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Working memory is developed in one region of the brain called the dorsolateral
prefrontal cortex (DLPFC). The dysfunction of this region leads to synaptic
neuroplasticity impairment. It has been reported that several biochemical parameters
and anthropometric measurements play a vital role in cognition and brain health.
This study aimed to investigate the relationships between cognitive function, serum
biochemical profile, and anthropometric measurements using DLPFC activation.
A cross-sectional study was conducted among 35 older adults (≥60 years) who
experienced mild cognitive impairment (MCI). For this purpose, we distributed
a comprehensive interview-based questionnaire for collecting sociodemographic
information from the participants and conducting cognitive tests. Anthropometric values
were measured, and fasting blood specimens were collected. We investigated their brain
activation using the task-based functional MRI (fMRI; N-back), specifically in the DLPFC
region. Positive relationships were observed between brain-derived neurotrophic factor
(BDNF) (β = 0.494, p < 0.01) and Mini-Mental State Examination (MMSE) (β = 0.698,
p < 0.01); however, negative relationships were observed between serum triglyceride
(β = −0.402, p < 0.05) and serum malondialdehyde (MDA) (β = −0.326, p < 0.05)
with right DLPFC activation (R2 = 0.512) while the participants performed 1-back task
after adjustments for age, gender, and years of education. In conclusion, higher serum
triglycerides, higher oxidative stress, and lower neurotrophic factor were associated
with lower right DLPFC activation among older adults with MCI. A further investigation
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needs to be carried out to understand the causal-effect mechanisms of the significant
parameters and the DLPFC activation so that better intervention strategies can be
developed for reducing the risk of irreversible neurodegenerative diseases among older
adults with MCI.

Keywords: anthropometry, biochemical, biomarkers, brain activation, cognitive

INTRODUCTION

Functional MRI (fMRI) is a noninvasive process that can be used
for measuring brain activities since it detects changes related to
blood flow (Wright and Wise, 2018). fMRI is regarded as an
important tool that helped in detecting the changes that took
place in the neural mechanisms of older adults (Belleville and
Bherer, 2012). This technique includes several features, which
could be used as effective surrogate markers for investigating the
cognitive status among older adults (Belleville and Bherer, 2012;
Clément and Belleville, 2012). The human brain includes a region
called the dorsolateral prefrontal cortex (DLPFC). This region is
located in the middle frontal gyrus of the human brain, which is
a part of the lateral region in Brodmann’s area 9 and 46 (Barbey
et al., 2013). Impaired synaptic neuroplasticity occurs due to a
DLPFC dysfunction (Kumar et al., 2017). At present, the site
that was most frequently targeted among older adults with mild
cognitive impairment (MCI) was the DLPFC as reported in recent
studies, which is important for working memory (Wang et al.,
2014; Badhwar et al., 2017; Taylor et al., 2019).

Several risk factors have been identified, which indicate
cognitive declines such as increased age of adults, inadequate
nutrient intake, low educational level, presence of comorbidities,
and a lack of physical and social activities (Sachdev et al., 2013;
Baumgart et al., 2015; Boyle et al., 2016; Kobe et al., 2016).
Additionally, a higher body mass index (BMI) was also associated
with a poor cognitive status. Previous studies have also reported
that the greater BMI and higher body fat percentage were closely
related to poor cognitive status among older adults (Malek
Rivan et al., 2019). Cognitive deterioration was also associated
with the biochemical profiles of the participants such as the
serum lipid profiles. Current evidence suggests that lipids help
in regulating the neural functions in the central nervous system
since they participate in many local mechanisms associated with
the systemic lipid metabolism (Weinstock-Guttman et al., 2011;
Hottman et al., 2014). A previous Malaysian study reported
that hypertriglyceridemia was related to an increased risk of
poor cognitive among older adults with cognitive impairment
(Rivan et al., 2020). Although previous studies have focused on
the relationship between these parameters with brain activities,
however, not all parameters were systematically included in one
study among older adults with MCI.

In addition, Revel et al. (2015) reported that oxidative stress-
related damage would accelerate the aging process and lead to
an age-related cognitive decline. Malondialdehyde (MDA) was
observed to be an important biomarker of the lipid peroxidation
process, which plays a vital role in progressing dementia (García-
Blanco et al., 2017; He et al., 2017; Luo et al., 2020). Age-
related oxidative brain damage was significantly increased by

lipid peroxidation products, protein oxidation mechanisms, and
the oxidative changes that take place in the mitochondrial and
nuclear DNA (Zabel et al., 2018). All these factors can lead
to irreversible neurodegenerative diseases (García-Blanco et al.,
2017; Luo et al., 2020). It is necessary to identify possible
biomarkers that can serve better in determining their relationship
with cognitive function and can potentially be used as a molecular
signature for targeted interventions in the future among older
adults with MCI so that their condition could be reversed to
successful aging.

A majority of the earlier local studies made use of
neuropsychological batteries for assessing the cognitive functions
and defining the potential predictors, which led to a decrease
in cognitive functioning (Vanoh et al., 2017; Rivan et al., 2020;
You et al., 2020). The fMRI technique could measure the changes
occurring in the blood flow levels in response to some memory
challenges. Hence, it helps in understanding the differences in
brain activation levels among older adults. At present, several
methods were used to predict the progression of MCI, such as
fMRI (Lau et al., 2018; Wright and Wise, 2018), and the analysis
of biomarkers in the cerebrospinal fluid and peripheral blood
(Hermida et al., 2012). In this study, we aimed to determine
the relationship between the various biochemical parameters,
anthropometric values, and cognitive function with working
memory related to the DLPFC function among the older adults
with MCI. We hypothesized that there is a relationship between
biochemical parameters, anthropometric values, and cognitive
function with working memory related to the DLPFC function
among the older adults with MCI.

MATERIALS AND METHODS

Study Design
This is a cross-sectional study that involved 35 community-
dwelling older adults with MCI aged 60 years and above as
recruited involving two cohorts prior to nutritional intervention
studies involving local traditional vegetables (You et al., 2021)
and herbs (Lau et al., 2020). They were screened for eligibility
based on the inclusion and exclusion criteria. This study was
approved by the Medical Research and Ethics Committee of
the Universiti Kebangsaan Malaysia (UKM; NN-2019-137), and
written informed consent was obtained from all the participants
prior to data collection. In this study, the inclusion criteria
included older adults aged 60 years and above with MCI based
on the criteria described by Petersen et al. (2014) and who
were able to communicate in Malay, English, Chinese, or Tamil
language participated in the study. The criteria described by
Petersen et al. (2014) are stated as follows:
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(1) Currently not receiving any clinical
judgments on dementia.

(2) Have no or very minimal limitations in instrumental
activities of daily livings (IADL) with a score of ≤1.5 SD
from the mean norm.

(3) Essentially preserved general cognitive functioning by
scoring ≥19 in Mini-Mental State Examination (MMSE).

(4) Objective memory impairment with a score of at least 1.5
SD below the mean average in one or more cognitive tests
[Rey Auditory Verbal Learning Test (RAVLT) (immediate
recall) or Digit Span] (Vanoh et al., 2017).

(5) Subjective memory complaints.

The exclusion criteria were a history of mental health illness
(i.e., Alzheimer’s disease, schizophrenia, and history of stroke),
score >5 in the Geriatric Depression Scale (GDS), physical
disabilities, alcohol and drug users, being claustrophobic, and
having internal metallic or electronic implants.

The sample size was calculated using the formula as follows
(Hulley et al., 2013):

n = [ (Zα+Zβ)
C ]2

+ 3
where Zα = 95% CI = 1.96; Zβ = 80% power = 0.842;
C = 0.5 × ln[(1+r)/(1−r)] = 0.61; r = correlation
coefficient = 0.515 (Lau et al., 2018), and additional dropout 20%;
thus, the total sample size was 35 participants.

Data Collection
Data collection was carried out at the Center of Healthy Aging
and Wellness, UKM and the Hospital Canselor Tuanku Muhriz,
UKM. The data that were collected included sociodemographic
information, self-reported medical condition, anthropometric
measurements, biochemical profiles, neuropsychological tests,
and fMRI analysis. The participants signed the informed consent
prior to the data collection. A total of five trained field-
workers from dietetics, nutrition, and biomedical backgrounds
joined the data collection. All field-workers were trained
by experienced researchers on anthropometric measurements,
blood sample collection, and neuropsychological batteries prior
to data collection. No pretesting of the questionnaire was
conducted as we used validated questionnaires for all parameters.

The anthropometric measurements such as weight, height,
waist circumference, and hip circumference were carried out
after informed consent was obtained from the participants. All
the measurements were carried out according to the standard
procedure (Gibson, 1990). Every measurement was repeated two
times, and later, the average value was calculated. BMI was
calculated to determine the weight status of the participants.
BMI was obtained by dividing weight (kg) with (height)2 (m2).
Equipment was calibrated prior to the measurements.

Participants were asked to fast overnight for at least 10 h
to collect blood samples. A total of 20 ml peripheral venous
blood was collected and stored in an icebox immediately for
delivery purpose. All the basic biochemical profile analyses such
as fasting blood sugar, lipid profile, liver function test, and renal
profile were analyzed at the medical laboratory (Pathlab Malaysia
Sdn Bhd). Serum was isolated by centrifugation and stored at
−80◦C for 1 month before the biomarker analysis was carried
out using commercial ELISA kits. The oxidative stress biomarkers

(i.e., MDA), inflammatory biomarkers [i.e., inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2)], and brain-
derived neurotrophic factor (BDNF) were measured.

We utilized four validated neuropsychological batteries [i.e.,
MMSE (Ibrahim et al., 2009), Digit Span, Digit Symbol
(Weshsler, 1997), and RAVLT (Jamaluddin et al., 2009)] in
assessing the global cognitive function, working memory,
processing speed, and verbal memory of the participants. The
scaled Digit Span and Digit Symbol scores were calculated based
on the age-specific tables of the manual (Weshsler, 1997).

A qualified field-worker explained the procedures involved in
fulfilling the N-back task. To ensure a clear understanding of
the assignment at hand, the participants were provided with a
diagram of the task blocks, and the protocol was clearly explained
by the field-worker. The two conditions of the N-back task, which
were used in this study, had consisted of 0-back and 1-back
that were employed by previous studies (Lau et al., 2018; You
et al., 2019), which had been created and displayed by using the
SuperLab 5 (Cedrus, Los Angeles, CA, United States). N-back
holds four blocks for every 0-back and 1-back condition. Figure 1
displays the 0-back and 1-back paradigms. During the 0-back
condition, the participants were obliged to react to the stimulus
provided and to distinguish if it is similar to the position of the
target at the start of the block (i.e., pre-demarcated stimulus).
As for the 1-back condition, the participants were called on to
decide if the position of the target exhibited is similar to the one
previous to it. A radiographer performed a 3-min anatomical
scan of the brain, which was followed by approximately 9 min
of N-back tasks. The duration of each block was 30 s; there was
a 30-s rest between blocks, and the total duration to complete
the task was 510 s.

Single-shot spin-echo echo planar imaging (EPI) was
obtained; the fMRI data and the fMRI images were
performed on a 3.0-tesla magnetic resonance (MR) scanner
(MAGNETOM, Trio, Siemens, Erlangen, Germany) with each of
the subjects being subjected to a high resolution of T1-weighted
anatomical images [repetition time (TR) = 1,900 ms, echo
time (TE) = 2.35 ms, voxel dimensions = 1.0 × 1.0 × 1.0 mm,
250× 250 voxels, 176 slices, slice thickness = 1 mm], while those
of the N-back task had been conducted via the T2∗-weighted
imaging data (TR = 3,000 ms, TE = 30 ms, 3-mm isotropic voxels,
flip angle = 90◦, 27 slices, slice thickness = 4 mm).

The percentage of accuracy and the mean response time (RT)
on the N-back task of each participant were then recorded in
the calculation of the average data. Correct response (CR) is the
percentage of CR from the total response performed by each
participant. An index Reaction time

Reaction accuracy was used to analyze the
behavioral performance of the data (You et al., 2019).

Preprocessing of the Functional Data
and First-Level Analysis
The preprocessing and data analysis stage utilized the statistical
parametric mapping (SPM12) software that was implemented
in MATLAB 9.4.0 R2018a (MathWorks Inc., Natick, MA,
United States). The functional images were first slice time
corrected followed by realignment. These functional images
would then be co-registered to the mean T1-weighted image
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FIGURE 1 | 0-back and 1-back paradigms.

of the subject and estimated against a standardized Montreal
Neurological Institute (MNI) stereotaxic space, where the spatial
normalization procedure would involve a 6-parameter affine
transformation with a spatial transformation matrix. After
undergoing the normalization process, all of the functional
volumes were then be subjected to spatial smoothing with a
6-mm full-width half-maximum of isotropic Gaussian kernel
as a way of increasing the signal-to-noise level through the
removal of the high-frequency information and the reduction of
its intersubject variability.

The DLPFC is a key node in the cognitive control network
that supports working memory, executive function, attention,
planning, and decision-making. Many researchers used the
N-back task for evaluating the DLPFC function (Townsend et al.,
2010; Diamond, 2013; Lau et al., 2018; You et al., 2019). The
DLPFC mask was selected, and it had been defined by the
WFU PickAtlas (Maldjian et al., 2003) with Brodmann’s area 9
and 46. Previous studies had identified this volume of interest
(VOI) as being responsible for generating the working memory
and executive function of the human brain (Townsend et al.,
2010; Lau et al., 2018; You et al., 2019). Individual analysis
of the participants was performed to determine VOIs within
bilateral DLPFC areas to extract averaged percent change of
blood oxygen level dependency (BOLD) representing significant
activation [p < 0.05, family-wise error (FWE) corrected] using
MarsBaR toolbox (Brett et al., 2002).

Statistical Analysis
In this study, the Statistical Package for Social Sciences (SPSS)
version 23.0 software was used for carrying out all statistical
analyses. The Shapiro–Wilk test was used for determining
the data normality (p > 0.05). The demographic data of

the participants were presented as a percentage value with
appropriate SDs. The Pearson’s correlation was used for analyzing
the relationship between the demographic characteristics (age,
gender, and years of education), biochemical parameters,
anthropometric values, and neuropsychological test scores
with regard to DLPFC activation (i.e., percent signal change
extracted from SPM software). To control for the inflated
FWE rates that result from performing multiple tests on the
same data, the significance of this partial correlation at a
Bonferroni-adjusted alpha level was performed. Furthermore,
to make adjustment, the family-wise alpha level (0.05) was
divided by the total numbers of variables. In addition, the
relationships between significant variables from the Pearson’s
correlation analysis and dependent variable (i.e., percent signal
change as DLPFC activation) were modeled using the multiple
linear regression after adjustments for age, gender, and years
of education.

RESULTS

Profiles of the Participants
A total of 35 participants comprising of 10 men and 25 women
with a mean age of 65 years participated in this study. All the
mean values of both the anthropometric measurements and the
biochemical parameters were within the normal range except
systolic blood pressure, which was higher than the normal
values (Table 1).

Functional MRI Brain Activation
The activated brain region in DLPFC (middle frontal gyrus and
Brodmann’s area 9 and 46) when performing the N-back task
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TABLE 1 | Demographic characteristics of total participants [expressed in
mean ± SD or number (%)].

Parameters Total participants
(n = 35)

Reference range
a,b,c,d,e

Age (years) a 65.03 ± 3.36 69.5

Gender (men, %) a 10 (28.60) N/A

Education (years) a 9.26 ± 4.07 5.5

Household income (USD/month) a 402.24 ± 183.43 336

Hypertension (n, %) b 15 (42.90) 37%

Type 2 Diabetes Mellitus (n, %)b 6 (17.10) 41.5%

Hyperlipidemia (n, %)b 15 (42.90) 60.8%

Height (cm) 156.73 ± 7.83 N/A

Weight (kg)a 64.40 ± 10.48 62.4

Body mass index (kg/m2 )c 26.12 ± 3.01 22–27

Waist circumference (cm)d 88.33 ± 8.39 <90

Systolic blood pressure (mmHg) d 132.91 ± 16.05 120

Diastolic blood pressure (mmHg)d 72.63 ± 10.02 80

Fasting blood glucose (mmol/L)e 5.46 ± 1.17 3.9–5.6

Total cholesterol (mmol/L)e 5.40 ± 0.96 <5.2

Low density lipoprotein (mmol/L)e 3.27 ± 0.90 <2.6

High density lipoprotein (mmol/L)e 1.52 ± 0.37 >1.04

Triglyceride (mmol/L)e 1.38 ± 0.55 <1.7

Sodium (mmol/L)e 141.51 ± 3.06 137–150

Potassium (mmol/L)e 4.45 ± 0.52 3.5–5.3

Urea (mmol/L)e 4.34 ± 1.11 1.7–8.4

Creatinine (µmol/L)e 69.31 ± 18.16 62–115

Uric acid (µmol/L)e 0.35 ± 0.01 0.20–0.42

Total protein (g/L)e 72.51 ± 6.20 57–82

Albumin (g/L)e 43.91 ± 2.38 32–48

Globulin (g/L)e 28.63 ± 6.53 20–50

Total bilirubin (µmol/L)e 11.86 ± 4.77 3–19

Alkaline phosphatase (U/L)e 74.54 ± 17.11 39–117

Alanine aminotransferase (ALT) (U/L)e 20.20 ± 11.19 0–40

Aspartate aminotransferase (AST) (U/L)e 22.71 ± 5.43 0–40

Inducible nitric oxide synthase (iNOS)
(pg/ml)

182.31 ± 29.21 N/A

Cyclooxygenase-2 (COX-2) (ng/ml) 1.34 ± 0.70 N/A

Brain-derived neurotrophic factor
(BDNF) (pg/ml)

114.52 ± 53.56 N/A

Malondialdehyde (MDA) (ng/ml) 211.22 ± 50.27 N/A

Neuropsychological batteries

MMSE a 25.94 ± 2.18 19

Digit Span (Scaled score)a 13.14 ± 1.90 7.7

RAVLT immediate recall a 6.83 ± 1.47 7

RAVLT delayed recalla 6.11 ± 2.01 6

Digit Symbol (Scaled score)a 7.63 ± 2.43 8

fMRI behavioral performance

Reaction accuracy (N-back) (%) 62.07 ± 10.59 N/A

Reaction time (N-back) (ms) 2245.95 ± 297.87 N/A

RT/RA index 37.35 ± 8.87 N/A

fMRI brain activation

0-back mean percent signal change (%)
Left DLPFC

0.73 ± 0.52 N/A

0-back mean percent signal change (%)
Right DLPFC

0.83 ± 0.40 N/A

1-back mean percent signal change (%)
Left DLPFC

0.82 ± 0.49 N/A

1-back mean percent signal change (%)
Right DLPFC

0.94 ± 0.40 N/A

aNationwide aging population research in Malaysia (Shahar et al., 2016).
bNational Health and Morbidity Survey 2019 in Malaysia.
cBody mass index for older adults (Winter et al., 2014).
dWHO cutoff guidelines (World Health Organisation, 2011).
eNormal range values from the accredited biomedical laboratory.
DLPFC, dorsolateral prefrontal cortex; fMRI, functional MRI; MMSE, Mini-Mental
State Examination; RAVLT, Rey Auditory Verbal Learning Test; RA, reaction
accuracy; and RT, reaction time.

(p < 0.05, FWE corrected) is presented in Table 2. The total
voxels activated in DLPFC for 0-back and 1-back being 5,141 and
7,915 voxels, respectively, with the highest activation observed in
the right middle frontal gyrus (rMFG) for both 0-back and 1-
back tasks (p < 0.05, FWE corrected). Figure 2 demonstrates that
the middle frontal gyrus, precentral gyrus, superior frontal gyrus,
and inferior frontal gyrus were activated while the participants
performed 0-back and 1-back tasks.

Relationship Between Demographic
Characteristics, Anthropometric
Measurements, Biochemical Profiles,
Biomarkers, Cognitive Tests, and Brain
Activation
Table 3 shows the relationship between demographic
characteristics, anthropometric measurements, biochemical
indices, and cognitive tests with DLPFC. Women participants
demonstrated higher right DLPFC activation compared to
men participants while performing the 1-back task (p < 0.05).
Significant positive correlations were observed between years
of education (r = 0.400, p < 0.05), high density lipoprotein
(r = 0.431, p < 0.01), serum BDNF (r = 0.407, p < 0.0125),
MMSE (r = 0.466, p < 0.01), and RAVLT immediate recall
(r = 0.451, p < 0.01) with right DLPFC activation while the
participants performed the 1-back task. However, significant
negative correlations were observed between age (r = −0.340,
p < 0.05), serum triglyceride for female (r = −0.450, p < 0.01),
and serum MDA (r = −0.455, p < 0.0125) with right DLPFC
activation while the participants performed the 1-back task.
Further analysis using the multivariate linear regression
is demonstrated in Table 4. The findings showed positive
relationships between BDNF (β = 0.494, p < 0.01) and MMSE
(β = 0.698, p < 0.01); however, negative relationships were
observed between serum triglyceride (β = −0.402, p < 0.05) and
serum MDA (β =−0.326, p < 0.05) with right DLPFC activation
(R2 = 0.512) while the participants performed the 1-back task
after adjustments for age, gender, and years of education.

DISCUSSION

In this study, we have successfully determined the relationship
between the various biochemical parameters, anthropometric
values, and neuropsychological test scores with the DLPFC
activation among the older adults with MCI. The results of
our study showed that older participants with MCI had lower
DLPFC activation, which was associated with increased lipid
peroxidation and oxidative stress. A few earlier studies indicated
that lipid peroxidation led to oxidative degradation of the
polyunsaturated fatty acids in cells. This could cause a release of
many inflammatory and pro-inflammatory factors that promote
cell proliferation or apoptosis (Libetta et al., 2011; Redza-
Dutordoir and Averill-Bates, 2016). Additionally, the brain shows
a higher oxidative metabolism that can lead to the production of
a higher concentration of reactive oxygen species (ROS; Redza-
Dutordoir and Averill-Bates, 2016; Salim, 2017; You et al., 2018).
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TABLE 2 | Activated brain regions during 0-back and 1-back task [p < 0.05,
family-wise error (FWE) corrected].

Anatomical region L/R Coordinates Voxels
activated

Maximum
T-value

x y z

0-back

Middle frontal gyrus R 44 10 14 2,922 16.47

L −34 0 50 2,188 14.83

Precentral gyrus L −36 4 30 3 10.58

Inferior frontal gyrus L −42 42 −2 26 5.31

Superior frontal gyrus R 4 40 38 2 4.72

1 back

Middle frontal gyrus R 46 12 38 4,269 17.66

L −40 8 34 3,551 16.78

Superior frontal gyrus R 4 30 38 73 9.14

L −6 30 38 18 7.73

Inferior frontal gyrus R 50 40 2 2 5.89

Precentral gyrus R 62 6 26 2 4.99

L, left; R, right.

ROS molecules induce neuronal death and further decrease the
activation potential value of the neurons, which could decrease
the local demand for the oxygenation process. This, in turn,
decreased the blood volume supply or perfusion (Belaïch et al.,
2015). Thereafter, the intensity of the BOLD images collected
from the activated cortical regions in the brain was decreased.
This was based on the fact that community-dwelling older adults
showed significant oxidative stress (Belaïch et al., 2015). Thus,
it could be concluded that oxidative stress might directly affect
brain activation as the ROS molecules were involved in the

neurodegenerative metabolic process (Numakawa et al., 2011;
Salim, 2017).

Additionally, serum BDNF showed a positive association with
right DLPFC activation. Phillips (2017) showed that an adequate
BDNF level modulated neuronal plasticity, which helped in
maintaining the neuronal functions and promoted the adaptation
to the exogenous and endogenous stressors particularly during
chronic stress or depression. The strongest evidence for the role
of BDNF in cognitive performance comes from the relatively
large body of literature using a human model to elucidate the role
of BDNF on spatial memory (Erickson et al., 2010; Piepmeier and
Etnier, 2015). Correlational evidence with older adults has shown
that serum BDNF was associated with hippocampal volume and
spatial memory (Piepmeier and Etnier, 2015; Lau et al., 2020).
Erickson et al. (2010) utilized MRI, ELISA, and measures of
spatial memory to assess the association between age-related
decreases in brain volume, BDNF, and memory in older adults.
Results indicated that subjects with MCI had significantly lower
concentrations of BDNF, smaller hippocampal volumes, and
worse performance on spatial memory tasks as compared to
successful aging participants (Erickson et al., 2010). In another
study, Mattson et al. (2004) stated that the age-dependent
impairment in the cognitive functions could be due to a decrease
in the BDNF expression in the primary areas of the brain, which
were affected by the aging-related issues (Mattson et al., 2004).
Thus, it was concluded that BDNF is an important biomarker
that was closely associated with brain activation among older
adults with MCI.

In this study, we noted a negative relationship between
serum triglyceride levels and brain activation. Similar results
were reported earlier by Parthasarathy et al. (2017) who
observed that the serum triglyceride levels were related
to the brain function of the healthy older participants.

FIGURE 2 | (A) Activated brain region in dorsolateral prefrontal cortex (DLPFC) when performing 0-back task [p < 0.05, family-wise error (FWE) corrected].
(B) Activated brain region in DLPFC when performing 1-back task [p < 0.05, FWE corrected]. rMFG, right middle frontal gyrus; activation intensity: Red to White (low
to high).
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TABLE 3 | Relationship between demographic characteristics, anthropometric measurements, biochemical indices, and cognitive tests with dorsolateral prefrontal
cortex (DLPFC) activation (n = 35).

0-back right DLPFC
activation

0-back left DLPFC
activation

1-back right DLPFC
activation

1-back left DLPFC
activation

Participants (n = 35) Participants (n = 35) Participants (n = 35) Participants (n = 35)

Age a r −0.118 −0.031 −0.340* −0.020

p 0.500 0.860 0.045 0.908

Gender b p 0.171 0.630 0.042* 0.629

Education years a r 0.131 0.107 0.400* 0.119

p 0.453 0.539 0.017 0.496

Anthropometric measurements a

Body mass index r −0.226 −0.264 −0.166 −0.413

p 0.479 0.407 0.606 0.182

Biochemical profiles c

Fasting blood glucose r −0.304 −0.010 −0.047 −0.190

p 0.075 0.954 0.790 0.275

Total cholesterol r −0.158 −0.252 −0.022 −0.167

p 0.365 0.144 0.900 0.337

Low density lipoprotein r −0.166 −0.263 −0.121 −0.097

p 0.340 0.127 0.487 0.579

High density lipoprotein r 0.111 0.163 0.431* 0.187

p 0.526 0.349 0.009 0.281

Triglyceride r −0.082 −0.176 −0.450* −0.007

p 0.638 0.311 0.008 0.967

Biomarkers d

Inducible nitric oxide synthase r −0.300 −0.281 −0.258 −0.156

p 0.080 0.102 0.135 0.372

Cyclooxygenase-2 r −0.120 −0.061 −0.363 −0.006

p 0.671 0.829 0.183 0.982

Brain-derived neurotrophic factor r 0.063 0.026 0.407* 0.085

p 0.718 0.881 0.018 0.629

Malondialdehyde r −0.384 −0.270 −0.455* −0.172

p 0.023 0.117 0.008 0.323

Neuropsychological batteries c

Mini-Mental State Examination r 0.105 0.273 0.466* 0.206

p 0.548 0.112 0.005 0.236

Digit Span r 0.114 0.015 0.252 0.067

p 0.516 0.933 0.144 0.704

RAVLT immediate recall r 0.291 0.328 0.451* 0.233

p 0.090 0.055 0.008 0.177

RAVLT delayed recall r 0.243 0.136 0.105 0.093

p 0.160 0.436 0.547 0.595

Digit symbol r 0.081 0.081 0.077 0.086

p 0.643 0.642 0.659 0.625

Significant at ap < 0.05*, cp < 0.01*, dp < 0.0125* using the Pearson’s correlation after the Bonferroni correction.
Significant at bp < 0.05* using the independent t-test.
DLPFC, dorsolateral prefrontal cortex; fMRI, functional MRI; and RAVLT, Rey Auditory Verbal Learning Test.

Hence, in this study, we hypothesized that there could be a
significant relationship between the serum triglyceride levels
and brain activation in older adults with MCI. The serum
triglycerides can pass the blood-brain barrier (BBB; Banks
et al., 2018) and can regulate the transport of insulin and
gastrointestinal hormones across BBB, which could negatively
affect brain activation (Urayama and Banks, 2008; Banks, 2012;
Parthasarathy et al., 2017). Hypertriglyceridemia can trigger the
production of ROS molecules in the mitochondrial electron
system, which causes lipid peroxidation in the cell membranes
and leads to the generation of lipid peroxide and other radicals.
An increase in the lipid peroxidation mechanism was attributed
to oxidative stress and could lead to a cognitive decline

(Bradley-Whitman and Lovell, 2015; You et al., 2018). Thus, it
was concluded that the actual effect of the serum triglyceride
levels on brain activation has not been explained clearly, and
further studies need to be carried out to determine their actual
relationship with neuron function in the DLPFC.

Furthermore, another highlight of the outcomes of this study
is the positive relationship between the MMSE scores and DLPFC
activation among participants with MCI. MMSE is a validated
neuropsychological test that assesses global cognitive functions
(i.e., visuospatial, attention, and executive functions). It is highly
sensitive to the functions of the frontal lobe (Ibrahim et al.,
2009). DLPFC also plays a vital role in controlling the verbal
and working memory, particularly, manipulating the stimuli,
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TABLE 4 | Multiple linear regression model of biochemical profiles, biomarkers,
cognitive tests, and DLPFC activation.

Parameter 1-back right DLPFC activation

R2 Adjusted odd ratio
(95% CI)

t p-value

High density lipoprotein 0.512 0.197
(−0.183−0.205)

0.981 0.336

Triglyceride −0.402
(−0.552 to −0.332)*

−2.301 0.029

Brain-derived neurotrophic factor 0.494
(0.301−0.606)**

2.902 0.007

Malondialdehyde −0.326
(−0.354 to −0.305)

−2.175 0.038

Mini-Mental State Examination 0.698
(0.591−0.796)**

3.912 0.001

RAVLT immediate recall 0.071
(0.059−0.082)

1.641 0.113

Significant at p < 0.05* and p < 0.01** using multiple linear regression (MLR).
MLR model was adjusted by age, gender, and years of formal education.
DLPFC, dorsolateral prefrontal cortex; RAVLT, Rey Auditory Verbal Learning Test.

integrating all the collected information, selecting the best
response while making decisions, and temporarily storing vital
information (Barbey et al., 2013; Bosch et al., 2013; Buckholtz
et al., 2015; You et al., 2019). These characteristics are supported
by the fact that the cognitive functions and the verbal memory
were associated with the structure of the white matter tracts
related to the DLPFC (Turken et al., 2008).

Some researchers also investigated the association between
anthropometric values and cognitive function with brain
activation (Papachristou et al., 2015; Won et al., 2017). However,
this study did not observe any relationship of these parameters
with brain activation. This could be attributed to the activation
that may have occurred in different regions in the brain, which
was not studied.

In addition, the maximal DLPFC activation was observed in
the rMFG region when the participants performed the N-back
task. This was attributed to the fact that they showed a right-
hemispheric dominance during the visual-spatial processing
phase when they performed the N-back task (Pisella et al., 2011).
Generally, the prefrontal cortex regions, such as the rMFG,
left superior frontal gyrus, and inferior frontal gyrus, control
the working memory, attention, and executive functioning in
humans (Lara and Wallis, 2015; Koyama et al., 2017). A few
earlier studies proved that the middle frontal gyrus was involved
in various working memory tasks such as numerical operations
or word reading (Koyama et al., 2017; Lau et al., 2018; You et al.,
2019).

The strength of this article is the use of the fMRI approach
that helped in investigating all underlying changes that affected
the cerebral hemodynamic responses to the anthropometric
values, biochemical profiles, and blood biomarkers. As fMRI is
noninvasive and does not involve the use of ionizing radiation,
it is suitable for older adults. The limitation of this study is that
the significant findings were not shown in men, probably due
to a smaller sample size, as compared to women. In addition,

the brain activation was analyzed using the VOI analysis (i.e.,
DLPFC); however, the whole-brain analysis is recommended
to investigate the biochemical and anthropometric variables
related to other activated brain regions in the future. We
also suggest that a longitudinal study should be conducted to
examine the association between the biochemical indices and
anthropometric measurements with brain activation and the
inclusion of a healthy control group using the whole-brain
analysis in future study.

CONCLUSION

Abnormal lipid profile as indicated by a higher level of serum
triglycerides, oxidative stress, and lipid peroxidation and also
as indicated by a higher serum MDA and a lower BDNF
was associated with poorer brain activation as assessed using
the right DLPFC activation, particularly in women subjects.
A further investigation needs to be carried out for understanding
the mechanisms affecting the relationships between all the
above mentioned parameters and the DLPFC activation so
that better intervention strategies can be developed to reduce
the risk of irreversible neurodegenerative diseases among older
adults with MCI.
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