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Abstract: Nano-hydroxyapatite (nHAp) as a bio-filler used in PLA composites was prepared from
fish by acid deproteinization (1DP) and a combination of acid-alkali deproteinization (2DP) followed
by alkali heat treatment. Moreover, the PLA/nHAp composite films were developed using solution
casting method. The mechanical and thermal properties of the PLA composite films with nHAp
from different steps deproteinization and contents were compared. The physical properties analysis
confirmed that the nHAp can be prepared from fish scales using both steps deproteinization. 1DP-
nHAp showed higher surface area and lower crystallinity than 2DP-nHAp. This gave advantage of
1DP-nHAp for use as filler. PLA composite with 1DP-nHAp gave tensile strength of 66.41 ± 3.63 MPa
and Young’s modulus of 2.65 ± 0.05 GPa which were higher than 2DP-nHAp at the same content.
The addition of 5 phr 1DP-nHAp into PLA significantly improved the tensile strength and Young’s
modulus. PLA composite solution with 1DP-nHAp at 5 phr showed electrospinnability by giving
continuous fibers without beads.

Keywords: fish scales; hydroxyapatite; deproteinization; polylactic acid (PLA); physical properties;
mechanical properties; thermal properties; electrospinnability

1. Introduction

Fish waste of more than 7.2 million tons is annually produced and discarded around
the world, leading to environmental problems. Fish scale is one of the wastes from the
aquaculture sector and fish markets which has not been used much commercially. Fish
scales comprise functional materials such as collagen and hydroxyapatite (HAp) and could
be the sources of sustainable biomaterials in various applications, especially biomedical
applications [1–6]. HAp from fish scales is an attractive biomaterial with excellent bioac-
tivity, osteointegration, and osteoconductivity [7–9]. It has been used as biosorbent for
dyes and metal ions [9]. Therefore, the utilization of fish scales by converting them into
high-value materials reduces the waste that causes environmental problems and develops
low-cost medical materials. Fish scales comprise HAp and type I collagen [9]. Notably,
teleost fish such as sea bass have elasmoid scale, which is similar to the bone composed of
extracellular matrix, mainly type I collagen fibers and needle-like hydroxyapatite. More-
over, important anions such as Cl− and F− and cations such as Mg2+, Al3+, Sr2+, Zn2+,
K+, and Na+ are presence as trace elements [10–14]. HAp is an interesting type of cal-
cium phosphate with the theoretical chemical formula Ca10 (PO 4)6(OH)2. It is used in
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biomedical applications such as bone replacement material, dental implants, and bone
tissue engineering [15,16].

HAp could be prepared or extracted from fish scales by various methods. There
are two main methods to eliminate collagen constituents: calcination and alkali heat
treatment [3,9,17–20]. Kongsri et al. [19] prepared nanocrystalline HAp from fish scale
waste using the alkali heat treatment method. The method consists of deproteinization
by acid and alkali, followed by alkali heat treatment. The products are nanocrystals HAp
with high porosity. Although nano-sized HAp (nHAp) can be prepared using alkali heat
treatment it requires two steps deproteinization or acid-alkali deproteinization (2DP). Some
reports say HAp could be prepared from fish scales by chemical deproteinization [3,8,9]
but it takes two times to remove residue protein composition. Hence, this study aims
to reduce the steps of deproteinization to obtain nHAp. One-step of deproteination or
acid deproteinization (1DP) is used before alkali heat treatment. White seabass is an
economically significant species. They are widely cultivated in Thailand. In 2021, white
seabass production presented 97.43% of all marine fish farming production. The total
commodity value was 5.05 billion baht [21]. Its huge production makes the scales abundant
and could be considered a sustainable source of HAp.

Polylactic acid or PLA is a thermoplastic polyester that has advantageous character-
istics such as renewability, biocompatibility and inherent biodegradability, ease of prepa-
ration, non-toxic nature, and the ability to form fibers. It has been utilized in medical
applications extensively [22,23]. However, the disadvantages of PLA such as low thermal
stability, hydrophobic nature, and high brittleness, still limit some applications [22,24].
The incorporation of HAp could overcome the hydrophobicity of PLA, improve its poor
properties, and stimulate the properties of osteoconduction and osseointegration of the
implanted scaffold [7].

This study aims to reduce the step of nHAp preparation and to compare the physical
properties of nHAp from 1DP and 2DP. The nHAp samples from 1DP and 2DP with 5 phr
are used to form a composite with PLA. The mechanical and thermal properties of both
composites are compared. The sample with better performance is further investigated at
2.5, 5, and 10 phr to determine the optimum amount for PLA composite. The PLA/nHAp
composite films are fabricated by solvent casting. Effects of deproteinization steps and
1DP-nHAp content on mechanical and thermal properties of the PLA/nHAp composite
films are investigated. Moreover, the electrospinnability of PLA/1DP-nHAp5 is studied.
The obtained nHAp is expected to be useful as a bio-filler in PLA for medical applications.

2. Materials and Methods
2.1. Preparation of nHAp Powder from White Sea Bass Scales

White seabass scales of approximately 10 kg were collected from the local market
in Rayong, Thailand, washed with deionized water, and oven-dried at 80 ◦C. Polylactic
acid (PLA, Ingeo™ Biopolymer 4043D-General Purpose Grade) was used as the matrix of
composites supplied by NatureWorks Llc. (Minnetonka, MN, USA). Hydrochloric acid
(HCl) 37% RPE, sodium hydroxide (NaOH) 99% RPE-ACS, and dichloromethane (DCM)
RPE were purchased from Carlo Erba (Milano, Italy).

The preparation method of nHAp was adapted from Kongsri et al. [19]. The steps of
preparation are shown in Figure 1. The dried fish scales were treated with 0.1 M HCl for
1 h at room temperature to eliminate collagen, non-collagen proteins, and limiting layers of
fish scales. Then, they were washed with deionized water several times before oven-drying
at 80 ◦C. The remaining was treated with 5% (w/v) NaOH under stirring at 250 rpm for 3 h
at 60 ◦C. The obtained fish scale powder was washed until the pH = 6.5–7 and oven-dried
at 80 ◦C. The alkali heat treatment method was performed on the fish scale powder from
the previous step by treating with 50% (w/v) NaOH under stirring at 250 rpm for 3 h at
80 ◦C to produce a slurry. The nHAp slurry was washed with deionized water until the
pH = 6.5–7 and oven-dried at 80 ◦C. The final product was nHAp powder. This process is
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two-steps deproteinization (2DP-nHAp). For one-step of deproteinization (1DP-nHAp),
the process was carried out without 5% (w/v) NaOH treatment.
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2.2. Preparation of PLA/nHAp Composite Films

To compare nHAp from one-step and two-steps preparation, the powder of 1DP-nHAp
and 2DP-nHAp at the same content (5 phr) was dispersed using a magnetic stirrer in DCM
for 24 h. To study the effect of nHAp contents, 1DP-nHAp at 2.5 and 10 phr was dispersed
with the same procedure. Then, the dispersed nHAp was poured into PLA solution which
was dissolved in DCM at a concentration of 10 wt%. The mixture was mixed for 72 h using
a magnetic stirrer until a homogenous solution was obtained. The composite films were
prepared by casting PLA/nHAp solution into a Petri glass and drying at room temperature
for 24 h before evaporating the residue solvent at 40 ◦C for 72 h in an oven. After that, the
PLA/nHAp composite films were stored in a desiccator for further characterization. The
effect of nHAp contents on mechanical properties and thermal properties was studied by
adding 1DP-nHAp at 2.5, 5, and 10 phr to fabricate PLA/nHAp composite films.

2.3. Characterization of nHAp Powder

The crystalline phase and degree of crystallinity (χc) of nHAp powder were deter-
mined by X-ray diffraction (XRD, D2 PHASER, Bruker, Billerica, MA, USA) with Cu Kα

radiation source operated at 30 kV and current 10 mA. Bragg’s angle of diffraction (2θ)
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was measured from 10◦ to 60◦ at a scan rate of 2◦/min and a step size of 0.02◦. The χc was
calculated by the Equation (1) [25]:

χc= (A C / AT) × 100% (1)

where AC is the area of crystalline peaks and AT is the total area of amorphous and
crystalline peaks, respectively.

The crystallite size (Dhkl) of the samples was calculated from the Scherrer equation
(Equation (2)) [26]:

Dhkl =
kλ

β cos θ
(2)

where λ is the wavelength of the X-ray radiation, k is the Scherrer constant generally taken
to be 0.9, θ is the diffraction angle, and β refers to the full width at half maximum (FWHM).

The functional groups of nHAp powder were analyzed by Fourier transform infrared
(FT-IR) spectroscopy on Tensor 27 (Bruker, Billerica, MA, USA) with 64 scans and a resolu-
tion of 4 cm−1. Each sample was oven-dried at 110 ◦C for 24 h, mixed with dried potassium
bromide (KBr), mashed in an agate mortar and pressed into a disk. Percentage by weight
of carbonate content (wt% CO3) of HAp structure was calculated by Equation (3) [27]:

wt% CO3= 28.62 × rc/p+0.0843 (3)

where rc/p is the ratio of the integrated the area between area of v3(CO3) and area of
v1v3(PO4) from the absorbance spectra calculated from OriginPro software (OriginPro 2022,
OriginLab, Northampton, MA, USA).

The elemental composition of nHAp was analyzed by energy dispersive X-ray spec-
troscopy (EDS) in a scanning transmission electron microscope (STEM, Talos F200X, Thermo
Fisher Scientific, Waltham, MA, USA).

Micrographs of nano-sized HAp from fish scales were acquired using field emission
transmission electron microscopy (FE-TEM, Talos F200X, Thermo Fisher Scientific, Waltham,
MA, USA). The microstructure of nHAp powder was observed using field emission scan-
ning electron microscopy (FE-SEM, Carl Zeiss Auriga, Oberkochen, Germany) at 3 kV. The
samples were sputter-coated with gold for 3 min at 10 mA.

Particle size distribution was analyzed with dynamic light scattering (DLS) using
Zetasizer-ZS (Malvern Panalytical, Malvern, UK). The samples were dispersed in ethanol
and analyzed at 25 ◦C. The average particle size in this study was obtained from Z-average.

Nitrogen adsorption–desorption analysis was performed on BelSorp-Mini II (Micro-tracBEL,
Osaka, Japan). The nHAp was degassed at 150 ◦C for 24 h before the analysis. The specific
surface area was calculated by Brunauer–Emmett–Teller (BET) method.

Thermal properties, including decomposition temperatures, weight loss, and remain-
ing residue were investigated by thermogravimetric analysis (TGA, TGA/DSC1, Mettler
Toledo, Schwerzenbach, Switzerland). Approximately 10 mg of sample was placed on the
alumina crucible and heated at a rate of 10 ◦C/min from 30 to 1000 ◦C for the analysis
under an air atmosphere.

2.4. Characterization of PLA/nHAp Composite Films

Tensile properties of PLA/nHAp composite films were measured according to ASTM
D882-10 using a universal testing machine (INSTRON/5565, Norwood, MA, USA) with
a load cell of 5 kN and a crosshead speed of 250 mm/min at room temperature. The
specimens with 1 cm width and 10 cm length were analyzed. Tensile strength, elongation
at break, and Young’s modulus of PLA/nHAp composite films were obtained from the
average results of five test specimens.

Thermal properties of PLA/nHAp composite films such as enthalpy of melting (∆Hm),
enthalpy of cold crystallization (∆Hcc), glass transition temperature (Tg), cold crystallization
temperature (Tcc), melting temperature (Tm) was evaluated by using differential scanning
calorimeter (DSC, Pyris Diamond DSC, Perkin Elmer, Waltham, MA, USA). The samples
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were characterized under nitrogen flow rate at 20 mL/min from 25 to 200 ◦C and a heating
rate of 10 ◦C/min. The degree of crystallinity was calculated according to Equation (4) [28]:

χc =

 (∆Hm − ∆Hcc)(
∆H0

m× w
)
×100% (4)

where ∆H0
m is the heat of melting of purely crystalline PLA (93 J·g−1), w is the weight

fraction of PLA in the sample.

2.5. Preparation of PLA/nHAp Fibers by Electrospinning Technique and Their Electrospinnability

The aggregation of nHAp may affect the viscosity of PLA/nHAp composite solution
which is one of the factors that affect the electrospinning process. To determine elec-
trospinnability, PLA/1DP-nHAp5 composite solution was fabricated by electrospinning.
Nanofibers were spun at 150 mm distance to a drum collector, which was covered with alu-
minum foil. The collector rotation speed was set at 300 rpm. The high voltage between the
needle tip and the drum collector was set to 25 and 30 kV. The PLA/1DP-nHAp5 solution
was fed at a constant flow rate of 1.0 mL/h. Electrospun fibers were performed by SEM
(JSM-6010LV, JOEL, Akishima, Tokyo, Japan) with EDS (EDAX Genesis 2000, AMETEX,
Berwyn, PA, USA) to observe their morphology and check the distribution nHAp particles
in fibers. The fiber diameter was measured from SEM images using image analysis software
(Image J 1.53k, Wayne Rasband and contributors, National Institutes of Health, Bethesda,
MD, USA).

3. Results and Discussion
3.1. Characterization of nHAp Powder

The XRD patterns of 1DP-nHAp and 2DP-nHAp are shown in Figure 2. The charac-
teristic peaks of nHAp powder are compared with Crystallography Open Database (COD
9003552) for hexagonal HAp structure. The results show that diffraction peaks of both
samples correspond to the HAp planes [19,29–31]. They only show the crystalline phase
of HAp without other phases. All diffraction peaks agree with the standard XRD pattern
of hydroxyapatite in Crystallography Open Database (COD 9003552) and the standard
of JCPDS card no. 09-0432. Both samples are hexagonal structures with α = β = 90◦,
and γ = 120◦. Corresponding to Sathiskumar et al. [6] nHAp from Cirrhinus mrigala fish
scales using the same method (2DP) have similar characteristic peaks; this corroborates the
method of purity nano-sized HAp preparation. However, their nHAp crystallinity is close
to the crystallinity of 1DP-nHAp. It indicated that the deproteinization reduction method
could provide nHAp. The crystallinity of 2DP-nHAp is slightly higher than 1DP-nHAp,
indicating that 2DP increased the crystallinity of nHAp powder. As a result, 1DP-nHAp
with lower crystallinity may be more suitable for enhancing biodegradation behavior and
higher metabolic [29]. The degree of crystallinity and crystallite size of nHAp powder are
included in Table 1.

FT-IR spectra of 1DP-nHAp and 2DP-nHAp in transmission mode are shown in
Figure 3. Both samples show a broad peak of associating hydroxyl stretching of adsorbed
water around 3500 cm−1. The bending mode of the water molecule appears at 1639 cm−1.
The bands at 1458, 1417, and 874 cm−1 are assigned to carbonate groups in nHAp pow-
der. It indicated the nHAp powder is B-type carbonated hydroxyapatite with carbonate
ions substituting phosphate ions in the hydroxyapatite structure. The strong broadband
between 1083–1042 cm−1 and the bands at 962, 603, and 565 cm−1 correspond to phos-
phate groups [8,32,33]. The percent weight of carbonate in 1DP-nHAp and 2DP-nHAp,
calculated from the band in absorption mode as shown in Figure 4, are 6.57 and 15.64 wt%,
respectively. It suggested the presence of carbonate ions substituting phosphate ions more
than 1DP-nHAp. In addition, the spectrum of 2DP-nHAp showed the stretching of free
hydroxyl groups at 3642 cm−1. It is in agreement with the report by Gergely et al. [34] that
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the free hydroxyl groups may connect to calcium oxide on the surface. In addition, The
FT-IR results of 1DP-nHAp and 2DP-nHAp are similar to Gopalu et al. [35]. They presented
FT-IR and Raman results of pure HAp. It can be assumed that 1DP-nHAp and 2DP-nHAp
have the same characteristics as pure HAp.
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Figure 2. XRD patterns of nHAp powder (a) 1DP-nHAp and (b) 2DP-nHAp.

Table 1. The analysis information of n-HAp powder.

Properties
Materials

1DP-nHAp 2DP-nHAp

Crystallinity (%χc) 71.41 80.99
Crystallite size, Dhkl(nm) 19.41 13.87
BET surface area (cm3/g) 50 41

Total pore volume (cm3/g) 0.26 0.17
Mean pore diameter (nm) 21.25 16.32
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Figure 3. FT-IR transmittance spectra of nHAp powder (a) 1DP-nHAp and (b) 2DP-nHAp.
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EDS spectra of the nHAp with element composition are shown in Figure 5. Both
1DP-nHAp and 2DP-nHAp have constituents carbon (C), oxygen (O), magnesium (Mg),
calcium (Ca), and phosphorous (P). Typically, the presence of Mg constituent is a significant
factor in bone and teeth growth [8]. Hydroxyapatite is a type of calcium phosphate ceramic
which is classified by calcium/phosphorus atomic ratio (Ca/P); for example, hydroxyap-
atite Ca10 (PO 4)6(OH)2, HAp, Ca/P = 1.667) and β-tricalcium phosphate (β− Ca3 (PO 4)2,
β-TCP, Ca/P = 1.5) [36]. The Ca/P has illustrated the molar ratio from nHAp. The Ca/P of
1DP-nHAp and 2DP-nHAp are 1.63 and 2.01, respectively. The Ca/P of 1DP-nHAp is close
to the theoretical value (1.67) [8]. The Ca/P ratio of 2DP-nHAp is higher than the theoretical
value due to the substitution of phosphate ions with carbonate ions. These results are the
same as the report by Deb and Deoghare [29] and consistent with the FT-IR results.
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(b) 2DP-nHAp.

The nano-sized particles of nHAp from 1DP-nHAp and 2DP-nHAp were confirmed
using FE-TEM, as shown in Figure 6a,b. The particle sizes of both samples in the range of
nano-scale. The microstructure is observable in the FE-SEM images. FE-SEM in Figure 6.
1DP-nHAp has rod-like shapes with different widths and lengths (Figure 6c), while 2DP-
nHAp has an irregular shape (Figure 6d). Typically, the external elasmodine layer of
fish scales is composed of needle-like HAp crystals hybridized with randomly arranged
collagen fibers. However, the HAp products from fish scales have various shapes, such as
irregular, rod-like, spherical, and needle-like. According to Qin et al. [9], the rod-like shape
or needle-like shape of HAp is frequently seen from HAp extracted from natural sources.
However, the extraction method or the source has no effect on the shape of HAp particles.
The same extraction method can provide a different HAp shape. It can be concluded that
1DP-HAp has the natural shape that is frequently found. Moreover, 2DP-nHAp shows
an aggregation of particles that leads to non-homogenous distribution in the matrix and
deteriorates mechanical properties [37].
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Figure 6. FE-TEM images of (a) 1DP-nHAp and (b) 2DP-nHAp and FE-SEM images of (c) 1DP-nHAp
and (d) 2DP-nHAp.

Particle size distribution of 1DP-nHAp and 2DP-nHAp measured by DLS technique
is shown in Figure 7. The particle size was reported by Z-average particle size, which is
the intensity weighted harmonic mean size. The particle size distribution of both sam-
ples is a mono-modal distribution with the Z-average particle size of 223.6 and 172.9 nm,
respectively. 1DP-nHAp shows a narrower distribution than 2DP-nHAp. According to
Raita et al. [38], the size from the DLS technique is larger than that observed from the elec-
tron microscopy because DLS measures a hydrodynamic size, rather than a physical one.
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Figure 7. DLS measurements of particle size distribution of nHAp powder (a) 1DP-nHAp and
(b) 2DP-nHAp.

The adsorption–desorption isotherms of 1DP-nHAp and 2DP-nHAp are shown in
Figure 8. Both samples demonstrate reversible Type II isotherms which are the physisorp-
tion on nonporous adsorbents according to the IUPAC classification. Moreover, their
adsorption and desorption lines do not overlap, forming a type H3 hysteresis loop which is
found on materials with non-rigid aggregates of plate-like particles [39,40]. Their BET sur-
face area, total pore volume, and mean pore diameter are included in Table 1. 1DP-nHAp
has a larger surface area than 2DP-nHAp. For tissue engineering, 1DP-nHAp, the sample
with a larger surface area, could interact better with osteoblast cells to promote cell growth
and proliferation [1,9].
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Figure 8. Nitrogen adsorption–desorption isotherms of nHAp powder (a) 1DP-nHAp and
(b) 2DP-nHAp.

TGA analysis was used to confirm the composition of HAp in 1DP-nHAp and 2DP-
nHAp. Figure 9a,b exhibits the TGA results showing the weight loss of 1DP-nHAp and 2DP-
nHAp in the temperature range from 30–1000 ◦C, respectively. The figure also includes their
DTG curves, the derivative of the weight loss, which indicate three stages of weight loss
from both samples. The first stage at 30–200 ◦C is the weight loss from water evaporation.
The second stage around 375–500 ◦C corresponds to the weight loss from the combustion
of hydrocarbons which are the organic residue. The final stage, at around 600–800 ◦C
corresponds to the loss of carbonate groups in the nHAp structure [19,41]. According to the
FT-IR results, 2DP-nHAp has carbonate groups more than 1DP-nHAp. So, the carbonate
weight loss of 2DP-nHAp is greater. The HAp residue of 1DP-nHAp and 2DP-nHAp were
86.10 and 76.12 wt%, respectively. In addition, maximum degradation temperature (Tdmax)
of 1DP-nHAp and 2DP-nHAp were 716.67 ◦C and 704.50 ◦C, respectively. It indicated that
1DP-nHAp has better thermal stability than 2DP-nHAp.
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Figure 9. TGA and DTG curves of thermal decomposition of (a) 1DP-nHAp and (b) 2DP-nHAp.
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3.2. Characterization of PLA/nHAp Composite Films

The PLA/nHAp composite films were fabricated by the solution casting method. 5phr
of 1DP-nHAp and 2DP-nHAp was added for comparison. Figure 10 shows the tensile stress–
strain curve of the PLA/nHAp composite films with nHAp from different preparation steps
and with different 1DP-nHAp contents. The results of the tensile properties are shown in
Table 2. It shows Young’s modulus, tensile strength, and elongation at break of PLA and
PLA/nHAp composite films. The Young’s modulus of PLA was 1.73 ± 0.18 GPa and the
value for the PLA/1DP-nHAp5 and PLA/2DP-nHAp5 increased up to 2.65 ± 0.05 MPa
and 2.38 ± 0.11 MPa, respectively. However, elongation at break of PLA/2DP-nHAp5 is
lower than PLA/1DP-nHAp5. According to Kamarudin et al. [42] and Boey et al. [43], the
modulus and strength of the composite depend on mechanical interlocking or chemical
interaction between the filler and the matrix. Thus, adhesion or bonding between the
filler and the matrix is an important factor. Mechanical interlocking is a form of physical
force that holds filler and matrix together, whereas chemical interaction is the formation of
chemical bonding via functional groups between filler and matrix. In this work, the surface
area of nHAp that is available for the mechanical interlocking and the chemical bonding
between carbonyl (−COO) of PLA and Ca2+ ions on the surface of nHAp were considered
to affect the mechanical properties of the PLA composite [44,45]. The composite with
1DP-nHAp5 addition showed the highest tensile strength (66.41 ± 3.63 MPa). This result
corresponds to the surface properties of 1DP-nHAp which has larger surface area and could
cause more mechanical interlocking with matrix than 2DP-nHAp. So, the interlocking
between filler and matrix was expected that greater. According to EDS results, 1DP-nHAp
has atomic fraction of Ca2+ more than 2DP-nHAp, indicating that 1DP-nHAp has more
interaction sites. This assumption supplemented that the strength of PLA/1DP-nHAp5
could occur from the chemical bonding of −COO and Ca2+. However, both samples have
mechanical properties which correspond to the tensile strength of human skeletal bones
(ranging from 40–200 MPa) and the critical mechanical modulus of bone replacement
material in non-load bearing sites (ranging from 10–1500 MPa) [46].
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Figure 10. Tensile stress–strain curve of PLA/nHAp composite films with nHAp from dif-
ferent preparation steps and 1DP-nHAp at various contents (a) PLA, (b) PLA/1DP-nHAp2.5,
(c) PLA/1DP-nHAp5, (d) PLA/2DP-nHAp5, and (e) PLA/1DP-nHAp10.

The mechanical properties of the PLA/nHAp composite films with various 1DP-nHAp
content are also given in Table 2. The results indicated that PLA/nHAp composite films
show more tensile strength than neat PLA films. The tensile strength of PLA/nHAp
composite films increases with increasing 1DP-nHAp content up to 5 phr as well as the
result of Young’s modulus. It indicated good dispersion of nHAp into PLA matrix and
strong interfacial actions between the PLA and nHAp [46]. Therefore, the optimum content
of nHAp is 5phr. However, elongation at break is the lowest. Tensile strength decreased
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with adding nHAp content at 10 phr. The high content of nHAp would agglomerate,
causing poor dispersion of nHAp in the PLA matrix leading to the deterioration of tensile
strength as previously reported by Li et al. [47]. According to Boey et al. [43], the mechanical
properties of composites are found to improve linearly with increasing filler content up
to a certain optimum value. Moreover, the addition of filler above that limit adversely
affects the mechanical strength due to the formation of agglomerates. Elongation at break
of PLA/nHAp composite films decreased by the addition of nHAp up to 5 phr. The results
are suggested that the optimum addition of nHAp into the PLA matrix can be improved the
rigidity of the composite film. Nevertheless, all composite samples have enough strength
for developing medical materials that can be degraded. This strength is an outgrowth
from inorganic filler that the materials should maintain sufficient strength while providing
specific cell-surface receptors during the tissue remodeling process [48].

Table 2. Mechanical properties of PLA/nHAp composite films with nHAp from different steps of
preparation and 1DP-nHAp at various contents.

Designation nHAp Content
(phr)

Young’s Modulus
(GPa)

Tensile Strength
(MPa)

Elongation at
Break (%)

PLA − 1.73 ± 0.18 38.21 ± 0.95 23.39 ± 1.97
PLA/1DP − nHAp2.5 2.5 1.94 ± 0.27 54.45 ± 1.42 14.74 ± 2.92
PLA/1DP − nHAp5 5 2.65 ± 0.05 66.41 ± 3.63 4.32 ± 0.34
PLA/2DP − nHAp5 5 2.38 ± 0.11 52.21 ± 4.67 3.44 ± 0.66
PLA/1DP − nHAp10 10 2.02 ± 0.18 45.80 ± 1.78 4.72 ± 0.59

The thermal properties of PLA and PLA/nHAp composite films was studied by
differential scanning calorimetry (DSC). Their DSC thermograms are shown in Figure 11.
The effect of the nHAp from different preparation steps on the thermal properties of
PLA/nHAp composite films is shown in Table 3. The glass transition temperature (Tg)
of all samples was slightly different, all in the range of 60–61 ◦C. It indicates that the
interaction between matrix and filler is low, and it can slightly change the mobility of
polymer chains related to the glass transition. An exothermic peak corresponds to the
crystallinity of the PLA. The addition of nHAp particles in the PLA matrix affects the
temperature of cold crystallization (Tcc) values tend to decrease due to the nHAp particles
acting as nucleation centers for PLA crystals [49]. So, the PLA crystallinity was enhanced
by loading nHAp due to the exothermic peak, as observed in PLA/nHAp composites being
sharper than neat PLA and the inorganic filler could promote the polymer crystallization
on their surface [50]. As compared between 1DP-nHAp and 2DP-nHAp at the same filler
contents, the Tg, Tcc, and Tm of both composites seem slightly different. Still, their degree
of crystallinity is dramatically different because the 2DP-nHAp has smaller particles. The
smaller size of 2DP-HAp can generate more cross-linking points in the PLA matrix than
1DP-nHAp, which restricts the movement of the PLA chain [51].
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Figure 11. The second heating DSC thermograms of PLA and PLA/nHAp composite films with nHAp
from different preparation steps and 1DP-nHAp at various contents (a) PLA, (b) PLA/1DP-nHAp2.5,
(c) PLA/1DP-nHAp5, (d) PLA/2DP-nHAp5, and (e) PLA/1DP-nHAp10.
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Table 3. Thermal characteristics of PLA and PLA/nHAp composite films with nHAp from different
preparation steps and 1DP-nHAp at various contents.

Designation Tg (◦C) Tcc (◦C) ∆Hcc (J·g−1) Tm (◦C) ∆Hm (J·g−1) Xc (%)

PLA 60.10 127.89 3.57 151.60 3.16 7.23
PLA/1DP − nHAp2.5 60.81 128.39 6.71 151.59 6.51 14.50
PLA/1DP − nHAp5 61.00 122.40 12.98 150.61 15.69 32.38
PLA/2DP − nHAp5 60.77 121.90 19.72 150.44 16.74 41.17
PLA/1DP − nHAp10 61.14 126.07 11.22 151.28 10.21 25.35

The melting temperature peak of PLA is 151.60 ◦C while the peak of PLA/nHAp
composite films is decreased to a lower temperature. However, it is the same as the
neatPLA. Meanwhile, the effect of the 1DP-nHAp content on the thermal properties of
PLA/nHAp composite films is shown in Table 3. The Tg of PLA was 60.10 ◦C, while
Tg of the PLA/nHAp composites slightly increased with increasing 1DP-nHAp content.
This change indicated that the interactions of the 1DP-nHAp slightly interfere with the
mobility of polymer chains related to the glass transition [52]. The Tcc value of the PLA
and PLA/nHAp composites are 127.89, 128.39, 122.40, and 126.07 ◦C when 0, 2.5, 5, and
10 phr of 1DP-nHAp were added, respectively. It indicated that the 1DP-nHAp at 5 and
10 phr accelerated the cold crystallization of PLA due to the ability of 1DP-nHAp to induce
heterogeneous nucleation into the PLA matrix. However, adding 1DP-nHAp enhanced the
PLA’s crystallinity compared with neat PLA. The crystallinity corresponds to Tm; typically,
the polymers melt at a higher temperature when they form fewer perfect crystals [53,54].

SEM images of PLA/1DP-nHAp5 composite fibers with applied high voltage at
25 and 30 kV are shown in Figure 12. The continuous PLA/1DP-nHAp5 composite fibers
with rough surfaces without the formation of beads were successfully fabricated. The
average diameter of the fibers obtained from the high voltage of 25 and 30 kV is 3.83 ± 1.09
and 2.62 ± 0.35 µm, respectively. The fiber diameter from 30 kV high voltage shows a
slightly smaller fiber diameter than that from 25 kV. The increase in the applied voltage
leads to the stretching of the polymer chains in correlation with the charge repulsion within
the polymer jet [55].
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Figure 12. SEM images of PLA/1DP-nHAp5 composite fibers operated different applied high voltage
(a) 25 kV and (b) 30 kV.

EDS analyzed area and mappings of PLA/1DP-nHAp5 at 25 and 30 kV high voltage
are shown in Figure 13. The EDS analyzed area of each sample was shown by pink frame.
The existence of calcium was indicated to nHAp that disperse in fibers. The EDS mappings
show a good dispersion of nHAp in both samples. This indicated that nHAp could be
incorporated into PLA solution without phase separation and aggregation.
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4. Conclusions

Nano-hydroxyapatite (nHAp) was prepared from white seabass scales by two meth-
ods: (1) acid deprotonization (1DP) and (2) combination of acid-alkali deproteinization
(2DP) followed by alkali heat treatment. Physicochemical properties of 1DP-nHAp and
2DP-nHAp are compared by several techniques. Both samples are B-type carbonated
hydroxyapatite. Their particles are non-porous with irregular shapes, and nano-sized
diameters. 1DP-nHAp has lower crystallinity, narrower particle size distribution, lower
Ca/P ratio and larger surface area. 1DP-nHAp and 2DP-nHAp are used as bio-fillers for
polylactic acid (PLA). The composite films PLA/1DP-nHAp and PLA/2DP-nHAp are
compared in terms of mechanical strength and thermal behavior. PLA/1DP-nHAp5 is
the better composite. Both composites have higher Young’s modulus and tensile strength
than the neat PLA but shorter elongation at break. At the same nHAp content (5 phr),
the composite film PLA/1DP-nHAp5 shows higher Young’s modulus and tensile strength
with higher elongation at break than the composite film PLA/2DP-nHAp5. The strength of
PLA/1DP-nHAp decreases by increasing or decreasing the nHAp content. The thermal
behaviors of all PLA/nHAp composite films are slightly different from the neat PLA. The
interaction between matrix and filler is low, and it slightly changes the mobility of polymer
chains. The nHAp can induce heterogeneous nucleation into the PLA matrix via accelerated
cold crystallization. Moreover, PLA/1DP − nHAp5 demonstrates good eletrospinnability,
producing continuous fibers without beads. The nHAp dispersed well in PLA without
phase separation and aggregation.
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