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The molecular players of circadian clock oscillation have been identified and extensively characterized. The epigenetic mechanisms
behind the circadian gene expression control has also been recently studied, although there are still details to be illucidated. In this
review, we briefly summarize the current understanding of the mammalian clock. We also provide evidence for the lack of circadian
oscillation in particular cell types. As the circadian clock has intimate interaction with the various cellular functions in different
type of cells, it must have plasticity and specicity in its operation within different epigenetic environments. The lack of circadian
oscillation in certain cells provide an unique opportunity to study the required epigenetic environment in the cell that permit
circadian oscillation and to idenfify key influencing factors for proper clock function. How epigenetic mechansims, including
DNA methylaiton and chromatin modifications, participate in control of clock oscillation still awaits future studies at the genomic
scale.

1. Introduction

Mammals have overt circadian rhythms in their physiology
and behavior, orchestrated by the suprachiasmatic nucleus of
the anterior hypothalamus [1, 2]. The endogenous circadian
clock enables organisms to anticipate the regular daily
changes in the environment and temporally organize their
life activities [3, 4]. Fundamentally, circadian timing func-
tions exist at the cellular level not only for suprachiasmatic
neurons, but also for cells of various peripheral tissues [5–9].

2. A Brief Overview of Clockwork Mechanisms

The past two decades witnessed the rapid pace in gaining in-
depth understanding of mammalian clockwork operation.
Circadian oscillations are generated at the molecular level
by a set of clock genes [10–12]. The mapping and cloning
of the ClockΔ19 mutation through ENU mutagenesis and
positional cloning set the stage for elucidation of mammalian
clockwork mechanisms [13–15]. BMAL1 was soon identified
to be the dimerization partner of CLOCK to drive clock gene

expression [16, 17]. Mouse Per genes were also identified
and found to be driven by the CLOCK/BMAL1 dimer [18–
20]. CRY1 and CRY2 were later found to have essential roles
in the integrity of the circadian clock through inhibiting
CLOCK/BMAL1-mediated transcription activation [21, 22].
Thus CLOCK and BMAL1 form the positive limb, while
CRY and PER proteins form the negative limb of the
transcriptional feedback loop [23]. Later on, more details
were elucidated and revisions were made for the clockwork
model, including the antagonistic regulations of Bmal1 tran-
scription by REV-ERBα and RORa [24–26], additional clock
genes such as Npas2 and Bmal2, and posttranscriptional
regulation of clock genes’ transcripts [27–29]. CRYs interact
with the CLOCK/BMAL1 dimer through interactions with
PER proteins [30]. Clock proteins are subject to post-
translational modifications that affect their stability, cellular
localization, and transcriptional activities [31, 32]. Several
kinases were shown to phosphorylate PER proteins [33–
38]. Defects in PER phosphorylation have been linked
with changes in circadian period [33, 39, 40], although
the mechanisms responsible for the observed phenotypes
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are still not unambiguous [34, 41–44]. Nevertheless, post-
translational modifications, in controlling subcellular local-
ization, interaction, and stability of clock proteins, are es-
sential for the delay between transcriptional activation and
feedback inhibition that is critical to robust circadian oscil-
lation [30, 45–48]. The clockwork components can also
be influenced by multiple cellular signaling pathways to
adjust the phases of the running clock [49–58]. Operation
of the clockwork can impose temporal expression on the
transcriptome with gene expression levels peaking at defined
times over the day [59, 60]. The daily interactions between
transcriptional activators and inhibitors of the clockwork
and their corresponding cis regulatory elements on target
genes [12] can achieve sophisticated phase control over gene
expression rhythms [48, 61].

3. Epigenetics: Circadian Rhythms of
Gene Expression

Eukaryotic genomic DNA is packaged around histone pro-
teins into repeating nucleosome units, which further form
higher-order chromatin structures [62]. Histones are sub-
ject to various modifications and chromatin is remodeled
according to cellular needs [63–66]. The so-called “histone-
code” [67, 68], or more appropriately “histone language” [69,
70], of various histone modifications and their combinations
influences gene transcription activities. CpG methylations
within DNA sequences affect histone modifications and
nucleosomal organization to impact gene transcription [71,
72]. Current evidence indicates that DNA methylation and
histone modifications are intimately linked [73–75].

DNA methylation, histone modifications, and chromatin
remodeling are the cornerstones of epigenetics. Epigenetics
was originally defined as “the study of mitotically and/or
meiotically heritable changes in gene function that cannot be
explained by changes in DNA sequence” [76]. A more gen-
eralized definition was recently proposed “to avoid the con-
straints imposed by stringently requiring heritability”: epige-
netic events are “the structural adaptation of chromosomal
regions so as to register, signal or perpetuate altered activity
states” [76]. According to this definition, the daily changes of
gene expression driven by the cellular clock and the clock’s
response to external input all fall into the realm of epige-
netics [77]. The core clock genes such as CLOCK/BMAL1
and PERs/CRYs are classified as the positive and negative
regulators of the clockwork, respectively. CLOCK possesses
intrinsic HAT activity [78]. Biochemical characterization
of protein complexes containing clock proteins has found
additional proteins involved in histone modifications [79–
83]. Changes in histone modifications are also associated
with rhythmic expression of clock genes [82, 84]. In the
thoroughly studied case of circadian Dbp expression, daily
changes in histone modifications and nucleosome packing
accompanied rhythmic CLOCK/BMAL1 bindings to E boxes
within the Dbp locus [85–87]. Thus it appears that the circa-
dian clock exerts transcriptional regulation through mecha-
nisms involving histone modifications, although there is still
much to be learned, due to the complexity of transcriptional

control [88–90]. Intimate interactions also exist between the
clockwork and the cellular metabolism [91–94]. Metabolism
coupling to the clockwork is also through mediators such
as SIRT1, PARP-1, and REV-ERBα-NCOR1-HDAC3, that
act directly or indirectly through chromatin modification
mechanisms [95–99]. CLOCK/BMAL1’s binding to the E-
box elements and presumably their transcriptional activities
are regulated by their post-translational modifications rather
than directly by their abundance [32, 45, 87, 96]. CRYs and
PERs seem to destabilize/disrupt CLOCK/BMAL1 binding to
E-boxes [87], with post-translational modifications in PER2
affect its inhibitory effect on CLOCK/BMAL1 transcriptional
activation [30, 95]. It should be noted that different E-
box elements within their genomic context seem to differ
in their affinities of CLOCK/BMAL1 binding, and direct
CRY1 recruitment by CLOCK/BMAL1 to the E-box element
within Dbp promoter (but not intragenic E-boxes of Dbp)
has been demonstrated [100]. While circadian changes in
DNA methylation in the promoters of clock genes or clock-
controlled genes have not been reported to our knowledge,
epigenetic inactivation of clock genes due to promoter DNA
methylation has been reported in various cancer cells [101].
Specifically in the nervous system, methyl-CpG-binding
protein 2 (MeCP2) could be phosphorylated due to neuronal
activity and phosphorylation relieves MeCP2’s binding to
methylated DNA and the inhibition of target gene’s of
transcription [102]. Light signaling to the central clock in
the SCN has been shown to cause MeCP2 phosphorylation
[103], in addition to inducing histone modifications that
parallel the induction of immediate early genes [104].

4. Are Cellular Clocks Ubiquitous?
The Case during Development

Most adult tissues have endogenous clocks. Peripheral
tissues are typically derived from distinct lineages during
development and are specialized for distinct functions.
The clockwork must intersect with the unique cellular
environments in different types of cells [105]. There are a
few exceptions to the omnipresence of the circadian clocks in
adult tissues. In the nervous system, few brain regions other
than the SCN were shown to have endogenous circadian
oscillations [106]. Cells during spermatogenesis have been
shown to have clock genes’ expression patterns not consistent
with clock oscillation [107–109]. Similar observations were
also made in immature T cells in the thymus [110]. It is a
challenge to characterize the cellular environments that are
permissive to circadian oscillation in specific types of cells.

The oscillation status of the cellular clock during devel-
opment is largely unclear [111]. Downregulation of clock
genes’ transcripts (possibly of maternal origin) was seen
after fertilization in the zygote [112], without apparent
zygotic activation of endogenous expression [113]. In mouse
embryonic stem cells, imaging studies at the single-cell level
also failed to detect circadian oscillations (which appear
after differentiation of the ES cells) [114, 115]. Although
clock genes’ transcripts could be detected in the conceptus
and various mouse fetal tissues [111], circadian rhythmicity
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in their abundance was rarely detected [116]. Adult-like
rhythmic patterns in their expressions were detected only
during postnatal development [117]. Paracrine mechanism
has been postulated to account for intrinsic synchrony at
the tissue level in adult mice [118]. Such mechanisms, while
their existence still debatable [119, 120], apparently did not
play a role in fetal tissues, which lacked overt circadian
rhythmicities at the tissue level [116]. Peripheral clocks of
adult tissues are influenced by signals from the central clock
[8, 120, 121]. The central clock exerts control over peripheral
clocks through neural [122], hormonal [123], systemic cues
as a result of feeding control [123–125], and daily body
temperature changes [58, 126]. Different tissues may respond
differentially to those cues, and those cues may also have
complex actions toward the same tissue under different
feeding conditions [119, 127, 128]. Fetal tissues most likely
were under the influence of rhythmic maternal cues. It is
peculiar that clock genes, while obviously expressed, did
not seem to form the transcriptional/translation feedback
loop in the fetal liver [116, 117]. It is possible that fetal
clocks were oscillating at the cellular level but were not
synchronized/entrained by maternal rhythms. However, it is
also well known that fetal tissues such as the liver clearly
differed in differentiation state and metabolic activities from
the adult liver [129]. Those functional differences are likely
accompanied with transcriptome and epigenomic differences
between fetal and adult livers, as cellular epigenetic profiles
change during development [72, 130, 131]. Thus fetal mouse
liver might possess a unique epigenomic environment that
was not permissive to cellular circadian oscillation [105].
Furthermore, the cellular redox ratio ([NAD+]/[NADH]) is
known to be very low in the fetal rat liver [132], a situation
potentially leading to compromised cellular oscillation due
to limited SIRT1 function [95]. It should be noted that in
other mammals, such as the primates, the cellular clocks
might oscillate in the fetal liver [133].

Development of the circadian timing function is inde-
pendent of maternal rhythms and resilient to perturba-
tions [134, 135]. However, the clock during ontogeny was
suggested to be entrained by maternal rhythms [136–
139]. The central clock in the SCN has been shown to
oscillate soon after neurogenesis before birth [140]. It could
also be affected by exogenous agents such as D1 receptor
agonist and melatonin [141, 142]. However, the entrainment
mechanisms are largely unknown. For example, D1 receptor
agonist is known to induce c-fos in the fetal SCN, but it has
not been documented whether prenatal D1 agonist treatment
led to induction of core clock genes [143]. Melatonin, on the
other hand, did not seem to act by induction of immediate-
early genes in the fetal SCN [144]. Molecular oscillations of
clock gene expression in the suprachiasmatic nucleus were
typically weak before birth [145, 146]. The perinatal period
is accompanied by changes in hormonal milieu that could
trigger epigenetic changes in certain genes [147–149]. We
recently found perinatal changes in methylation status of
the mPer1 promoter in the suprachiasmatic nucleus [150].
The significance of this change to clock operation and phase
resetting remained to be fully elucidated.

5. Perspective

The circadian clock is an essential component of cellular
functions in various adult tissues. In fetal tissues and ES
cells, such oscillation might not operate. However, previous
studies often analyzed daily changes in transcripts’ abun-
dance to probe the oscillation status of the clock. Few studies
addressed the relative abundance of those transcripts’ and
their protein products’ stoichiometry and posttranslational
modifications. The circadian clock is resistant to large fluctu-
ations in overall transcription rates [151]. The clock can also
tolerate changes in some components’ expression patterns
[30, 152–154]. However, rigorous requirements are imposed
on the expression rhythms of some clock genes [30, 48, 155].
Future studies should investigate the subcellular distribution
and chromatin association of clock genes’ products in fetal
tissues and ES cells to get a more comprehensive picture
of the operation status of the clockwork therein. The
epigenomic environment of the fetal tissues and ES cells
should also be investigated to address their unpermissiveness
to clock operation.
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