient’s anatomy and lead to discrepancies in dose delivery. 
Therefore, SGD quantification is critical to understand its 
limitations, monitor machine performance, and assess its 
impact on dosimetric accuracy. Our results revealed that 

the mean residual SGD across all BWs and phase‑encoding 
directions aligned with recommendations and findings from 
various studies. Overall, the %Dose error of all RT structures 
remained within 2%, with exceptions noted in the rectum 
and bladder in certain instances. However, these deviations 
were minor. In conclusion, the study supports the use of 1.5T 
MRI simulation for MRI‑only treatment planning in prostate 
cancer patients. It highlights the importance of employing 
appropriate  (QA) programs and parameter optimization to 
ensure clinically acceptable results, ultimately enhancing 
treatment efficiency and patient outcomes.
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