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Abstract

Neurofibromatosis type 2 is characterized by bilateral vestibular schwannomas, which are benign 

tumors that originate from the nerve sheath and damage the nerve as they grow, causing 

neurological dysfunction such as hearing loss. Current standard radiation therapy can further 

augment hearing loss by inducing local damage to mature nerve tissue. Treatment with 

bevacizumab, a Vascular Endothelial Growth Factor (VEGF)-specific antibody, is associated with 

tumor control and hearing improvement in NF2 patients; however, its effect is not durable and its 

mechanism of action on improving nerve function is unknown. Anti-VEGF treatment can 

normalize the tumor vasculature, improving vessel perfusion and delivery of oxygen. It is known 

that oxygen is a potent radiosensitizer; therefore, combining anti-VEGF treatment with radiation 

therapy can achieve better tumor control and allow for the use of lower radiation doses, thus 

minimizing treatment-related neurological toxicity.
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Current challenges in NF2 therapy

Neurofibromatosis type 2 (NF2) is a dominantly inherited genetic condition with a birth 

prevalence of 1 in 25,0001. NF2 is characterized by bilateral vestibular schwannomas (VS), 

which are benign tumors composed of neoplastic Schwann cells that arise from the eighth 

cranial nerve, which transmits hearing and balance information from the ears to the brain. 

Although these vestibular schwannomas grow slowly, they usually lead to a significant or 

total hearing loss by young adulthood or middle age. The tumors can also compresses the 

brain stem, leading to headaches, difficulty swallowing, and other serious neurologic 

symptoms2. Standard approaches for the treatment of growing VS include surgical resection 

and radiation therapy (RT). While these tumors can be successfully removed or destroyed 

with surgery and radiation treatment, paradoxically, these therapeutic approaches can also 

cause hearing loss. For patients with sporadic VS who do not have NF2, RT is associated 

with long-term tumor control rates exceeding 95%. However, hearing preservation rates after 

radiation range from 50-80%3,4. Post-RT outcomes for patients with NF2 are inferior to 

those for sporadic patients, with short-term local tumor control rates around 80-85% and 

hearing preservation rates less than 50%3. Thus, the identification of a novel adjunct therapy 

to enhance radiosensitivity while minimizing toxicity-related hearing loss in VS is urgently 

needed.

Recent advances in targeted therapy for NF2

Several previous investigations have suggested that – unlike other benign tumors – vestibular 

schwannomas, like malignant tumors, are able to induce the formation of new blood vessels. 

Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) are expressed in VS, 

and VEGF expression level positively correlates with schwannoma growth rate5-7. A 2009 

New England Journal of Medicine study led by Scott Plotkin, MD, PhD, reported that 

treatment with bevacizumab, a humanized monoclonal antibody that specifically neutralizes 

VEGF-A, was associated with a reduction in the volume of most growing VS. More 

importantly, bevacizumab treatment improved hearing in 57% patients7. Limitations of anti-

VEGF treatment – the fact that not all patients responded, that hearing improvement was 

often transient and the effect of anti-VEGF on nerve function is not known, and that some 

patients could not tolerate long-term bevacizumab treatment – indicated the need to better 

understand the mechanisms of anti-angiogenic therapy on the function of tumor-bearing 

nerves.

Rationally combining anti-VEGF therapy with radiation

Anti-VEGF agents were originally developed to block tumor growth by inhibiting blood 

vessel formation8,9. Bevacizumab has failed to improve survival benefit as a monotherapy in 

a number of tumors, but has been shown to confer survival benefit in combination with 

chemotherapy9. A potential explanation for the success of combined therapies is that 

bevacizumab “normalizes” the abnormal vasculature of tumors. It has been shown in many 

preclinical and clinical studies that anti-angiogenic therapy prunes tumor vessels and reverts 

the abnormal structure and function of the remaining vasculature toward a more normal 

state, abrogating its deleterious effects on the tumor microenvironment10. However, the 
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normalization effect is transient – leading to a “normalization window” – during which the 

resulting vasculature is more normal, characterized by increased blood flow and improved 

delivery of concurrently administered anti-cancer drugs, as well as oxygen9. The addition of 

anti-angiogenic therapy to chemotherapy is now standard treatment for a variety of 

metastatic cancers including colorectal cancer and nonsquamous cell lung cancer.

Given the role of tissue oxygenation in tumor response to radiation, as well as the potential 

protective role of VEGF against endothelial cell apoptosis in response to radiation, several 

preclinical studies have demonstrated that anti-angiogenic treatment potentiates the effects 

of radiation therapy against various solid tumors established from cell lines in xenograft 

models (Table 1). To date, early-phase clinical trials have demonstrated promising response 

rates and tolerability of combining bevacizumab with radiation for the local control of 

various primary, recurrent, and metastatic tumors (Table 2)11-14. These studies have found 

that some additional toxicities occur with the combination of bevacizumab, but common 

toxicities such as hypertension and proteinuria are generally easily managed while severe 

toxicities are rare. However, the reported response rate has varied, indicating the need for a 

rational pre-selection of patients for this combination treatment, as well as prospectively 

validated biomarkers of response12,15-19.

Combining anti-VEGF treatment with radiation therapy achieves better 

tumor control and minimizes radiation-related neurological damage in NF2-

related schwannoma models

Although there are many reports in the context of malignant cancers, little is known of the 

effect of combined anti-VEGF treatment with radiation therapy in benign tumors. Recent 

studies led by Lei Xu, MD, PhD, at Massachusetts General Hospital report that combining 

anti-VEGF treatment with radiation therapy improves the effectiveness of radiation 

treatment in NF2 related vestibular schwannoma models, and that the combination allows 

the use of a lower radiation dose to achieve the same degree of tumor control as a higher 

radiation dose without anti-VEGF therapy20. As a step further, this study shows that 

combining anti-VEGF treatment with radiation improves neurologic function by i) reducing 

the dose of radiation therapy and minimizing treatment-associated adverse effects, and ii) 

alleviating tissue edema, which may further improve neurologic function by decreasing 

muscle atrophy and increasing nerve regeneration20. This study provides compelling 

rationale and paves the road for testing combined anti-VEGF therapy with RT in NF2 related 

vestibular schwannomas. In preparation for future clinical studies with combined anti-

angiogenic and RT, clinical studies of the therapeutic effects of anti-VEGF treatment on 

radiation-induced nerve damage need to be thoroughly examined. Furthermore, 

characterization of the schwannoma vasculature (including relative schwannoma vessel size 

and permeability, tumor contrast enhancement, edema-associated parameters from MRI), 

and biomarkers studies are needed to fully elucidate the normalization effect of bevacizumab 

in NF2 patients, and are needed before clinical studies with combined anti-angiogenic and 

RT can be designed.
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Table 1

Preclinical studies of combined anti-angiogenic and radiation therapy.

Tumor Cell line Result Reference

NF2 Schwannoma
HEI193
NF2−/−

Enhanced tumor inhibition
Decreased dose of radiation

Improved neurological function
(20)

Glioblastoma U87 Enhanced tumor inhibition
Decreased dose of radiation (21-25)

U251 Enhanced tumor inhibition
Decreased dose of radiation (24)

Head and neck cancer SCC1 Enhanced tumor inhibition (26)

Colorectal cancer LS174T Enhanced tumor inhibition
Reduced radioresistance (21)

SW480 Enhanced tumor inhibition (27)

Ovarian carcinoma MA148 Enhanced tumor inhibition (28)

Melanoma B16F10 Enhanced tumor inhibition (28)

Lung cancer 54A Decreased dose of radiation (23)

H226 Enhanced tumor inhibition (26)

A549 Enhanced tumor inhibition
Decreased dose of radiation (29)
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Table 2

Clinical trials of combined anti-angiogenic and radiation therapy.

Tumor type Phase Number of
Patients

Radiation dose
/Fraction

Bevacizumab
Dose Outcome Reference

CNS Tumor

nGBM III 978 60Gy/2Gy 10mg/kg Median PFS: 10.7
months

Median OS: 15.7
months (30)

nGBM III 921 60Gy/2Gy 10mg/kg Median PFS: 10.6
months

Median OS: 16.8
months (31)

nGBM II 70 60 Gy/30 10 mg/kg PFS: 19.6% OS: 13.6% (32)

nGBM II 75 59.4 Gy/33 10 mg/kg PFS: 21.2% OS: 14.2% (33)

nGBM II 125 50.4Gy/1.8Gy 10mg/kg Median PFS: 13.8 
months 1-year PFS: 63.1% (34)

nGBM II 68 60Gy/2Gy 10mg/kg Median PFS: 11.3 
months

Median OS: 13.9
months (35)

nGBM II 48 60Gy 10mg/kg Median PFS: 9.2 months Median OS: 13.2
months (36)

rGBM I 25 30 Gy/5 10 mg/kg PFS: 12.5-16.5% OS: 7.3-7.5% (37)

rGBM I/II 15 25Gy/5 10mg/kg Median PFS: 3.9 months Median OS: 14.4
months (38)

Head and neck cancer

HNSCC II 30 56-70Gy/35 5 mg/kg 3-year PFS: 61.7% 3-year OS: 68.2% (39)

HNSCC 0 29 9.5-71.5Gy/1.25Gy 10mg/kg 3-year PFS: 82% 3-year OS: 86% (40)

HNSCC II 42 70Gy/2.12Gy 15mg/kg 2-year PFS: 75.9% 2-year OS: 88% (41)

HNSCC II 78 70Gy/35 15mg/kg 2-year PFS: 75% 2-year OS: 88% (42)

HNSCC II 30 70Gy/35 15mg/kg 2-year PFS: 88.5% 2-year OS: 92.8% (43)

Nasopharyngeal II 46 70Gy/33 15mg/kg 2-year PFS: 74.7% 2-year OS: 90.9% (44)

Gastrointestinal cancer

Esophagus II 62 45Gy/1.8Gy 15mg/kg pCR: 29% (45)

Colorectal II 32 45Gy/1.8Gy 5mg/kg pCR: 25% 4-year OS: 91% (46)

Rectal II 66 50.4Gy/28 5mg/kg 1-year DFS: 85%
2-year DFS: 97% (18)

Rectal I 11 50.4 Gy/28 10-15 mg/kg pCR: 18% (14)

Rectal I/II 32 50.4 Gy/28 5-10 mg/kg pCR: 16% (13)

Rectal II 25 50.4 Gy/28 5 mg/kg pCR: 32% (15)

Rectal II 61 50.4 Gy/28 5 mg/kg pCR: 13% (47)

Rectal II 42 50.4 Gy/28 5 mg/kg pCR: 18% (12)

Rectal II 59 45Gy/1.8Gy 5 mg/kg pCR: 36% (48)

Rectal II 91 45Gy/25 5 mg/kg pCR: 23.7% (49)

Gynecological cancer

Cervical II 60 45Gy/25 10mg/kg No treatment-related
SAEs (50)

Endometrial II 34 45Gy/25 5mg/kg 2-year PFS: 79.1% 2- year OS: 96.7% (51)
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Tumor type Phase Number of
Patients

Radiation dose
/Fraction

Bevacizumab
Dose Outcome Reference

Endometrial

II

15

45Gy/25 10mg/kg

1-/3-year PFS: 80%/67% 1-/3-year OS:
93%/80%

(52)

Ovarian 4 1-/3-year PFS: 80%/40% 1-/3-year OS:
100%/60%

Abbreviations: CNS: central nervous system, nGBM: newly diagnosed glioblastoma, rGBM: recurrent GBM, MG: malignant glioma, HNSCC: 
head and neck squamous cell carcinoma, RT: radiation therapy, PFS: progression-free survival, OS: overall survival, SAEs: serious adverse events, 
pCR: pathologic complete response, SRS: stereotactic radiosurgery
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