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Cystic fibrosis (CF) is an autosomal-recessive multi-organ disease characterized by

airways obstruction, recurrent infections, and systemic inflammation. Vasculitis is

a severe complication of CF that affects 2–3% of CF patients and is generally

associated with poor prognosis. Various pathogenic mechanisms may be involved in the

development of CF-related vasculitis. Bacterial colonization leads to persistent activation

of neutrophilic granulocytes, inflammation and damage, contributing to the production

of antineutrophil cytoplasmic autoantibodies (ANCAs). The presence of ANCA may on

the other hand predispose to bacterial colonization and infection, likely entertaining

a vicious circle amplifying inflammation and damage. As a result, in CF-associated

vasculitis, ongoing inflammation, immune cell activation, the presence of pathogens,

and the use of numerous medications may lead to immune complex formation and

deposition, subsequently causing leukocytoclastic vasculitis. Published individual case

reports and small case series suggest that patients with CF-associated vasculitis require

immunemodulating treatment, including non-steroidal anti-inflammatory drugs (NSAIDs),

corticosteroids, hydroxychloroquine, and/or disease-modifying anti-rheumatic drugs

(DMARDs). As immunosuppression increases the risk of infection and/or malignancy,

which are both already increased in people with CF, possible alternative medications

may involve the blockade of individual cytokine or inflammatory pathways, or the use

of novel CFTR modulators. This review summarizes molecular alterations involved in

CF-associated vasculitis, clinical presentation, and complications, as well as currently

available and future treatment options.
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INTRODUCTION

Cystic fibrosis (CF) is the most common autosomal-recessive disease in White Caucasian
populations, affecting 1 in every 2,500–3,500 new-borns (1). It is caused by mutations in the
cystic fibrosis transmembrane regulator (CFTR) gene, located on the long arm of chromosome
7. This gene encodes for an ATP-binding chloride channel that is expressed on different cell types,
including, but not limited to, airway epithelial cells (2). The CFTR ion channel contributes to and
maintains the composition and the amount of liquid covering mucous layers throughout the body.
More than 2,000 mutations have been identified that can affect CFTRmRNA and protein synthesis,
its maturation, sub-cellular trafficking, and channel activity (3). Alterations in CFTR activity lead
to defective chloride and bicarbonate secretion combined with increased sodium adsorption and
mucus secretion. In the airway epithelium, this results in dehydration and acidification of the
airway surface that causes impaired mucociliary clearance, recurrent infections and uncontrolled
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FIGURE 1 | Palpable purpuric rash on lower limbs of a patient with

CF-associated vasculitis.

chronic inflammation leading to bronchiectasis, the main
cause of morbidity and mortality in people with CF
(pwCF) (4–6). However, CF pathology is not limited to
the airways; CF is a multi-organ disease that also affects
gastrointestinal, reproductive and endocrine functions amongst
others (7).

Systemic vasculitis is a rare, but potentially severe
complication of CFwhich can involve any organ system, butmost
commonly the skin (8). It involves venules, capillaries, arterioles
and (sometimes) larger blood vessels (9). Several pathogenic
mechanisms have been implicated in the induction of vasculitis
in pwCF. Small vessel vasculitis in CF frequently involves the
presence of antineutrophil cytoplasmic autoantibodies (ANCA)
and the formation of immune complexes (ICs), whose deposition
leads to leukocytoclastic vasculitis that is characterized by dense
neutrophil infiltrates and complement C3 deposits within blood
vessel walls in the papillary dermis (9–11) (Figure 1). Relatively
few published reports in this area indicate that cutaneous
and/or systemic vasculitis in pwCF is associated with poor
prognosis with as many as 75–90% of pwCF and a diagnosis of
vasculitis dying within 2 years (8, 12). Evidence based and/or
targeted-directed individualized treatments do not exist.

The aim of this review is to summarize reports of vasculitis
in CF, its molecular pathophysiology, and available and future
treatment options.

THE MOLECULAR PATHOPHYSIOLOGY OF
VASCULITIS IN CF

Immune Complexes in Inflammation and
Tissue Damage
The pathophysiology of CF related vasculitis is not
completely understood. It may be associated with bacterial
colonization, deposition of immune complexes (ICs), hyper-
gammaglobulinemia, and/or the effect of the numerous
drugs that pwCF are administered (e.g., antibiotics,
diuretics, non-steroidal anti-inflammatory drugs (NSAIDs),
anticonvulsants, etc.).

Hyper-gammaglobulinemia and the presence of ICs in
pwCF may be caused by systemic inflammation, even in
the absence of self-directed autoimmune responses (13).
Per se, IC formation is a physiological mechanism as it
is the result of antibody production (IgG or IgM) and
their binding to molecular targets, resulting in antigen
neutralization. However, occasionally, as a result of
increased ICs production or defective C3 clearance, ICs
can deposit in vessels and tissues, where they activate Fcγ
receptors (e.g., blood vessel walls, kidneys, and joints) and
complement factors, resulting in immune cell recruitment
and activation, inflammation and, finally, tissue damage.
During this process, the localization of IC deposition
determines symptoms and complications (14, 15). In
addition, ICs, after complement cascade activation, induce
the generation of complement effectors that can interact with
neutrophils and stimulate a particular form of cell death called
NETosis (16).

In CF, several factors may contribute to IC deposition: chronic
bacterial and/or viral infection, the presence of autoantibodies,
medication exposure, chronic inflammation, and tissue damage
(17, 18).

Chronic bacterial infections trigger antibody production,
including autoantibodies, thereby increasing ICs formation
and overburdening ICs clearance by phagocytic cells (18).
In this, ANCA antibodies, that can be found in CF patients
and that will be discussed in detail below, may be of special
interest, as they contribute to increased bacterial colonization
and their presence can contribute to IC formation (19).
Furthermore, medications may stimulate ICs production or
interfere with ICs clearance, thus leading to ICs accumulation
and deposition (20). In particular, antibiotics such as penicillins
and cephalosporins, can cause ICs deposition in blood
vessel walls leading to the development of leukocytoclastic
vasculitis. This so-called type III hypersensitivity reaction
is mediated by the deposition of drug-containing IC that
fail to be removed after precipitation (21–23). Lastly,
chronic inflammation results in cell and tissue damage that
causes uncontrolled release of intracellular components
to the extracellular space. This can result in autoantibody
production, immune complex formation and deposition, and
lastly vasculitis (15).
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FIGURE 2 | Histopathology of leukocytoclastic vasculitis. ANCA recognize their targets on activated neutrophils’ surface. This leads to the formation of

immunocomplexes and to an increase in adhesion molecule expression by neutrophils. As a result, neutrophils bind to endothelial cells and release NETs that cause

endothelial damage and the recruitment of additional immune cells, such as dendritic cells (DCs), monocytes, and other neutrophils. ANCA, antineutrophil cytoplasmic

antibodies; ROS, reactive oxygen species.

The Role of Antineutrophil Cytoplasmic
Antibodies
Antineutrophil cytoplasmic autoantibodies (ANCA) are directed
against proteins predominantly expressed in neutrophils, and
can be subdivided based on indirect immunofluorescence into
“cytoplasmic” (cANCA), “perinuclear” (pANCA), and “atypical”
ANCA (24). The presence of ANCA has been reported in
several diseases. In patients with (primary) systemic vasculitis,
ANCA antibodies are usually directed against proteinase 3
(PR3) or myeloperoxidase (MPO) (25). However, some patients
with systemic vasculitis (other than CF-associated forms) are
negative for both anti-PR3 and anti-MPO, while they are
positive for anti-bactericidal permeability increasing protein
(BPI) ANCA, suggesting that the presence of the latter may
be involved in the pathogenesis of this disease, too (26,
27). The bactericidal permeability increasing protein is an
endotoxin-binding host protein present in azurophilic granules
of neutrophils, which protects against Gram-negative bacteria
infections. Some studies suggest that ANCA, and especially auto-
antibodies directed against BPI, may play a role in increased
bacterial colonization in CF (28–30). In fact, the lungs of pwCF

can be colonized by a variety of bacteria, such as Pseudomonas
aeruginosa, an opportunistic Gram-negative bacterium that does
not normally cause respiratory disease in healthy individuals, but
is the major respiratory pathogen in pwCF, partly because of
impaired mucociliary clearance of thickened mucus secretions
(29, 31). Thus, anti-BPI ANCA positivity in pwCF (or other
conditions such as primary vasculitis) may contribute to bacterial
colonization and/or susceptibility to infection.

However, ANCA positivity may not only contribute to
bacterial colonization/infection in CF and other conditions,
but the resulting increased presence of pathogens may also
prime for autoantibody generation. In pwCF, chronic bacterial
respiratory infection and colonization results in continuous
neutrophil recruitment into the lungs. The long-term presence
of neutrophils, and the release of neutrophil extracellular traps
(NETs, also see below) and other neutrophil components
likely contribute to autoimmune/inflammatory responses
(32). Subsequent generation of immune complexes (also see
above) containing neutrophil components promotes tissue
inflammation and damage (33) (Figure 2). Evidence supporting
this comes from several observational studies. Neutrophil
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elastase (NE) activity in bronchoalveolar lavage fluid in the
first 3 months of life, generally before respiratory symptoms
are present, is a known risk factor associated with early
bronchiectasis in children with CF (34). Similarly, children
with CF frequently exhibit anti-BPI antibody positivity before
developing clinical signs of CF, with children positive for
autoantibodies developing worse respiratory disease than ANCA
negative children (13). Furthermore, the presence of ANCA
in children with CF is associated with indirect measures of
disease severity, including low forced expiratory volume (FEV1),
P. aeruginosa colonization, presence of multi-drug resistant

bacteria or pan-resistant P. aeruginosa, the number of antibiotic
courses received, the presence of CF-related liver disease,
hypergammaglobulinemia, elevated C-reactive protein, and low
BMI (28). ANCA directed against BPI, PR3, and/or MPO are
also found in the serum of adult pwCF (28, 35).

The role of ANCA in CF, bacterial infections and vasculitis
is complex. Currently, it is not entirely clear how ANCA
are induced and whether P. aeruginosa airway colonization
contributes to or is promoted by the presence of ANCA,
including BPI-ANCA. Šedivá et al. suggested that the presence
of ANCA may be a key, initial step for bacterial overgrowth.

FIGURE 3 | Proposed model of ANCA involvement in the development of vasculitis and chronic inflammation in CF (13, 33). Several hypotheses have been made on

what triggers ANCA production in pwCF. ANCA presence leads to a reduced defense against microbes and to vascular endothelial damage due to free LPS. Bacterial

colonization leads to further neutrophil activation, inflammation, and increased release of neutrophil granules. Here starts the vicious cycle that leads to additional

ANCA formation, decrease of microbicidal capacity, immune cells activation, and tissue damage, causing vasculitis. BPI, bactericidal permeability increasing protein;

LPS, lipopolysaccharide; ANCA, antineutrophil cytoplasmic antibodies; PAD4, peptidyl arginine deiminase 4; PR3, proteinase 3; MPO, myeloperoxidase; NE,

neutrophil elastase.
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They suggest that CFTR channel mutations alter cell pH and
charge in epithelial cells and neutrophils (that also express CFTR)
(36, 37). As BPI is a cationic protein, neutrophils from pwCF
may release more or structurally altered BPI when compared
with cells from healthy individuals (13, 38). BPI protein may
then, together with lipopolysaccharide (LPS), be internalized
by macrophages by pinocytosis and presented to immune cells.
These, in turn, may contribute to the generation of anti-BPI
antibodies (13). This complex process could start the vicious cycle
of inefficient immune response and subsequent colonization of
airways with Pseudomonas spp. The same group suggested that
induction of anti-PR3 ANCA antibodies happens later, after
chronic inflammation and neutrophil accumulation/activation
has been established as a result of excessive granule enzyme
release (Figure 3) (13).

Another possible trigger for the production of ANCA
antibodies in pwCF is the presence of P. aeruginosa which
can cleave BPI in the CF airway. BPI cleavage may lead to
the production of new epitopes that can stimulate anti-BPI
antibody production resulting in auto-immune responses as well
as reduced eradication of Pseudomonas spp. (29). Thus, bacterial
colonization may represent an early event priming ANCA
antibody generation. This is supported by the observation that
CF patients who receive a sterile lung transplant, in the following,
exhibit decreased levels of ANCA autoantibodies (39, 40).

Furthermore, aforementioned anti-BPI antibodies have the
potential to block the protective effects of BPI against LPS which
causes vascular endothelial cell injury and, in so doing, facilitates
blood vessels inflammation and vasculitis (9).

Taken together, the presence of ANCA may contribute to
the development of vasculitis in CF through allowing bacterial
colonization/infection and associated damage, which contribute
to IC generation and inflammation. As ANCA, at least to some
extent, can also be the product of infection, inflammation and
damage, the exact temporal and causative involvement of ANCAs
in the inflammatory cascade causing CF-associated vasculitis is
currently unknown.

NETosis in CF Associated Vasculitis
Aforementioned anti-BPI antibodies activate neutrophils in the
presence of TFN-α and induceNETosis (41). NETosis is a form of
cell death that is distinct from others in that it causes the release of
a lattice composed of DNA associated with citrullinated histones
and granular cytoplasmic proteins. Physiologically, NETosis
serves as an innate microbicidal mechanism.

Suicidal NETosis, one of the three forms of NETosis
(the others being vital NETosis and mitochondrial NETosis),
depends on reactive oxygen species (ROS) and neutrophil
elastase (NE) (42). During this process, the assembly of the
neutrophil NADPH oxidase complex results in the production
of ROS. Reactive oxygen species, as well as having intrinsic
microbicidal activity, also stimulate the proteolytic activity of
peptidyl arginine deaminase 4 (PAD4) and NE proteins in a
myeloperoxidase (MPO)-dependent manner. Neutrophil elastase
binds to and degrades F-actin, an essential component of
eukaryotic cytoskeleton, in order to translocate, together with
MPO, to the nucleus (42, 43). There, PAD4 hyper-citrullinates

core histones that are simultaneously processed and cleaved
by MPO and NE (Figure 4) (42, 43). This process leads to
the decondensation and mobilization of chromatin through
nucleosome rearrangement. Furthermore, during NETosis, NE
is involved in nuclear envelope disintegration which allows
the “mixing” of nucleic acids and granule proteins. NETs are
thus composed of decondensed chromatin, and granular and
cytoplasmic proteins such as NE, MPO, PR3, and BPI, and they
are released from single perforations in the plasma membrane
(42). Additionally, NE is important for the immobilization of
neutrophils at the site of the infection, as it initiates actin
cytoskeleton disassembly (43). Thrombocytes actively contribute
to this process by expressing toll-like receptor (TLR)-4 through
which they bind neutrophils and induce NETs formation (44).

Extracellular NETs, apart from having microbicidal activity,
also play a role in limiting inflammation through cytokine
and chemokine degradation (42). Thus, NETosis is a key
component of physiologic immune homeostasis. However,
in situations of uncontrolled NETosis, it can cause tissue
damage, cardiovascular-thrombotic disorders, carcinogenesis
and, indirectly, can contribute to many autoimmune and/or
inflammatory diseases, including CF. NETs can prime
macrophages and induce the release of TNF-α and IL-6,
two potent pro-inflammatory cytokines. Particularly, it has
been reported that neutrophils expressing defective CFTR show
delayed apoptosis, that may well contribute to uncontrolled
systemic inflammation and neutrophil dysfunction in CF (45–
47). Impairment of physiologic cell death leads to a more efficient
formation of NETs by neutrophils from pwCF when compared
to healthy controls. This is further supported by the presence of
extracellular human DNA in the airways of pwCF (48).

As mentioned above, the PAD4 enzyme citrullinates histone
arginine residues. This is required for NET formation, and
associated DNA decondensation and release by neutrophils.
Recently, the presence of anti-PAD4 antibodies has been
associated with CF (33). Antibody presence correlates with
reduced lung function and the presence of P. aeruginosa. Their
presence, however, is not correlated with genotype, age, sex,
and bacteria mucoid status (33). Anti-PAD4 antibodies may
have a relevant clinical effect in CF as they promote NETosis
induced both by microbes and neutrophil malfunction (32). As
the physiologically intracellular protein PAD4 is released from
neutrophils during NETosis, it could act as a neoantigen and have
a role in the development of autoimmune-like symptoms, just
like the aforementioned BPI (33). Notably, anti-PAD4 antibodies
are associated with poor joint prognosis in adult rheumatoid
arthritis (RA) where they are present in up to 40% of patients
(49). This may be of particular interest, as RA can be complicated
by pulmonary involvement and vasculitis. In particular, RA-
associated lung involvement associates with anti-PAD4 antibody
positivity together with increased neutrophil activation (50, 51).
However, to our knowledge, the exact involvement of anti-
PAD4 antibodies in the pathogenesis of vasculitis has not been
revealed yet.

Notably, NET formation can be seen at the site of ANCA-
associated vasculitis lesions, together with the presence of
myeloid dendritic cells (DCs). DCs are antigen presenting cells:
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FIGURE 4 | Induction of suicidal NETosis. NADPH oxidase assembles and activates the production of ROS. These stimulate PAD4 and, in an MPO dependent way,

also NE activity. PAD4 trans-locates to the nucleus and hypercitrullinates histones that are simultaneously processed and cleaved by NE and MPO. This process leads

to chromatin decondensation. ANCA, antineutrophil cytoplasmic antibodies; PAD4, peptidyl arginine deiminase 4; PR3, proteinase 3; MPO, myeloperoxidase; NE,

neutrophil elastase; TNFα, tumor necrosis factor α; ROS, reactive oxygen spices; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase.

they engulf, process and present antigens to T cells, thereby
linking innate and adaptive immune responses. NETs activate
DCs and trigger the autoimmune response against proteins
released during NETosis, such as PR3, MPO, and BPI. ANCA,
which are involved in the development of vasculitis, target
neutrophil-derived proteins and further activate NETosis and the
immune activation (42). Thus, the presence of ANCA in CF is, to
some extent, both the cause and effect of NETosis.

One additional key factor contributing to aberrant NETosis
in CF is the absence of a functional regulator of the TNF-α
signaling pathway: CFTR (52). In fact, CFTR is involved in the
regulation of TRADD (TNFR1-associated death domain protein)
as it enhances its lysosomal degradation (52). In the absence
of a functional CFTR, TRADD fails to be degraded and causes
uncontrolled TNF-α signaling and NFκB activation which both
mediate inflammation and facilitate NETosis (52).

While increased and poorly controlled NETosis is a hallmark
of vasculitis in CF, it is also ineffective. The absence of a functional
CFTR chloride channel impairs the microbicidal activity of
the MPO product hypochlorous acid (HOCl), an important
ROS involved in anti-bacterial responses (53). Secondly, in an
inflamed environment, bacteria with a highly versatile genome

such as P. aeruginosa, may become resistant to NETs, stimulate
NETs production and use these to “hide” and evade the host’s
immune response (54).

Taken together, while still under investigation, increased
NETosis in CF may be the result of reduced or absent CRTF
function, bacterial colonization/infection, and/or the presence
of ANCA autoantibodies. Increased but ineffective NETosis
may contribute to vasculitis in pwCF through increased
monocyte/macrophage activation and pro-inflammatory
cytokine release, thrombocyte activation and the induction
of pro-thrombotic cascades, insufficient control of bacterial
colonization/infection, and the induction of tissue damage (and
resulting inflammation, including IC generation).

Inability to Suppress Neutrophil Activity in
pwCF
Another factor promoting systemic inflammation and damage
in CF is increased thrombocyte activation. CFTR is expressed
by thrombocytes, where it is required for the release of
mediators involved in inflammatory responses. In fact, reduced
or absent CFTR function is associated with reduced Lipoxin
A4 (LXA4) production (55). LXA4 is an anti-inflammatory
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FIGURE 5 | Increased platelet activation and reduced LXA4/neutrophil ratio result in increased neutrophil activity. Platelets-monocytes interaction leads to the

production of LXA4, involved in the suppression of neutrophil activation. A reduced LXA4/neutrophil ratio in CF and may contribute to chronic inflammation and to the

development of vasculitis. LXA4, lipoxin A4.

mediator that is produced during platelet-monocyte interactions.
It limits neutrophil activation, chemotaxis, adherence and trans-
migration while it increases the uptake of apoptotic neutrophils
by monocytes/macrophages (55). Additionally, LXA4 may limit
the expression of pro-inflammatory IL-1β and TNF-α and
of neutrophil chemotactic factor IL-8, while promoting the
production of immune-regulatory IL-10 (55, 56).

Although, in pwCF, thrombocytes aggregate more easily
(potentially also as a result of aforementioned increasedNETosis)
and have increased capacity to form complexes with monocytes
compared with healthy individuals, they produce reduced
amounts of LXA4 and fail to contribute to the resolution
of inflammation (57). This process may enhance the vicious
cycle that causes chronic inflammation in CF and potentially
contributes to the development of vasculitis (Figure 5).

Inflammasome Activation in CF
In CF, epithelial and innate immune cells exhibit dysregulated
signaling pathways which result in altered cell activation.
Apart from regulating chloride transport, CFTR also influences
additional ion channels’ activity and thereby pro-inflammatory
cytokines expression. While it is known that increased
intracellular Cl− concentrations activate pro-inflammatory
cytokine secretion, more recently, altered intracellular K+

and Na+ concentrations have been linked with NLRP3
(NOD, leucine rich repeat and pyrin domain-containing
protein 3) inflammasome activation (58, 59). The NLRP3
inflammasome is a multiprotein oligomer expressed by immune,
epithelial and endothelial cells. When activated, the cytoplasmic

NLRP3 inflammasome assembles and results in the activation
or pro-inflammatory caspase-1, allowing maturation and
secretion of pro-inflammatory cytokines IL-1β and IL-18, and
mediates an inflammatory form of cell death, referred to as
pyroptosis (60–63).

As inflammasome activation and pyroptosis are involved in
several systemic and organ-specific autoimmune/inflammatory
conditions, as well as autoimmune/inflammatory phenomena
of infectious disease, these mechanisms may also be considered
in CF-associated inflammation and damage (64). Indeed,
monocytes and bronchial epithelial cells from pwCF
are characterized by increased secretion of these effector
interleukins. Recently, a link between Na+ influx through the
epithelial sodium channel (ENaC) and NLRP3 inflammasome
activation has been suggested (65). Authors discuss that
intracellular accumulation of Cl− may cause enhanced
ENaC-mediated sodium influx and, as a result, enhanced
K+ efflux, subsequently triggering inflammasome activation
(65). Additionally, when CFTR function was enhanced in CF
monocytes by CFTR modulators (discussed below), NLRP3
activation normalized (66).

As inflammasome activation and cytokine release contribute
to tissue damage, neoantigen release and inflammation,
aforementioned mechanisms, may contribute to vasculitis in
CF (64, 67). Furthermore, endothelial NRLP3 inflammasome
activation, which may be increased in CFTR deficient endothelial
cells of pwCF, contributes to endothelial and coagulation system
activation, and/or vasculitis (68). Endothelial activation induces
the expression of cell adhesion molecules (CAMs), which
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FIGURE 6 | Pathogenic mechanisms involved in the development of vasculitis in CF. Deficiency or impaired function of CFTR leads to intracellular ionic alterations that

can trigger inflammasome activation. This results in the release of pro-inflammatory cytokines that, together with persistent bacterial presence, induce NETosis. NETs

activate dendritic cells (DCs) that stimulate ANCA autoantibody production that are involved in neutrophil activation and, possibly, immune complexes formation.

Furthermore, thrombocytes form complexes with monocytes and fail to produce LXA4 that usually contributes to inflammation resolution. All these factors, and the

increased release of IL-8 by endothelial cells contribute to continuous immune cell recruitment and NETosis, finally resulting in vasculitis. ANCA, antineutrophil

cytoplasmic antibodies; LPS, lipopolysaccharide; DC, dendritic cell; NET, neutrophil extracellular trap; IC, immune complex.

are indeed increased in CF, and the increase of immune cell
recruitment (69). Furthermore, the expression of a defective
CFTR causes endothelial dysfunctions with impaired endothelial
barrier function and stability after shear stress (70, 71). As
a result, IL-8 release is enhanced by CF endothelial cells
contributing to further neutrophil recruitment and activation
(Figure 6) (71, 72).

Taken together, altered salt concentrations and disturbed
ion flux in pwCF may result in increased inflammasome
assembly, cytokine activation and release, inflammatory cell
death (including autoantigen release), endothelial activation and
immune cell migration, all of which may contribute to the
inflammatory phenotype of CF and the development of CF-
associated vasculitis.

CLINICAL CONSIDERATIONS AND
TREATMENT OPTIONS

Although vasculitis occurs in only 2–3% of pwCF, case reports
and case series, some of them admittedly published some
years ago, report high associated mortality with 75–90% of
pwCF dying within 2 years of vasculitis being diagnosed (8,

12). Most frequently, vasculitis affects the skin, but, in some
cases it can also affect the brain, kidneys, and other organs
(8). Published data is limited to case reports and small case
series. Comparing 14 case reports published between 1979
and 2017 (Table 1), the majority of pwCF who developed
vasculitis were adolescents or young adults (median: 22.5,
range: 12–32) (8, 9). Based on reports available, vasculitis
is associated with worsening of pulmonary symptoms and
arthralgia. Though biopsy was not always performed, when it
was, it showed typical features of leukocytoclastic vasculitis,
including perivascular and sometimes interstitial inflammatory
cell infiltrates, immunoglobulin and complement deposition in
vessel walls, and cellular debris. A direct link between vasculitis
and medical treatment was discussed only in two cases (8, 35),
while Kayria et al. suggested a possible association between
vasculitis and pulmonary colonization with Burkordelia spp. (74).
Possible molecular similarities between microbial antigens and
autoantigens, epigenetic variations that may lead to increased
expression of autoantigens, immune complexes formation and
deposition, and the stimulation of immune responses operated
by NETs, have been discussed in this context (75, 76).

Detailed clinical and laboratory features have been reported
for four patients who all exhibited hypergammaglobulinemia,
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TABLE 1 | Published case series and case reports from 1979 to 2017.

References Case Sex Age ANCA Co-infection Arthralgia Pre-existing medications Diagnosis Organ

involvement

Treatment Details and outcome

Soter et al.

(73)

1 M 16 nd nd + nd nd Skin Prednisone No correlation with pulmonary

exacerbation or drugs. Relapses.

Death after two years

2 M 20 nd nd + nd nd Skin None Association with pulmonary

exacerbation. No relapses. Death

after 7 months

Fradin et al.

(11)

F 18 nd P. aeruginosa + Intravenous antibiotics Leukocytoclastic

vasculitis

Skin Antibiotics Association with pulmonary

exacerbation. Deposits of C3 in

blood vessel walls

Finnegan

et al. (8)

1 M 32 – H. influenzae, S.

aureus

+ Pancreatic enzymes, carbamazepine, iron and

folic acid supplements, salbutamol

Henoch-Schonlein

purpura

Skin and

kidneys

NSAIDs, then prednisolone

+ azathioprine, then

prednisolone alone

Only one relapse, before steroid

treatment

2 M 19 – P. aeruginosa nd Pancreatic enzymes, nebulized colomycin,

vitamin supplements, salbutamol, colomycin

nd Skin and

brain

Prednisolone then

switched to

dexamethasone

No correlation with pulmonary

exacerbation. Rash during final

illness

3 F 24 + CMV, P.

aeruginosa

nd Pancreatic enzymes, vitamin supplements,

salbutamol; tobramycin and carbenicillin then

switched to colomycin

nd Skin Prednisolone No relapses

4 M 12 – P. aeruginosa nd Pancreatic enzymes, vitamin supplements,

ranitidine, glibenclamide, terbutaline, ferrous

sulfate and magnesium supplements;

gentamicin, ceftazidime and flucloxacillin

switched to gentamicin, ticarcillin, flucloxacillin

Leukocytoclastic

vasculitis

Skin Ciprofloxacin and

flucloxacillin

Correlation with pulmonary

exacerbation. One relapse. The

rash persisted for four months but

cleared after the withdrawal of

ranitidine

Wujanto and

Ross (12)

M 22 nd S. aureus, P.

aeruginosa

nd nd nd Skin Azathioprine Correlation with pulmonary

exacerbation. 3 relapses before

death

Molyneux

et al. (35)

M 28 – nd + Sulphasalazine, intrevenous antibiotics Leukocytoclastic

vasculitis

Skin Chloroquine and

prednisolone

Correlation with pulmonary

exacerbation. One relapse

Ruiz

Beguerie

and

Fernandez

(9)

M 18 + nd nd Tacrolimus and systemic corticosteroids at low

doses, ciprofloxacin, azithromycin and colistin

Leukocytoclastic

vasculitis

Skin Rest and elevation of lower

limbs

Correlation with pulmonary

exacerbation. Was

immunosuppressed with

tacrolimus and systemic

corticosteroids at low doses. One

relapse. C3 deposits

Kayria et al.

(74)

1 F 26 – B. cenocepacia nd nd Leukocytoclastic

vasculitis

Skin Dapsone, then switched to

oral steroids, then to

protopic 0.03% topically

No change with dapsone or oral

steroids. Improvement with topical

protopic but no complete

resolution

2 F 23 – B. cenocepacia,

P. aeruginosa, S.

aureus

+ nd nd Skin Oral steroids, then

switched to azathioprine

No response to steroids. Rash

responded to azathioprine and

then resolved

3 M 32 – B. cenocepacia nd nd Capillaritis Skin Compression stockings,

NSAIDs and betnovate

cream

Improvement with Non-steroidal

anti-inflammatory medications and

topical betnovate but no resolution

4 F 26 – B. cenocepacia,

P. aeruginosa

+ nd Erythema

nodosum

Skin NSAIDs No association with infective

exacerbations. Relapsing and

remitting

ANCA, antineutrophil cytoplasmic antibodies; F, female; M, male; +, presence; –, absence; nd, not determined.
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potentially contributing to IC generation and deposition (8).
One patient exhibited thrombocytosis (509.000/ml), supporting
the aforementioned hypothesis that platelets play a role in the
development and persistence of inflammation, and therefore the
development of vasculitis in CF (8, 57).

The reported extent and clinical course of vasculitis in CF
is variable. In some cases, vasculitis was limited to the skin,
and some vasculitic rashes disappeared spontaneously within
weeks. Physical rest and the use of compression stockings
or symptomatic treatment was recommended in some cases,
treatment with corticosteroids or NSAIDs was used in others
(8, 9, 74). In other individual cases, vasculitis was associated
with pulmonary deterioration, and skin lesions resolved with
the improvement of lung disease following antibiotic therapy
(8, 11). Unfortunately, relapses were common and required
immune modulating treatment in some patients (8, 12). Used
agents included prednisolone, alone or in combination with
other immunomodulators, such as azathioprine and other non-
biologic/conventional disease-modifying anti-rheumatic drugs
(namely methotrexate and mycophenolate mofetil), and/or
antibiotics (8, 12). While aforementioned drugs may be used
as maintenance treatment in CF-associated vasculitis, reliable
evidence (e.g., from randomized studies) supporting their
efficacy and safety currently does not exist.

Based on experience with other forms of vasculitis, in patients
with steroid resistant cutaneous vasculitis, the antimalaria agents
(chloroquine and hydroxychloroquine) may be used to maintain
remission and reduce flare frequency (35). Several characteristics
make antimalarial agents a potential treatment for vasculitis:
they reduce circulating cytokines levels (e.g., IL-1 and IL-6) and
the production of TNF-α in PBMCs, and stabilize endothelial
membranes which results in the improvement of endothelial
function (77).

The use of immune modulating treatments in CF
is not without risk. While they are established and
efficacious medications and frequently used in systemic
autoimmune/inflammatory diseases, experience in CF is limited.
As they dampen immune responses and inflammation, they may
increase the risk of infections or malignancy, both a pre-existing
concern in pwCF (78). Possible alternative therapies may
involve treatments targeting individual cytokines, such as IL-1
inhibitors. Indeed, preliminary evidence from mouse models
suggests beneficial effects of IL-1-directed treatments limiting
inflammation in CF (79).

Recently, a new class of medications has become available
for the treatment of CF (80, 81). So-called CFTR modulators
enhance CFTR activity and increase its presence within the cell
membrane. It has been demonstrated that CFTR modulator
treatment has anti-inflammatory effects (66). Monocytes
from pwCF carrying the most frequent CFTR p.Phe508del
(1F508 CFTR) mutation show an increased production
and activation of IL-1β and IL-18 through inflammasome
assembly and pro-inflammatory caspase-1 activation, as
well as TNF-α expression when compared with monocytes
from healthy controls. Treatment of patient monocytes with
combinations of CFTR modulators, ivacaftor/lumacaftor and
ivacaftor/tezacaftor, leads to a reduction of caspase-1 activation,
subsequently reduced IL-18 and TNF-α secretion, and increased

immune-regulatory IL-10 production (66). Based on these
observations, CFTR modulators may, in addition to resolving
underlying molecular pathological mechanisms in CF, also
inhibit inflammasome-mediated inflammation, and thus reduce
the incidence of vasculitis in pwCF. However, effectiveness and
safety of these medications in CF-related vasculitis requires
further investigation, particularly because of the potential for
drug interactions.

CONCLUSIONS

Systemic inflammation is a hallmark of CF. Vasculitis is
a rare, but potentially severe complication of CF as it
associates with poor prognosis. Where available, biopsies
show evidence of leukocytoclastic (immune complex) vasculitis.
Several hypotheses have been developed regarding possible
underlying molecular causes, which include immune complex
formation in the presence of pathogens, therapeutics, and/or
autoantibodies (namely antineutrophil cytoplasmic antibodies;
ANCA). ANCA autoantibodies may limit the immune system’s
ability to successfully clear pathogens and to terminate
inflammatory responses. However, ANCA may also be the
product of uncontrolled inflammation, potentially inducing
a vicious circle. Another mechanism that likely contributes
to vascular inflammation is NLRP3 inflammasome activation
in innate immune cells and endothelia, both of which may
contribute to endothelial activation, tissue damage, and immune
complex formation and deposition.

Clinical reports and published evidence on therapeutic
approaches are sparse. Most patients are treated with antibiotics
to clear pathogens, and NSAIDs, corticosteroids, and/or
chloroquine to control inflammation. If on withdrawal of
corticosteroids symptoms recur, classical DMARDs, such as
azathioprine may be considered. However, immunosuppression
may increase the risk of infection and/or malignancy. “New”
therapeutic options may include cytokine-blocking agents
(e.g., IL-1 blockade). Recently licensed and future CFTR
modulators may transform treatment and prognosis in
CF but a deeper understanding of the underlying causes
of inflammation and individual factors associated with
different phenotypes is crucial to develop target-directed
and individualized treatments for CF and associated
immune diseases.

Further studies, involving both pediatric and adult CF
patients, are urgently needed to identify causative connections
between bacterial colonization and/or infection, tissue damage,
the presence of autoantibodies and immune complexes, altered
NETosis, inflammasome activation, and (potentially) additional
mechanisms that contribute to disease pathology and phenotype.
This will allow future individualized and target-directed
approaches to treat CF patients effectively and with reduced
treatment-associated side-effects.
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