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ABSTRACT The strain Desmodus rotundus endogenous retrovirus (DrERV) QR09 was
obtained from a bat tissue sample collected from Desmodus rotundus in the Brazilian
rain forest. The complete genome was sequenced using the next-generation se-
quencing strategy. The full-length genome of DrERV QR09 is 8,256 nucleotides in
length and showed high similarity with other DrERVs.

Endogenous retroviruses (ERVs) are found in a wide variety of hosts and are possibly
one of the first circulating viral strains of their respective hosts (1–3). ERVs that have

integrated during host speciation, considered genetic fossils, are often used as markers
for understanding the long-term phylogeny of the virus (4). In addition, several studies
have shown that even when ERVs are inserted into the genome and considered
inactive, there are indications that some proteins continue to be translated, even in low
copies, and probably play important roles in cancer development and other gene
regulatory activities (5–9).

The strain QR09 of Desmodus rotundus endogenous retrovirus (DrERV) was sequenced
from a brain tissue sample of a bat (Desmodus rotundus) collected in the Brazilian Amazon
rainforest (Viseu, Pará; 01°11=48�S, 46°08=24�W). The project was approved by the Ethics
Committee on the Use of Animals of Evandro Chagas Institute (CEUA/IEC; number 031/
2014) and Biodiversity Information and Authorization System (SISBIO; number 47592-1).

The viral particles were released from the cells using a stainless bead with a
TissueLyser II (Qiagen), and the sample was preenriched using 0.45-�m filters and
treatment with benzonase (25 U/liter). DNA and RNA were extracted with a iPrep
PureLink virus kit (Thermo Fisher) following the manufacturer’s guidelines. The ex-
tracted DNA and RNA were quantified with a Qubit 2.0 fluorometer (Thermo Fisher)
using the Qubit RNA HS assay kit, as well as the Qubit double-stranded DNA (dsDNA)
HS assay kit (Thermo Fisher). The RNA samples were subjected to reverse transcription
using the cDNA synthesis system kit (Roche, Branford, CT, USA), according to the
manufacturer’s guidelines. The cDNA and DNA of brain tissue were combined and
sequenced as a single sample. Sequencing libraries were constructed using the Illumina
Nextera XT DNA sample preparation kit and sequenced on an Illumina HiSeq 2500
instrument with the high-output V4 2 � 100-bp sequencing kit (Table 1).

The raw data were filtered for Q30 quality, adapters were removed using Trim_
galore pipeline v.0.4.5 (10), and reads less than 100 bp were removed using the
Prinseqlite.pl tool (11). The removal of the rRNA sequences was performed using the
SortMeRNA tool v.2.1b (12). The assembly was performed by IDBA-UD v.1.1.3 (13) using
default settings. The comparison with the protein nonredundant protein database was
carried out by the DIAMOND tool v.0.9.22.123 (14), with an E value of 0.00001 (15). The
results were annotated using the Blast2GO tool (16).
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The complete genome of DrERV strain QR09 is 8,256 nucleotides (nt) long, with
65-fold coverage and 48.6% GC content. Compared with the common structure of
Betaretrovirus, the lineage shows the 4 common genes gag (2,187 nt), protease (837 nt),
pol (2,418 nt), and env (1,770 nt). The gag and protease open reading frames did not
present any stop codon; however, for the two coding regions pol and env, 2 and 3 stop
codons were found, respectively. According to NCBI BLASTn analysis, the DrERV QR09
possesses 99% sequence identity over 100% query coverage of the DrERV isolate 824
(GenBank accession number KP175580) and 99% sequence identity over 96% query
coverage of the DrERV isolate 216 (GenBank accession number KP175581); both
genomes described were collected in Mexico from D. rotundus.

Data availability. The complete genome sequence of Desmodus rotundus endoge-
nous retrovirus (DrERV) strain QR09 has been deposited in NCBI GenBank under the
accession number MH648003. The sequencing reads (under Sequence Read Archive
number SRR8208870) can be accessed through BioProject number PRJNA480298.
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TABLE 1 DrERV strain QR09 sequencing information

Parameter Strain information

Bat species Desmodus rotundus
Tissue Brain
Sequencing platform Illumina
DNA/cDNA input (ng/�l) 1
Total no. of reads 241,897,814
Total no. of contigs 407,850
N50 (bp) 19,212
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